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Computing all Markov bases
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Abstract. We introduce the package AllMarkovBases for Macaulay2, which computes
all minimal Markov bases of a given toric ideal. The package builds on functionality
of 4ti2 by producing the fiber graph of the toric ideal. The package uses this graph to
compute properties of the toric ideal such as its indispensable set of binomials as well
as its universal Markov basis.
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1 Introduction

A central theme of Algebraic Statistics is the study of Markov bases [19, 14, 1]. From an
algebraic perspective, a Markov basis is simply a generating set of a toric ideal [18]. The
celebrated result of Diaconis and Sturmfels [9], often called the fundamental theorem of
Markov bases, provides an interpretation for these generating sets as moves in a Markov
chain, which allows for sampling from conditional distributions. There are many distinct
algorithms for producing one Markov basis of a toric ideal [13, 2, 12]. We refer the reader
to the thesis of Malkin [16] for a comprehensive overview of these methods, including
the state of the art project-and-lift algorithm. An implementation of this algorithm is
included in 4ti2 [11], which is available in many computer-algebra systems including
Macaulay2 [10] via the package FourTiTwo.

There are a number of important properties of Markov bases, such as the strongly
robust property [20, 15] and distance reduction property [21, 7], which can be read from the
configuration matrix of the toric ideal. Thus, for testing ideas about Markov bases, it may
be useful enumerate all minimal Markov bases or (uniformly) sample from them. So, in
this extended abstract, we present the package AllMarkovBases [8] for Macaulay2, which
is available at https://github.com/ollieclarke8787/WorkshopDurham2024/tree/

main/ToricIdeals. Our package builds on FourTiTwo with functionality that allows
the user to compute: all minimal Markov bases, the number of minimal Markov bases,
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the universal Markov basis, and indispensable elements of a toric ideal. These families
of elements have alternative combinatorial descriptions and prominently feature in the
study of Markov bases. See, for example, [4, 15, 7, 6]. Our package also allows the user
to sample uniformly from the set of minimal Markov bases, which may be particularly
useful if the number of minimal Markov bases is very large.

Setup. Throughout the abstract, we fix the following setup. Let k be a field and A ∈ Zd×n

a matrix. We assume that ker(A) ∩Nn = {0}. The toric ideal IA ⊆ k[x1, . . . , xn] is the
ideal generated by the binomials xu − xv where u, v ∈ Nn such that u − v ∈ ker(A).
A (minimal) Markov basis of A is a (inclusion-minimal) set of generators M of IA and
we identify M with its set of binomial exponents {u − v : xu − xv ∈ M}. We often
write the elements of M as the row-vectors of a matrix. The indispensable set S(A) is the
intersection of all minimal Markov bases of A. And the universal Markov basis U(A) is
the union of all minimal Markov bases of A.

Example 1.1. The matrix A =
(
7 8 9 10

)
defines a 1-dimensional toric ideal (monomial

curve). The ideal has four minimal Markov bases, which are computed as follows.

i1 : needsPackage "AllMarkovBases ";

i2 : A = matrix "7,8,9,10";

i3 : countMarkov A

o3 = 4

i4 : markovBases A

o4 = {| -1 2 -1 0 |, | -1 2 -1 0 |, | -1 2 -1 0 |, | -1 2 -1 0 |}

| -1 1 1 -1 | | -1 1 1 -1 | | -1 1 1 -1 | | -1 1 1 -1 |

| 0 -1 2 -1 | | 0 -1 2 -1 | | 0 -1 2 -1 | | 0 -1 2 -1 |

| 4 0 -2 -1 | | 4 0 -2 -1 | | 4 -1 0 -2 | | 4 -1 0 -2 |

| 3 1 -1 -2 | | 3 1 -1 -2 | | 3 1 -1 -2 | | 3 1 -1 -2 |

| 3 0 1 -3 | | 2 2 0 -3 | | 3 0 1 -3 | | 2 2 0 -3 |

So, for instance, the toric ideal IA ⊆ k[a, b, c, d] is minimally generated by the six
polynomials

ac− b2, ad− bc, bd− c2, a4 − c2d, a3b− cd2, a3c− d3.

Example 1.2. The monomial curve given by the matrix A′ =
(
51 52 53 54 55 56

)
has

24300 minimal Markov bases. It may not be feasible to work with all of them so we can
produce random samples as follows.

i5 : A' = matrix "51 ,52 ,53 ,54 ,55 ,56";

i6 : countMarkov A'

o6 = 24300

i7 : randomMarkov A'

o7 = | 8 4 0 0 0 -11 |

| -1 2 -1 0 0 0 |
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| -1 1 1 -1 0 0 |

| -1 0 2 0 -1 0 |

| -1 1 0 1 -1 0 |

| 0 -1 1 1 -1 0 |

| -1 1 0 0 1 -1 |

| 0 0 -1 2 -1 0 |

| 0 -1 0 2 0 -1 |

| 0 0 -1 1 1 -1 |

| 0 0 0 -1 2 -1 |

| 12 0 -1 0 -1 -9 |

| 11 1 0 -1 -1 -9 |

| 11 0 1 -1 0 -10 |

| 9 3 0 0 -1 -10 |

The indispensable set S(A′) and the universal Markov basis U(A′) are computed as
follows. We have abridged the output of toricUniversalMarkov A' to save space. We
note that the indispensable set and universal Markov bases are read from the fiber graph,
so the methods do not require the computation of all 24300 minimal Markov bases.

i8 : toricIndispensableSet A'

o8 = | -1 2 -1 0 0 0 |

| -1 1 1 -1 0 0 |

| 0 0 -1 1 1 -1 |

| 0 0 0 -1 2 -1 |

i9 : toricUniversalMarkov A'

o9 = | 10 0 2 0 0 -11 |

| 8 4 0 0 0 -11 |

...

| 9 3 0 0 -1 -10 |

| 11 0 0 1 -1 -10 |

33 6

o9 : Matrix ZZ <-- ZZ

Example 1.3. In Algebraic Statistics, Segre embeddings play an important role as they
correspond to independence models. Consider the Segre embedding P2 × P2 × P2 →
P26 defined by ([x1 : x2 : x3], [y1 : y2 : y3], [z1 : z2 : z3]) 7→ [xiyjzk]ijk. The image of this
embedding is the toric variety whose toric ideal is given by the matrix

A′′=



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0


.
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We compute the number of Markov bases, the indispensable set, and universal Markov
basis as follows. The semicolon suppresses the output, so the following shows that there
are 81 indispensable binomials and the universal Markov bases has size 243.

i10 : A'' = matrix {

{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1},

{1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0},

{1,1,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0},

{0,0,0,1,1,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,1,1,1,0,0,0},

{1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0},

{0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0}};

i11 : countMarkov A''

o11 = 324518553658426726783156020576256

i12 : toricIndispensableSet A'';

81 27

o12 : Matrix ZZ <-- ZZ

i13 : toricUniversalMarkov A'';

243 27

o13 : Matrix ZZ <-- ZZ

We note that this example is particularly amenable to our method as the fiber graphs are
all very small.

2 Implementation details

We translate the main results of Charalambous, Katsabekis, and Thoma [3, Section 2]
into a procedure (Algorithm 1) that produces all minimal Markov bases. In this section,
we explain the the procedure through a simple running example A =

(
1 2 3

)
∈ Z1×3.

Let us also fix a distinguished Markov basis

M =

[
2 −1 0
3 0 −1

]
.

So the toric ideal IA ⊆ k[x, y, z] is minimally generated by the binomials x2− y and x3− z.
The affine semigroup of A is NA := {Ax ∈ Zd : x ∈ Nn}. For each t ∈ NA, the t-fiber of
A is the subset Ft := {u ∈ Nn : Au = t}. For each binomial xu − xv ∈ IA, we have that
u, v ∈ Ft belong to the same fiber of A, and we define its A-degree degA(xu − xv) = t. In
our running example we have

degA(x2 − y) = 2 and degA(x3 − z) = 3.

The following result follows directly from [3, Theorems 2.6 and 2.7].
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\{2, 0, 0\} \{0, 1, 0\}

(a) A-degree 2

\{3, 0, 0\}

\{1, 1, 0\} \{0, 0, 1\}

(b) A-degree 3

Figure 1: Fiber graphs of A for the generating fibers

Theorem 2.1. If M and M′ are minimal Markov bases of A, then degA(M) and degA(M′) are
equal as multisets.

We say that t ∈ NA is a generating fiber for A if there exists an element xu − xv of a
minimal Markov basis with A-degree degA(xu − xv) = t. So, by Theorem 2.1, the set of
all generating fibers is determined by a single Markov basis.

Definition 2.2. Let t ∈Nd. The fiber graph Gt has vertex set Ft and edge set

E(Gt) = {uv : there exists i ∈ {1, . . . , d} such that ui > 0 and vi > 0}.

To determine the minimal Markov bases, it suffices to consider only the fiber graphs
of the generating fibers. With our package, these fiber graphs can be listed with the
function fiberGraph. For our running example A =

(
1 2 3

)
they are computed as

follows.

i1 : needsPackage "AllMarkovBases ";

i2 : A = matrix "1,2,3"

i3 : fiberGraph A

o3 = {Graph {{0, 1, 0} => {}}, Graph {{0, 0, 1} => {} }}

{2, 0, 0} => {} {1, 1, 0} => {{3, 0, 0}}

{3, 0, 0} => {{1, 1, 0}}

A visualisation of these fibers, produced by the package Graphs, is shown in Figure 1.
Each element z ∈ ker(A) is thought of as a move that connects pairs of points u, v ∈ Nn

whenever u = v + z. In our example, the move (2,−1, 0) connects (2, 0, 0) and (0, 1, 0)
and connects (1, 1, 0) and (3, 0, 0). A subset M ⊆ ker(A) is said to connect the t-fiber, for
some t ∈ NA, if the graph GM,t on Ft with edges {uv : u− v ∈ M} is connected. The
fundamental theorem of Markov bases [9, Theorem 3.1] tells us that Markov bases are in one-
to-one correspondence with subsets of ker(A) that connect each fiber of A. Similarly, by
[3, Theorems 2.6 and 2.7], the minimal Markov bases are in one-to-one correspondence
with sets of moves that minimally connect Gt for each generating fiber t of A.

Remark 2.3. In the literature, the graphs GM,t are often called fiber graphs [12]. To avoid
confusion, for us the term fiber graph will always refer to the graph Gt for some t.
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In our running example, observe that the 2-fiber in Figure 1a is connected only by
the element (2,−1, 0), up to sign. It follows that the corresponding binomial x2 − y is
indispensable, i.e. it appears in every Markov basis, as there is no other way to connect the
2-fiber. On the other hand, the 3-fiber in Figure 1b is minimally connected with either
the move (1, 1,−1) or (3, 0,−1). These form the two minimal Markov bases of A. In our
package, this process is carried out by the function markovBases:

i4 : markovBases A

o4 = {| 2 -1 0 |, | 2 -1 0 |}

| 3 0 -1 | | 1 1 -1 |

We now state the algorithm implemented by markovBases.

Algorithm 1: All minimal Markov bases of a matrix

Input : A ∈ Zd×n a configuration matrix
Output:M the set of minimal Markov bases of A

1: InitialiseM = ∅ ;
2: for t ∈NA a generating fiber of A do
3: Compute Ct := the set of connected components of the fiber graph Gt ;
4: end

5: T := ∏t{T : spanning tree on vertex set Ct}, where the product is taken over all
generating fibers t ∈NA of A

6: for {Tt : spanning tree on Ct} ∈ T do
7: for each collection { fT,e : T ∈ T , e ∈ E(T)} where fT,e is a choice function on e do
8: M := { fT,e(u)− fT,e(v) : T ∈ T , uv ∈ E(T)} Markov basis of A;
9: M←M∪{M};

10: end
11: end

Let us give some notes on how the algorithm works. Recall that each minimal Markov
basis corresponds to a collection of moves that minimally connects the fiber graph Gt for
each generating fiber t of A. We enumerate these collections of moves in two steps. First,
we find the connected components of each fiber graph and connect them with spanning
trees. This corresponds to lines 2 to 5 and the loop spanning lines 6 to 11. Next, for
each edge of such a spanning tree we choose a pair of points in the fiber that lie in the
connected components in the edge. This gives rise to a move, which lies the minimal
Markov basis. Let us expand on this explanation with the following example.

Example 2.4. Suppose Ft = {v1, . . . , v6} is a generating fiber and Gt has three con-
nected components Ct = {v1v2, v3v4, v5v6}. If we fix a spanning tree with edges e1 =
{v1v2, v3v4} and e2 = {v1v2, v5v6}, then there are four choices for turning the edge e1
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0

1 3 2

4

5

Figure 2: Spanning tree on {0, 1, . . . , 5} associated to the Prüfer sequence {0, 0, 2, 4}

into a move:
v1 − v3, v1 − v4, v2 − v3, v2 − v4.

Similarly, there are four ways to turn e2 into a move. Thus, this generating fiber con-
tributes two elements of a minimal Markov basis in 16 ways.

The spanning trees are enumerated using the well-known bijection of Prüfer [17].
This bijection between labelled spanning trees on n vertices and Prüfer sequences (se-
quences in {0, . . . , n− 1} of length n− 2) is completely constructive. Our package im-
plements the helpful function pruferSequence that takes a Prüfer sequence and returns
the edge set of the corresponding spanning tree. For example, the spanning tree associ-
ated to the sequence {0, 0, 2, 4} is given computed as follows, see Figure 2.

i5 : pruferSequence {0,0,2,4}

o5 = {set {0, 1}, set {0, 3}, set {0, 2}, set {4, 2}, set {4, 5}}

It is straightforward to see from Algorithm 1 and Example 2.4 that the number of
minimal Markov bases can be computed from the sizes of connected components of
each fiber graph.

Theorem 2.5 ([3, Theorem 2.9]). For each generating fiber t ∈NA, assume Gt has nt connected
components of size mt,1, mt,2, . . . , mt,nt for some positive integers mt,i with i ∈ {1, 2, . . . , nt}. The
number of minimal Markov bases of A is given by

∏
t

mt,1 ·mt,2 · · ·mt,nt · (mt,1 + mt,2 + · · ·+ mt,nt)
nt−2.

Our package implements this as the function countMarkov, which computes the num-
ber of minimal Markov bases without enumerating all of them.

2.1 Applications of fiber graphs

Once we have computed the fiber graphs of the generating fibers of a toric ideal, other
properties become immediately available. Our package extracts these properties with
variation on Algorithm 1, which allows us to sample from the set of Markov bases and
compute the indispensable set and univeral Markov basis.
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Random sampling. The function randomMarkov produces a random Markov basis. In
lines 6 and 7 of Algorithm 1, we sample uniformly an element of T and a random
collection of choice functions. This produces a single uniformly distributed minimal
Markov basis of A.

Indispensable set and universal Markov basis. The universal Markov basis U(A) of
the matrix A is the union of its minimal Markov bases. Since every minimal Markov
basis arises from Algorithm 1, we compute U(A) by replacing the collection of spanning
trees T with a single complete graph.

By [3, Corollary 2.10], the indispensable elements are detected directly from the fiber
graphs. The function toricIndispensableSet determines the indispensable elements by
finding each fiber graph Gt with exactly two vertices u, v such that |u| = |v| = 1, i.e. the
two vertices of Gt are subsets of Nn of size one. This method is completely analogous to
[5, Algorithm 1, Theorem 3.3].
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