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Abstract. We construct a basis of the Garsia–Procesi ring using the catabolizability
type of standard Young tableaux and the charge statistic, providing the first direct
connection between the structure of the Garsia–Procesi ring and the catabolizability
formula for the modified Hall–Littlewood polynomial that gives its graded Frobenius
character.
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1 Introduction

The polynomial ring C[x] = C[x1, . . . , xn] has a natural Sn action permuting the variables.
Taking the quotient of C[x] by the ideal generated by Sn-invariant polynomials with no
constant term defines the classical coinvariant ring R1n . As graded algebras with Sn
actions, the coinvariant ring is isomorphic to the cohomology ring of the complex flag
variety Fn. The Hilbert series Hilbq(R1n) is equal to [n]q!.

The Garsia–Stanton descent basis of R1n is given by the following set of monomials
indexed by permutations:

{gw(x) = ∏
i∈Des(w)

xw1 · · · xwi | w ∈ Sn}. (1.1)

where Des(w) := {i | wi > wi+1} denotes the descent set of w. We refer to these
monomials gw(x) as descent monomials. The descent monomials correspond to the
permutation statistic maj, defined to be maj(w) = ∑i∈Des(w) i; in particular, we can see
that deg(gw(x)) = maj(w). Using the fact that maj is Mahonian, we have the following
equality:

∑
w∈Sn

qdeg(gw(x)) = ∑
w∈Sn

qmaj(w) = [n]q!.

From this, it is evident that the number of descent monomials of degree d matches the
coefficient of qd in [n]q!. This gives a combinatorial explanation of Hilbq(R1n) = [n]q!.
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For µ ⊢ n, the Garsia–Procesi ring Rµ is a quotient of R1n that corresponds to the
cohomology ring of the Springer fiber Fµ ⊂ Fn. The concrete presentation of Rµ as
a quotient of C[x] is due to De Concini–Procesi [4] and Tanisaki [14]. This quotient
is also a graded Sn representation under the same action, where the graded Frobenius
character of Rµ is given by the modified Hall–Littlewood polynomial H̃µ[x; q] [9]. One
combinatorial formula for H̃µ[X; q], due to Lascoux [10] and Butler [2], is:

H̃µ[X; q] = ∑
T∈SYTn

ctype(T)⊵µ

qcocharge(T)sshape(T)(X). (1.2)

The sum is over all standard Young tableaux T satisfying ctype(T)⊵ µ, where ⊵ denotes
the dominance order on partitions and ctype(T) is a partition associated to T called its
catabolizability type [10].

The question of finding a subset of the Garsia–Stanton descent monomials that is
a monomial basis of Rµ was unresolved until recently, when Carlsson–Chou gave a
construction using shuffles of descent compositions [3]. However, this construction does
not give a direct combinatorial explanation for the Hilbert series of Rµ analogous to how
the descent monomials do for the coinvariant ring.

Our main contribution is a construction of a monomial basis of Rµ, consisting of
descent monomials, using a catabolizability type condition on standard Young tableaux
(Theorem 4.1.) Our basis coincides with that of Carlsson–Chou, though the two differ-
ent constructions are independent. We make use of this equality to show that our set is
indeed a basis. Our construction provides a natural way of describing this set of mono-
mials in light of (1.2). The description of the basis is compatible with the Hilbert series
Hilbq(Rµ) in the same way that the descent basis is compatible with Hilbq(R1n). We
further highlight the connection between our basis and (1.2) by using our construction
to give an elementary proof of the fact that Frobq(Rµ) = H̃µ[X; q] (Proposition 1, Corol-
lary 3) directly from (1.2) using just the ungraded Frobenius character of Rµ, without
relying on other identities regarding H̃µ[X; q]. Full details of this work are in [8].

2 Background

For any word w = w1w2 . . . wn, we write rev(w) := wnwn−1 . . . w1 for the reverse word.
For two words z(1), z(2) of length l1, l2 we define Sh(z(1), z(2)) to be the collection of all
words u of length (l1 + l2) such that z(1) and z(2) are two disjoint subwords of u. An
element u of Sh(z(1), z(2)) is a shuffle of z(1) and z(2). We can extend this definition and
let Sh(z(1), . . . , z(l)) denote the set of all shuffles of z(1), . . . , z(l).

Throughout, we use French notation for Young diagrams, meaning that the first part
corresponds to the bottom row. We denote the transpose of a partition λ by λt.
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The dominance ordering on partitions, denoted ⊵, is defined by µ ⊵ λ ⇔ µ1 +
· · · µk ≥ λ1 + · · · λk for all k. It is well known that µ ⊵ λ ⇔ µt ⊴ λt. If we move a
box of λ to a lower row so that the resulting shape µ is a partition, we have µ ⊵ λ.

For any partition λ, we denote the set of standard Young tableaux of shape λ by
SYT(λ). We denote the set of standard Young tableaux of all shapes of size n by SYTn.
For T ∈ SYT(λ), we let Tt ∈ SYT(λt) denote the filling of λt we get by swapping the rows
and columns of T. We define the descent set of T to be Des(T) = {i | i appears below i +
1 in T}.

For a semistandard Young tableau T of shape λ, we say the weight of T is the tuple
(m1, m2, . . . ) where mi is the number of times i appears in T. For any tableau T, we
denote the shape of T by shape(T) and the row reading word of a tableau T by rw(T).

The RSK (Robinson–Schensted–Knuth) correspondence gives a bijection from per-
mutations w ∈ Sn to pairs (P(w), Q(w)) of standard Young tableau of size n of the same
shape. We say P(w) is the insertion tableau and Q(w) is the recording tableau of w.
We note that for any given standard tableau T of shape λ, the number of permutations
w with P(w) = T is | SYT(shape(T))|, since we have one such permutation for each pos-
sible choice of Q(w). We recall the following proprety of RSK that we use throughout
this paper: for a more detailed exposition of RSK, see [13, Chapter 7].

Proposition 1 ([13, Corollary A1.2.11]). For any w ∈ Sn, we have P(rev(w)) = (P(w))t.

2.1 Symmetric functions and representation theory of Sn

We refer to [13, Chapter 7] or [12] for background on symmetric functions or the repre-
sentation theory of the symmetric group. We follow Macdonald’s notation [12] for the
monomial symmetric functions mλ, the elementary symmetric functions eλ, the complete
(homogeneous) symmetric functions hλ, and the Schur functions sλ.

We denote the Frobenius character of an Sn representation V by Frob(V). Recall
that Frob(Vλ) = sλ, where Vλ is the irreducible Sn representation indexed by λ. For
a graded vector space V = ⊕d≥0Vd, the graded Frobenius character is Frobq(V) =

∑d≥0 qd Frob(Vd).
For any Sn representation V, we can recover Hilbq(V) from Frobq(V) by the relation

Hilbq(V) = ⟨h1n , Frobq(V)⟩ where ⟨−,−⟩ denotes the Hall inner product on symmetric
functions. We can also determine Frobq(V) using the Hilbert series of certain subspaces
of V. For the Young subgroup Sγ = Sγ1 × · · · × Sγl ⊂ Sn indexed by γ ⊢ n, we define
Nγ = ∑σ∈Sγ

sgn(σ)σ to be the antisymmetrizer with respect to Sγ. For any CSn-module
V, the vector space NγV is the subspace of elements of V that are antisymmetric with
respect to Sγ. Let E ↑Sn

Sγ
denote the induction of the sign representation E of Sγ to Sn.

Using Frobenius reciprocity (see [5, Chapter 3.3]) and the fact that Frob(E ↑Sn
Sγ
) = eγ, we

get the following result:
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Proposition 2. For any graded CSn-module V = ⊕d≥0Vd and Young subgroup Sγ ⊂ Sn, we
have Hilbq(NγV) = ⟨eγ, Frobq(V)⟩.

From this, we can see that Frobq(V) is uniquely determined by Hilbq(NγV) for all
partitions γ ⊢ n. We use this result in Section 5 in our proof of Frobq(Rµ) = H̃µ[X; q].

2.2 Charge and cocharge

Charge and cocharge are statistics on tableaux that arise in the study of Hall–Littlewood
polynomials. The modified Hall–Littlewood polynomial H̃µ[X; q] is given by the for-
mula H̃µ[X; q] = ∑

λ
K̃λ,µ(q)sλ(X) where the coefficients K̃λ,µ(q) can be expressed using

the statistic cocharge on SYT:

K̃λ,µ(q) = ∑
T∈SYT(λ)

ctype(T)⊵µ

qcocharge(T). (2.1)

We define ctype(T) in Section 2.3. Note that (2.1) is equivalent to the more familiar
expression for K̃λ,µ(q) with respect to semistandard Young tableaux under a cocharge
preserving bijection from {T ∈ SYT(λ) | ctype(T)⊵ µ} to {S ∈ SSYT(λ) | weight(S) =
µ}, due to Lascoux [10]. From the description using semistandard Young tableaux, we
can see that K̃λ,µ(1) = Kλ,µ, the Kostka number counting semistandard tableaux of shape
λ, weight µ. From this, we can see that H̃µ[X; 1] = hµ(X).

We first define these statistics on the level of permutations and then extend it to SYTn.
For w ∈ Sn, we define charge(w) = maj(rev(w−1)) and cocharge(w) = (n

2)− charge(w).
Lascoux–Schützenberger [11] proved that charge is the unique statistic on words that
satisfies a set of properties, one of them being the following:

Theorem 2.3 (Lascoux–Schützenberger [11]). For w, w′ ∈ Sn such that P(w) = P(w′), we
have charge(w) = charge(w′).

From this, we can define charge (resp. cocharge) on standard Young tableau T by
setting charge(T) = charge(rw(T)) (resp. cocharge(T) = cocharge(rw(T))) and always
have charge(P(w)) = charge(w) for any w ∈ Sn.

Explicitly, we can compute charge(w) by assigning labels to each letter in w. The
charge word of w (denoted c(w)) is a word of length n consisting of the charge labelling
of w, which we define in the following way. We label 1 of w with 0. We proceed by
labelling the numbers in increasing order: if we label i with a k, then we label (i + 1)
with a k if it is to the left of i. We label (i + 1) with a (k + 1) if it is to the right of i.
We compute charge(w) by taking the sum of the letters in c(w). Using the algorithm
for computing charge, we obtain the following lemma about charge words, which we
make use of in Section 4 when proving that the set of monomials we construct is indeed
a basis of Rµ.
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Lemma 4. For w ∈ Sn and nonnegative integer x where x = c(w)i for some i, any word in
Sh(c(w), x) is a charge word as well.

Example 5. Consider w = 45132. The corresponding charge word is c(w) = 12011, thus
charge(w) = 5. If x = 2, we can see that any word in Sh(12011, 2) is a charge word. For
example, 120211 = c(461532).

We use these charge words to construct the monomials that appear in our basis. To
each w ∈ Sn, we associate a monomial xc(w), where the exponents are given by the charge
word of w. We refer to this monomial as the charge monomial of w.

Example 6. For w = 45132, the corresponding charge monomial is xc(w) = x1x2
2x4x5.

We can see that charge monomials of Sn are exactly the descent monomials given in
(1.1). Let Dn denote the set of exponents of descent monomials. We refer to these words
as descent words.

Example 7. Using (1.1), we can compute g321(x) = (x3)(x3x2) = x2x2
3. Thus 012 ∈ D3.

In this way, we can compute D3 = {012, 011, 101, 001, 010, 000}.

Since the definition of charge follows from maj, it is clear from definition that xc(w) =
gσ(x) for any w ∈ Sn, where σ = rev(w−1). From this, we get the following fact:

Lemma 8. We have Dn = {c(w) | w ∈ Sn}.

We define the cocharge word cc(w) of permutation w by cc(w) = rev(c(rev(w)))
We can see that cc(w) can be computed by the same algorithm we use to compute the
charge word, except with left and right exchanged. We compute cocharge(w) by taking
the sum of the letters in cc(w). We make the following observation from Proposition 1
and the relation between cocharge, which we use to switch between the two statistics
when describing H̃µ[X; q].

Proposition 9. If T is a standard Young tableau, then charge(T) = cocharge(Tt).

2.3 Catabolism and catabolizability

To each standard Young tableau T, we associate a partition called its catabolizability
type ctype(T). Originally introduced by Lascoux [10], this partition keeps track of a
sequence of catabolisms to apply to T in order to produce a one row tableau.

In general, many things are unknown about catabolism and catabolizability, though
the operation of catabolism itself is very easy to compute. However, there is a concrete
algorithm, due to Blasiak [1], called the catabolism insertion algorithm, which computes
the catabolizability type of a permutation w, where we define ctype(w) := ctype(P(w)).
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We define a modification of the catabolism insertion to use as our main tool in show-
ing that the set we define in Section 4 is indeed a basis of the Garsia–Procesi rings. For
this extended abstract, we reverse our conventions from that used in the full version of
this work [8] for simplicity. We first define the following function:

Definition 10. Consider a tuple (i, x, T) consisting of an integer i ∈ [n], a word x (with
potentially empty spots), and a filling T of partition shape. We construct a new word x′

and filling T′ from (x, i, T) in the following way:

• If xi is empty, set T′ = T, x′ = x.

• If not, set T′ to be the filling we obtain by adding a box containing i to row (xi + 1)
of T if the resulting shape is a partition. We create x′ by replacing xi with an empty
spot.

• If we cannot add a box to row (xi + 1) of T to make a partition shape, we set
T′ = T. We obtain x′ from x by replacing xi with (xi + 1).

We define the function f on such tuples by f (i, x, T) = (i + 1, x′, T′) if i < n and
f (n, x, T) = (1, x′, T′).

Algorithm 11. Let (1, c(w), ∅) be the initial input, where w ∈ Sn. Apply f repeatedly to
this tuple until it results in the tuple (j, ∅, Tw) for some index j, where Tw is a standard
filling (but not necessarily a SYT) of a partition shape.

We illustrate this algorithm in Example 15. Note that this algorithm may not termi-
nate if the word in the initial tuple is not a charge word. For example: if z = 20, the
second letter will never be deleted, since we cannot add a box to the partition (1) in rows
2 or higher. The shape of the resulting filling Tw gives us the catabolizability type of a
certain permutation.

Proposition 12 (Blasiak[1]). We have ctype(rev(w)) = shape(Tw), where Tw is the filling
produced by Algorithm 11.

The original algorithm of Blasiak produced a partition shape with no filling. We
choose to fill the shape in order to construct disjoint subwords of c(w) using the entries
in the columns of Tw. We make use of these subwords when proving the main result in
Section 4.

We now describe these subwords. Consider w ∈ Sn where shape(Tw) = λ. For a
column j of λ, define c(w)(j) to be the subword of c(w) consisting of the entries c(w)k
where k appears in column j of Tw. We give examples of this construction in Example 15.
Using Lemma 4, we can prove the following proposition.

Proposition 13. For w ∈ Sn where shape(Tw) = λ, consider j such that 1 ≤ j ≤ λ1. Then
c(w)(j) = c(σ) for some σ ∈ Sr.
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From this, we can see that each of the subwords of c(w) corresponding to columns
of Tw are themselves charge words. This observation will be essential when proving the
main result in Section 4.

Remark 14. The fact that c(w)(j) is a charge word is not obvious a priori, since it is not
true that any subword of a charge word is a charge word. For example, consider w = 12,
which has c(w) = 01. Though 1 is a subword of c(w), it is not a charge word.

Example 15. Consider w = 52143, with c(w) = 10011. The position of the word that we
are considering at each step is underlined. Our initial input is (1, 10011, ∅). We can see
that at the first step, the resulting tuple is (2, 20011, ∅), since we cannot add a box to row
2 of the empty partition. We proceed through the rest of the word, where we underline
xi when considering the tuple (i, x, T):

(2, 2 0 0 1 1 , ∅ )
f−→ (3, 2 0 1 1, 2 )

f−→ (4, 2 1 1 , 2 3 )

f−→ (5, 2 1 , 4
2 3 )

f−→ (1, 2 , 4 5
2 3 )

f−→ (2, ,
1
4 5
2 3

)

Hence we have T52143 =
1
4 5
2 3

, ctype(34125) = ctype(rev(52143)) = (2, 2, 1). In this

case, we see that the subwords corresponding to the columns of Tw are c(w)(1) =
c(w)1 c(w)2 c(w)4 = 101 = c(312) and c(w)(2) = 01 = c(12).

3 Descent basis of Carlsson–Chou

We now review the construction of the Carlsson–Chou descent basis.
For µ = (µ1, . . . , µl) ⊢ n, define Dµ to be Dµ =

⋃
(z(1),...,z(l)) Sh(z(1), . . . , z(l)) where

(z(1), . . . , z(l)) ranges over all l-tuples in Dµ1 × · · · × Dµl .

Theorem 3.1 (Carlsson–Chou [3]). The set xDµ = {xα | α ∈ Dµ} is a monomial basis of Rµt .

Example 2. Let µ = (3, 1). Since D3 = {012, 011, 101, 001, 010, 000} and D1 = {0}, we
have D3,1 = {0012, 0102, 0120, 0011, 0101, 1001, 1010, 0110, 0001, 0010, 0100, 0000}.
The corresponding set of monomials, given below, is a basis of R2,1,1 since (3, 1)t =
(2, 1, 1):

{x3x2
4, x2x2

4, x2x2
3, x3x4, x2x4, x1x4, x1x3, x2x3, x4, x3, x2, 1}.

Carlsson–Chou show that their basis is a subset of the descent basis. Though the
description of the basis is combinatorial, it lacks nice combinatorial properties that the
descent basis had. For one, it is not obvious that |Dµ| = dim(Rµt), since multiple
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shuffles can correspond to the same descent word. For example, 0101 ∈ Sh(101, 0) and
0101 ∈ Sh(011, 0) both correspond to the same element in D3,1. It is also not obvious
how to see directly for which w ∈ Sn we have gw(x) ∈ xDµ without computing Dµ.

This construction also fails to provide direct connections to the q = 0 specialization of
the modified Macdonald polynomials H̃µ[X; q, t]. Since H̃µ[X; 0, t] recovers the modified
Hall–Littlewood polynomials, one would expect there to be a nice bijection between the
monomials xDµ and the terms that arise in the combinatorial formula due to Haglund–
Haiman–Loehr [7]. However, Carlsson–Chou state that there does not seem to be a
“reasonable” weight-preserving bijection between the indexing sets of the two.

4 Charge monomial basis of Rµt

Our main contribution is that we construct sets of charge monomials that are monomial
bases of Garsia–Procesi rings. Our construction involves charge words of permutations
whose insertion tableaux satisfy a catabolizability condition.

Theorem 4.1. Let Cµ := {c(w) | w ∈ Sn, ctype(P(w)t)⊵ µt}. The set xCµ = {xα | α ∈ Cµ}
is a monomial basis of Rµt . In fact, it coincides with the basis xDµ given by Carlsson–Chou [3],
ie., Cµ = Dµ.

From Lemma 8, we know Cµ ⊂ Dn, thus this set of monomials is indeed a subset
of the descent basis of the coinvariant ring. Though the two sets coincide, the defini-
tions of Cµ and Dµ are independent, which we can see through the difference in the
combinatorics used in the constructions.

Example 2. Consider µ = (3, 1). There are five standard tableaux S such that ctype(St)⊵
(2, 1, 1) = µt. We list them in Figure 1 along with all words w such that P(w) = S and
their charge monomials. The resulting set of charge monomials is

{x3x2
4, x2x2

4, x2x2
3, x3x4, x2x4, x1x4, x1x3, x2x3, x4, x3, x2, 1},

which is the same as in Example 2.

Before we prove Theorem 4.1, we point out some key connections between our con-
struction of xCµ and the combinatorics of H̃µ[X; q]. Using the combinatorial formula
(1.2) for the modified Hall–Littlewood polynomials and Proposition 9, we obtain the
following expression for H̃µt [X; q] with respect to charge:

H̃µt [X; q] = ∑
T∈SYTn

ctype(Tt)⊵µt

qcharge(T)sshape(Tt)(X). (4.1)
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S {w | P(w) = S} {xc(w) | P(w) = S}

2
1 3 4 {2134, 2314, 2341} {x3x2

4, x2x2
4, x2x2

3}

2 4
1 3 {2143 , 2413} {x3x4, x2x4}

4
2
1 3

{4213, 4231, 2431} {x1x4, x1x3, x2x3}

3
2
1 4

{3214, 3241 , 3421} {x4, x3, x2}

4
3
2
1

{4321} {1}

Figure 1: Charge monomials xc(w) for w ∈ Sn with ctype(P(w)t)⊵ (2, 1, 1)

Using (4.1) we can express Hilbq(Rµt) as a sum over certain permutations:

Hilbq(Rµt) = ∑
w∈Sn

ctype(P(w)t)⊵µt

qcharge(w). (4.2)

By our definition of Cµ, the number of monomials in xCµ of degree d is exactly the
number of permutations that satisfy ctype(P(w)t)⊵ µt and charge(w) = d. Comparing
this observation with (4.2), it is evident xCµ has the correct cardinality in each degree to
be a basis of Rµt . This is analogous to the result that we had for the descent basis and the
coinvariant ring that we discussed in Section 1. This is also in contrast to the Carlsson–
Chou construction where it was nontrivial to show the ungraded version of this equality
(|Dµ| = dim(Rµt)). Our construction also gives a direct way to determine for which
w ∈ Sn we have gw(x) ∈ xCµ . In particular, we have gw(x) ∈ xCµ for w = rev(σ−1) where
ctype(P(σ)t)⊵ µt.

This construction also highlights a natural connection to the q = 0 specialization
of the modified Macdonald polynomials H̃µ[X; q; t] that was difficult to see from the
Carlsson–Chou construction. In [7], the authors give a bijection between the fillings τ

of µ that satisfy inv(τ) = 0, which index the terms in the combinatorial formula of
H̃µ[X; 0; t] and pairs (S, T) where S ∈ SSYT, T ∈ SYT are tableaux of the same shape. We
can easily extend this bijection to Cµ using Lascoux’s cocharge preserving standardiza-
tion.

We prove Theorem 4.1 by showing that Cµ = Dµ, which implies that the set xCµ
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is a basis of Rµt . Since we know |Cµ| = dim(Rµt) from the observation above and
dim(Rµt) = |Dµ| from the results of Carlsson–Chou, it suffices to show that Cµ ⊂ Dµ.
This containment is almost immediate using the algorithm we defined in Section 2.3.

Proposition 3. Let µ be a partition of n of length l and w be a permutation of n such that
ctype(rev(w))⊵ µt. Then c(w) ∈ Dµ.

If ctype(rev(w)) = µt, this follows from Proposition 13, which gives a decomposition
of c(w) into l disjoint subwords c(w)(1), . . . , c(w)(l). Note that c(w)(j) = c(u) for some
u ∈ Sµj , hence c(w)(j) ∈ Dµj .

Example 4. Let µ = (3, 2). Consider w = 52143 from Example 15 with c(w) = 10011
and ctype(rev(w)) = (2, 2, 1) = µt. Using the subwords coming from the columns of
Tw, we can write c(w) = 10011 as a shuffle of c(w)(1) = 101 and c(w)(2) = 01 where the
bold letters indicate those in c(w)(2). Thus c(w) ∈ Sh(101, 01) where (101, 01) ∈ D3 × D2
since 101 = c(312) and 01 = c(12).

It remains to consider ctype(rev(w))▷ µt. Recall that for any partition λ▷ µt, we can
go from shape λ to µt by moving boxes to higher rows, which results in lowering the
shape in the dominance ordering. Using this idea and Lemma 4, we define an algorithm

that takes the filling Tw of shape λ and constructs a filling Tµt

w of shape µt by moving

certain boxes to higher rows. By definition of the algorithm, the resulting columns of Tµt

w
correspond to disjoint subwords of c(w) that are each charge words themselves as well.
For details, see Section 4 of [8].

Theorem 4.1 follows from Propositions 1 and 3. Hence we have that our set xCµ is
indeed a basis of Rµt . Note that this proof does not depend on the fact that Frobq(Rµ) =

H̃µ[X; q]. It suffices to know that the ungraded Frobenius character of Rµ is given by hµ,
which can easily be identified directly from the structure of Rµ.

5 Antisymmetric part

We now use the construction of our basis to give a direct, elementary proof of the fact
that Frobq(Rµt) = H̃µt [X; q]. We do this by showing that for any γ = (γ1, . . . , γl) ⊢ n, we
have Hilbq(NγRµt) = ⟨eγ, H̃µt [X; q]⟩.

Using (4.1), we can explicitly write out ⟨eγ, H̃µt⟩ as the following:

⟨eγ, H̃µt⟩ = ∑
T∈SYT

ctype(Tt)⊵µt

qcharge(T)Kshape(T),γ (5.1)

= ∑
w∈Sn

ctype(P(w)t)⊵µt

Des(Q(w))⊂{γ1,γ1+γ2,...,γ1+···+γl−1}

qcharge(w). (5.2)
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Note that we use the interpretation of Kλ,γ with respect to standard tableaux:

Kλ,γ = |{w ∈ Sn | shape(P(w)) = λ, Des(Q(w)) ⊂ {γ1, γ1 + γ2, . . . , γ1 + · · ·+ γl−1}}|.

From this, proving Frobq(Rµt) = H̃µt [X; q] is equivalent to showing that for any
γ ⊢ n, the Hilbert series Hilbq(NγRµt) is equal to (5.2). We show this by proving that the
natural subset of charge monomials to expect from Equation (5.2) gives a basis of NγRµt

by antisymmetrization.

Proposition 1. Let µ ⊢ n and γ = (γ1, . . . , γl) ⊢ n. The set

{Nγxc(w) | w ∈ Sn, ctype(P(w)t)⊵ µt, Des(Q(w)) ⊂ {γ1, γ1 + γ2, . . . , γ1 + · · ·+ γl−1}}.

is a basis of NγRµt .

Using the construction of our basis, we can translate questions about the structure of
Rµt into questions about conditions on tableaux. In this case, determining the elements
that are a basis of NγRµt is equivalent to looking at pairs of standard tableaux (P, Q) of
the same shape with conditions on both P and Q. We illustrate this with an example:

Example 2. Consider µ = (3, 1) and γ = (2, 2). All standard tableaux P that satisfy
ctype(Pt)⊵ (2, 1, 1) = (3, 1)t are listed below:

2
1 3 4 ,

2 4
1 3 ,

4
2
1 3 ,

3
2
1 4 ,

4
3
2
1 .

We also list all standard tableaux Q such that Des(Q) ⊂ {2}:

1 2 3 4 ,
3
1 2 4 .

Thus the only pair (P, Q) of standard tableaux of the same shape that satisfy ctype(Pt)⊵

(2, 1, 1) and Des(Q) = (2, 2) is the pair
(

2
1 3 4

, 3
1 2 4

)
, which corresponds to the

permutation w = 2314. Since c(w) = 0102, we conclude the basis of NγRµt is given by
the polynomial Nγ(x2x2

4) = x2x2
4 − x1x2

4 − x2x2
3 + x1x2

3.

Corollary 3. For any partition µ of n we have Frobq(Rµt) = H̃µt [X; q].

Though Garsia–Procesi [6] provide the first combinatorial proof of this result, their
proof requires deriving recursive properties of H̃µ[X; q] that match the recursion occur-
ring in the construction of their monomial basis of Rµ. Not only is our proof independent
from theirs, it also relies solely on the combinatorial formula (4.1) for H̃µ[X; q], as well as
some basic symmetric function theory, providing a direct connection between the Schur
expansion of H̃µ[X; q] and Frobq(Rµ).
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