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Abstract. Refined canonical stable Grothendieck polynomials were introduced by
Hwang, Jang, Kim, Song, and Song. There exist two combinatorial models for these
polynomials: one using hook-valued tableaux and the other using pairs of a semistan-
dard Young tableau and (what we call) an exquisite tableau. An uncrowding algorithm
on hook-valued tableaux was introduced by Pan, Pappe, Poh, and Schilling. In this pa-
per, we discover a novel connection between the two models via the uncrowding and
Goulden–Greene’s jeu de taquin algorithms, using a classical result of Benkart, Sottile,
and Stroomer on tableau switching. This connection reveals a hidden symmetry of the
uncrowding algorithm defined on hook-valued tableaux. As a corollary, we obtain an-
other combinatorial model for the refined canonical stable Grothendieck polynomials
in terms of biflagged tableaux, which naturally appear in the characterization of the
image of the uncrowding map.

Keywords: Grothendieck polynomials, hook-valued tableaux, flagged tableaux, un-
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1 Introduction

Refined canonical stable Grothendieck polynomials were introduced in [8], generaliz-
ing and unifying many of the previous variants of Grothendieck polynomials. They
encompass the Grassmannian Grothendieck polynomials introduced by Lascoux and
Schützenberger [13], the stable Grassmannian β-Grothendieck polynomials of Fomin and
Kirillov [5], the canonical stable Grothendieck polynomials of Yeliussizov [19], flagged
Grothendieck polynomials of Matsumura [15], and the refined stable Grothendieck poly-
nomials of Chan and Pflueger [4].
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In analogy to Schur functions, which are generating functions of semistandard Young
tableaux, Buch [3] showed that stable Grothendieck polynomials are generating func-
tions of semistandard set-valued tableaux. Each cell in a set-valued tableau contains a
set instead of just a natural number. Combinatorial models for the (refined) canonical
stable Grothendieck polynomials are described in terms of hook-valued tableaux [19, 9],
which contain a semistandard Young tableau of a hook shape in each cell. These tableaux
models are intimately related to the monomial expansions of the different versions of the
Grothendieck polynomials.

An important question is to find the Schur expansion of the various Grothendieck
polynomials. Lenart [14] gave the Schur expansion of the symmetric stable Grothendieck
polynomials, whose monomial expansion is given in terms of set-valued tableaux.

Buch [3, Theorem 6.11] developed an uncrowding algorithm on set-valued tableaux
to give a bijective proof of Lenart’s Schur expansion. The uncrowding algorithm on a
set-valued tableau produces a semistandard Young tableau (using the RSK bumping al-
gorithm to uncrowd cells that contain more than one integer) and a flagged increasing
tableau [14] (also known as an elegant filling [12, 1, 17]), which serves as a record-
ing tableau. This uncrowding algorithm was generalized by Chan and Pflueger [4], by
Reiner, Tenner and Yong [18], and by Pan, Pappe, Poh, and Schilling [16].

Hwang et al. [8] found the Schur expansion for refined canonical Grothendieck poly-
nomials, which we rephrase in terms of “exquisite” tableaux. Hence, it is a natural
question to relate the combinatorial model for the refined canonical Grothendieck poly-
nomials in terms of hook-valued tableaux with the combinatorial model in terms of
exquisite tableaux by giving a bijection between hook-valued tableaux and pairs of a
semistandard tableau and an exquisite tableau. In this paper, we find such a bijection
(see Theorem 4.14) using two types of uncrowding maps by combining the uncrowding
algorithm due to Pan et al. [16] with Goulden–Greene’s jeu de taquin [6].

The uncrowding algorithm on hook-valued tableaux in [16] uncrowds the entries in
the arms of the hooks and yields a set-valued tableau and a column-flagged increasing
tableau. Subsequently applying the uncrowding algorithm by Buch [3] on the set-valued
tableau yields a semistandard Young tableau and a recording tableau. It was proved
in [16] that this uncrowding operator intertwines with the crystal operators of Hawkes
and Scrimshaw [7]. Let us denote this sequence of uncrowding operations by UL∞A∞ ,
which indicates that first arm and then leg uncrowding is performed. In this paper, we
also consider other orderings of leg and arm uncrowding, in particular UA∞L∞ which
first performs leg and then arm uncrowding. We relate the two orderings using tableau
switching in the sense of Benkart, Sottile and Stroomer [2]. This yields a characterization
of the recording tableaux under the uncrowding algorithm in terms of biflagged tableaux
(see Corollary 4.16). To connect to the combinatorial model of [8] in terms of exquisite
tableaux we use the jeu de taquin algorithm due to Goulden and Greene [6], which we
call GG-jdt. This map was further studied by Krattenthaler [11]. We show that GG-jdt
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is a partial tableau switching procedure (see Proposition 4.8). This yields the bijection
between the combinatorial models for the refined canonical stable Grothendieck poly-
nomials (see Theorem 4.14). Our proof reveals a hidden symmetry of the uncrowding
algorithm on hook-valued tableaux when interchanging the order of arm and leg un-
crowding (see Theorem 4.3). This shows the equivalence of three combinatorial models
for the refined canonical stable Grothendieck polynomials (see Corollary 4.17).

For the long version containing all proofs, see [10].

2 Preliminaries

2.1 Refined canonical stable Grothendieck polynomials

Yeliussizov [19] introduced the canonical stable Grothendieck polynomial G(α,β)
λ (x) indexed

by a partition λ and two parameters α and β. It is a formal power series generalizing the
Grassmannian Grothendieck polynomial G(β)

λ (x) with the property

ω(G(α,β)
λ (x)) = G(β,α)

λ′ (x),

where ω is the involution that sends the Schur function sλ(x) to sλ′(x) indexed by the
transpose partition λ′. The canonical stable Grothendieck polynomials have recently
been studied in [7, 16].

The refined canonical stable Grothendieck polynomials Gλ(x, α, β), introduced by Hwang,
Jang, Kim, Song, and Song [8], are refinements of G(α,β)

λ (x) with infinite sets of param-
eters α = (α1, α2, . . . ) and β = (β1, β2, . . . ). Here, we replaced every βi with −βi in the
original definition [8, Definition 1.1] in order to make Gλ(x, α, β) a formal power series
with positive coefficients. We can set αi = α and βi = β, for all i, in the refined ver-
sion Gλ(x, α, β) to get the original version G(α,β)

λ (x). Combinatorially, both G(α,β)
λ (x) and

Gλ(x, α, β) are the generating functions for hook-valued tableaux [19, 9].
We use French notation for partitions and tableaux throughout the paper.

Definition 2.1. A hook-valued tableau is a filling of a partition shape satisfying:

1. Each box contains a semistandard Young tableau of hook shape, i.e.,

Lℓ
...

L1

h A1 · · · Ak

where h < L1 < · · · < Lℓ and h ⩽ A1 ⩽ · · · ⩽ Ak are positive integers. The entry h
is called the hook entry, the Li’s the leg entries and the Ai’s the arm entries.
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2. Each row is weakly increasing, i.e., any entry in a box is weakly smaller than any
entry in the box directly to the right of it.

3. Each column is strictly increasing, i.e., any entry in a box is strictly smaller than
any entry in the box directly above it.

We denote by HVT(λ) the set of hook-valued tableaux of shape λ. We write HVT for the
set of hook-valued tableaux of any shape. The weight wt(T) of T ∈ HVT is

wt(T) = ∏
i⩾1

α
(# of arm entries in column i)
i β

(# of leg entries in row i)
i x(# of i’s in T)

i .

Example 2.2.

Let T1 =

6
4
335 67
2
11

4
334

9
445

and T2 =

7
445 789
4
3
122

5
345

8
7
567 7

.

The tableau T1 is a hook-valued tableau of shape (3, 2), and T2 is not a hook-valued
tableau because the first row of T2 is not weakly increasing (the first column of T2 is not
strictly increasing either). Furthermore, wt(T1) = α3

1α3
2α2

3β3
1β2

2x2
1x2x4

3x5
4x2

5x2
6x7x9.

Theorem 2.3. [9] We have

Gλ(x, α, β) = ∑
T∈HVT(λ)

wt(T).

2.2 Various mixed tableaux

Definition 2.4. A mixed tableau of shape µ/λ is a filling T of the cells of µ/λ with ele-
ments in {αk | k ∈ Z>0} ∪ {βk | k ∈ Z}. The weight wt(T) of a mixed tableau T is the
product of its entries.

Definition 2.5. A flagged-mixed tableau is a mixed tableau satisfying the following con-
ditions: if T(i, j) = αk, then 0 < k < j, and if T(i, j) = βk, then 0 < k < i. Here,
T(i, j) denotes the entry in the ith row and jth column. We denote by FMT the set of all
flagged-mixed tableaux.

Definition 2.6. Let T be a mixed tableau. For γ ∈ {α, β}, we say that T is γ-column-strict
(resp. γ-row-strict) if the following conditions hold:

1. If γi and γj are entries in T such that γi is weakly southwest of γj, then i ⩾ j.
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2. If γi and γj are entries in T in the same column (resp. row), then i ̸= j.

We also say that T is totally column-strict if the following conditions hold:

1. All indices of α and β in each column are strictly decreasing. More precisely, if
T(i, j) = γr and T(i + 1, j) = δs with γ, δ ∈ {α, β}, then r > s.

2. All indices of α and β in each row are weakly decreasing. More precisely, if T(i, j) =
γr and T(i, j + 1) = δs with γ, δ ∈ {α, β}, then r ⩾ s.

Definition 2.7. Let T be a mixed tableau of shape µ/λ. Let A (resp. B) be the set of cells
in T containing αk (resp. βk) for any k ∈ Z. We say that T is (α, β)-sorted if A and B form
skew shapes ν/λ and µ/ν, respectively, for some partition ν with λ ⊆ ν ⊆ µ. Similarly,
we say that T is (β, α)-sorted if B and A form skew shapes ν/λ and µ/ν, respectively, for
some partition ν with λ ⊆ ν ⊆ µ.

2.3 Exquisite tableaux

The content c(i, j) of the cell (i, j) is defined by c(i, j) = j − i.

Definition 2.8. Let T be a mixed tableau. We define c+β (T) (resp. c−β (T)) to be the tableau
obtained from T by replacing every βr by βr+c (resp. βr−c), where c is the content of the
cell containing βr.

Definition 2.9. An exquisite tableau is a flagged-mixed tableau E such that c+β (E) totally
column-strict. Let EXQ(µ/λ) denote the set of all exquisite tableaux of shape µ/λ.

Example 2.10. Let λ = (2, 1) and µ = (3, 3, 1). Then

EXQ(µ/λ) =


β2

β1 α1

α2

,
β1

β1 α1

α2

,
β2

α1 α1

α2

,
β1

α1 α1

α2

 .

Theorem 2.11. [8, Corollary 4.5] We have

Gλ(x, α, β) = ∑
µ⊇λ

sµ(x) ∑
E∈EXQ(µ/λ)

wt(E).

3 Uncrowding algorithm and tableau switching

3.1 Uncrowding algorithms for hook-valued tableaux

We define the uncrowding algorithms for hook-valued tableaux following [16].
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Definition 3.1. The arm-uncrowding bumping Ab : HVT → HVT is defined in [16, Defini-
tion 3.2]. The leg-uncrowding bumping Lb : HVT → HVT is defined in [16, Definition 3.33].

Definition 3.2. The single-arm-uncrowding map A : HVT → HVT is defined as follows.
Let T ∈ HVT. If T has no arms, or equivalently, if Ab(T) = T, then define A(T) = T.
Otherwise, we define A(T) = Am

b (T), where m is the smallest integer such that the
shape of Am

b (T) is larger than that of T.

Definition 3.3. The single-leg-uncrowding map L : HVT → HVT is defined as follows. Let
T ∈ HVT. If T has no legs, then L(T) = T. Otherwise, we define L(T) = Lm

b (T), where
m is the smallest integer such that the shape of Lm

b (T) is larger than that of T.

Definition 3.4. Let U = U fn··· f1 , where fn · · · f1 is a word in the alphabet {A,L}. Then
the uncrowding map U : HVT → HVT× FMT is defined as follows.

Let T ∈ HVT. We construct two tableaux P and Q. For each i = 0, 1, 2, . . . , n, let
Ti = fi ◦ · · · ◦ f1(T), where T0 = T, and let λ(i) be the shape of Ti. First, we define
P = Tn. Now we define a flagged-mixed tableau Q of shape λ(n)/λ(0) as follows. For
each i = 1, 2, . . . , n, there are two cases.

Case 1 fi = A. Then Ti = A(Ti−1). If Ti−1 has arms, suppose that (r, c) is the cell that
contains the largest arm entry in the rightmost column containing an arm. Then
fill the unique cell λ(i)/λ(i−1) in Q with αc. (If Ti−1 has no arms, nothing happens.)

Case 2 fi = L. Then Ti = L(Ti−1). If Ti−1 has legs, suppose that (r, c) is the cell that
contains the largest leg entry in the topmost row containing a leg. Then fill the
unique cell λ(i)/λ(i−1) in Q with βr. (If Ti−1 has no legs, nothing happens.)

Finally, we define U (T) = (P, Q). We call P and Q the insertion tableau and recording
tableau of U (T), respectively.

Example 3.5. Consider the following hook-valued tableaux T,A(T),A ◦ A(T),L ◦ A ◦
A(T), and L ◦ L ◦ A ◦ A(T):

T =

4

3
6
57

2 24

1 1 1
5
3

A
→

4

3
6
5

2 24 7

1 1 1
5
3

A
→

4

3
6
5

2 2 4 7

1 1 1
5
3

L
→

4 6

3 5
2 2 4 7

1 1 1
5
3

L
→

4 6

3 5 7
2 2 4 5

1 1 1 3

.

This shows that ULLAA(T) = (P, Q), where

P =

4 6
3 5 7
2 2 4 5
1 1 1 3

, Q =

β3

β1

α2 α2 .
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Note that if a hook-valued tableau T has a arms and ℓ legs, then Aa(T) = Aa+1(T) =
· · · and Lℓ(T) = Lℓ+1(T) = · · ·. Thus, ULNAM(T) is the same for all N ⩾ ℓ and M ⩾ a.
We will write the result as UL∞A∞(T). We define UA∞L∞(T) similarly.

3.2 Tableau switching

We recall results from a paper by Benkart, Sottile, and Stroomer [2] on tableau switching.

Definition 3.6. Let T be an α-column-strict and β-row-strict mixed tableau. Let u =
T(i, j) be an entry of T and let v be the entry T(i, j + 1) or T(i + 1, j). Suppose u = αr
and v = βs. Let T′ be the mixed tableau obtained from T by interchanging u and v.
If T′ is α-column-strict and β-row-strict, such a process is called a switch. If there is no
possible switch, we say that T is fully switched.

Note that in a switch, we always move an α-entry to the north or east, and a β-entry
to the south or west. Hence, if we keep applying switches to a tableau, it eventually
becomes fully switched.

Theorem 3.7. [2, Theorem 2.2] Let T be an α-column-strict, β-row-strict, and (α, β)-sorted
mixed tableau. We apply switches to T until it is fully switched. Then, the resulting tableau is
α-column-strict, β-row-strict, and (β, α)-sorted. Furthermore, it is independent of the sequence
of switches that produced it.

Corollary 3.8.

1. Let T be an α-column-strict, β-row-strict, and (α, β)-sorted mixed tableau. Let X1 and X2
be fully switched tableaux obtained from T by some sequences of switches. Then X1 = X2.

2. Let T1 and T2 be α-column-strict, β-row-strict, and (α, β)-sorted mixed tableaux. Suppose
that X is a fully switched tableau obtained from both T1 and T2 by some sequences of
switches. Then T1 = T2.

4 Main results

4.1 Tableau switching on the recording tableau

We study the effects of first performing leg-uncrowding and then arm-uncrowding on a
hook-valued tableau in comparison to [16]. To characterize the changes to the recording
tableaux, we define a particular sequence of tableau switches on an (α, β)-tableau.

Definition 4.1. Let Q be a flagged-mixed tableau that is α-column-strict, β-row-strict,
and (α, β)-sorted. The (jdt) shuffle of Q, denoted shuff(Q), is the tableau obtained by:
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1. Find elements with weight α having an element of weight β above or to the right.

2. Among them, choose the rightmost element that has the smallest index, say αi.

3. Continue the following ‘switching process’ until the cells above and to the right of
αi have a weight α or are empty. If only one of the cells directly above or to the
right of αi has weight β, then switch αi with this element. Otherwise, let βk and
β j be the entries above and to the right of αi, respectively, and perform one of the
following switches

βk
αi β j

7→ αi
βk β j

if k > j, βk
αi β j

7→ βk
β j αi

if k ⩽ j.

4. Repeat steps (1)-(3) until there is no cell having weight α with an element of weight
β directly above or to its right.

Example 4.2. The following shows the process of the shuffle, where boxes containing an
α are colored in yellow:

Q = β8 β6 β5 β2

α2 α1 β6 β2 β1

α2 α2 α1 β5 β1

=⇒ β8 β6 β5 β2

α2 α1 β6 β2 β1

α2 α2 β5 β1 α1

=⇒ β8 β6 β2 α1

α2 β6 β5 β2 β1

α2 α2 β5 β1 α1

=⇒ β8 β6 β2 α1

α2 β6 β5 β1 α2

α2 β5 β2 β1 α1

=⇒ β8 β2 α2 α1

α2 β6 β5 β1 α2

β6 β5 β2 β1 α1

=⇒ β2 α2 α2 α1

β8 β6 β5 β1 α2

β6 β5 β2 β1 α1

= shuff(Q).

Theorem 4.3. Let T be a hook-valued tableau and set (P1, Q1) = UL∞A∞(T) and (P2, Q2) =
UA∞L∞(T). Then P2 = P1 and Q2 = shuff(Q1).

The above theorem reveals a hidden symmetry of hook-valued tableaux which leads
to a characterization of the image for the uncrowding algorithm and the equivalence of
multiple combinatorial models of Gλ(x, α, β), which is discussed in Section 4.3.

4.2 Goulden-Greene jeu de taquin

We define the Goulden–Greene jeu de taquin algorithm [6] (a process they refer to as the
modified jeu de taquin) using our notation. This map was also studied by Krattenthaler
[11]. We then show that it can be realized as a tableau switching.

Definition 4.4 (GG-jdt slides). Let T be a α-column-strict and β-row-strict mixed tableau.
We say that the entry T(i, j) is out of order if at least one of the following conditions holds:

1. T(i, j) = αr and T(i, j + 1) = βs for some r and s with r < s + (j + 1)− i.
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2. T(i, j) = αr and T(i + 1, j) = βt for some r and t with r ⩽ t + j − (i + 1).

If Condition (1) (resp. Condition (2)) holds, we define the horizontal slide (resp. vertical
slide) at (i, j) to be the operation that swaps αr and βs.

If T(i, j) is out of order, the GG-jdt slide at (i, j) is the unique available operation
between the horizontal slide and the vertical slide at (i, j) such that the resulting tableau
is still β-row-strict. More precisely, if only Condition (1) (resp. (2)) holds, then the GG-jdt
slide at (i, j) is the horizontal (resp. vertical) slide at (i, j). If both Conditions (1) and (2)
hold, then T(i, j) = αr, T(i, j + 1) = βs, and T(i + 1, j) = βt for some r, s, and t with
r < s + (j + 1) − i and r ⩽ t + j − (i + 1). In this case, the GG-jdt slide at (i, j) is the
horizontal slide at (i, j) if t ⩽ s and the vertical slide at (i, j) if t > s:

βt

αr βs
7→ βt

βs αr
if t ⩽ s, βt

αr βs
7→ αr

βt βs
if t > s.

Definition 4.5 (GG-jdt map). Let T be a mixed tableau that is α-column-strict, β-row-
strict, and (α, β)-sorted. The GG-jdt map is the map jdtGG sending T to the tableau
jdtGG(T) obtained as follows:

1. Find the smallest r such that αr is out of order in T. Let (i, j) be the rightmost cell
containing such an αr.

2. Apply the GG-jdt slide to T at (i, j).

3. Repeat (1)-(2) until no entries are out of order.

Observe that the GG-jdt slide is exactly a switch defined in Definition 3.6 except
that it does not require the resulting tableau to be α-column-strict and β-column-strict.
However, we will see that this condition holds automatically. Hence, the GG-jdt map is
a sequence of switches.

Example 4.6. The GG-jdt map applied to Q proceeds as follows, where we truncate the
first two columns and the first six rows of the tableau:

Q = β8 β6 β5 β2

α2 α1 β6 β2 β1

α2 α2 α1 β5 β1

jdtGG−−−→ α2 β6 α1 β2

β8 α2 β5 β2 β1

β6 β5 α2 β1 α1

c+β−→ α2 β1 α1 β−1

β3 α2 β2 β0 β0

β3 β3 α2 β1 α1

.

We can compare this with the tableau switching in Example 4.2. Note that this pro-
cess is a sequence of switches. By the uniqueness of the fully switched tableau, see
Corollary 3.8 (1), if we keep applying switches to jdtGG(Q), then we get the same result-
ing tableau shuff(Q) at the end of Example 4.2.
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The following properties of the GG-jdt map were stated in [6, Section 3] without
proof. Krattenthaler [11, Lemma 1] gave complete proofs of these results.

Proposition 4.7.

1. The GG-jdt map is a bijection from the set of α-column-strict, β-row-strict, and (α, β)-
sorted tableaux to the set of tableaux E such that c+β (E) is a totally column-strict tableau.

2. Each iteration of the GG-jdt slide results in an α-column-strict and β-row-strict tableau.

By Proposition 4.7 (2), the GG-jdt map can be formulated as a tableau switching
procedure as defined in Section 3.2.

Proposition 4.8. Let T be a flagged-mixed tableau that is α-column-strict, β-row-strict, and
(α, β)-sorted. Then jdtGG(T) is obtained from T by a sequence of switches.

4.3 Bijections and the image of the uncrowding algorithm

In this subsection, we find a bijection relating hook-valued tableaux, exquisite tableaux,
and a new class of tableaux called biflagged tableaux. We also show that GG-jdt is a
bijection between biflagged tableaux and exquisite tableaux. As a corollary, we charac-
terize the image of the uncrowding algorithm UL∞A∞ defined on hook-valued tableaux.

Definition 4.9. A biflagged tableau is a mixed tableau T satisfying:

1. T is α-column-strict, β-row-strict, and (α, β)-sorted.

2. Both T and shuff(T) are flagged-mixed tableaux.

We denote by BFT(µ/λ) the set of biflagged tableaux of shape µ/λ.

Example 4.10. When λ = (2, 1) and µ = (3, 3, 1), we have

BFT(µ/λ) =


β2

α1 β1

α2

,
β1

α1 β1

α2

,
β2

α1 α1

α2

,
β1

α1 α1

α2

 .

We will show that GG-jdt is a bijection from the set of biflagged tableaux BFT(µ/λ) to
the set of exquisite tableaux EXQ(µ/λ) defined in Definition 2.9. We denote by SSYT(µ)
the set of semistandard Young tableaux of shape µ. As usual, the weight wt(P) of a
semistandard Young tableau P is the product of xi for all entries i in P.

Lemma 4.11. Let T ∈ HVT(λ) and UL∞A∞(T) = (P, Q). Then P ∈ SSYT(µ) and Q ∈
BFT(µ/λ) for a partition µ with λ ⊆ µ. Furthermore, wt(T) = wt(P)wt(Q).
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Lemma 4.12. Let Q ∈ BFT(µ/λ). Then jdtGG(Q) ∈ EXQ(µ/λ).

By Lemmas 4.11 and 4.12, we can define the following map.

Definition 4.13. We define the map

Φ : HVT(λ) →
⊔

µ⊇λ

(SSYT(µ)× EXQ(µ/λ))

as the composition of the following two maps:

HVT(λ)
UL∞A∞−−−−→

⊔
µ⊇λ

(SSYT(µ)× BFT(µ/λ))
id×jdtGG−−−−−→

⊔
µ⊇λ

(SSYT(µ)× EXQ(µ/λ)) .

(4.1)
In other words, Φ(T) = (P, E), where UL∞A∞(T) = (P, Q) and E = jdtGG(Q).

Theorem 4.14. The following are weight-preserving bijections:

jdtGG : BFT(µ/λ) → EXQ(µ/λ) and

Φ : HVT(λ) →
⊔

µ⊇λ

(SSYT(µ)× EXQ(µ/λ)) .

Example 4.15. The map jdtGG sends the biflagged tableaux in Example 4.10 to the
exquisite tableaux in Example 2.10 in that order.

We now characterize the image of the uncrowding algorithm.

Corollary 4.16. The following is a weight-preserving bijection:

UL∞A∞ : HVT(λ) →
⊔

µ⊇λ

(SSYT(µ)× BFT(µ/λ)) .

Corollary 4.17. We have

Gλ(x, α, β) = ∑
H∈HVT(λ)

wt(H) = ∑
µ⊇λ

sµ(x) ∑
E∈EXQ(µ/λ)

wt(E) = ∑
µ⊇λ

sµ(x) ∑
Q∈BFT(µ/λ)

wt(Q).
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