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Insertion algorithms and pattern avoidance on
trees arising in the Kapranov embedding of M0,n`3

Andrew Reimer-Berg*1

1Department of Mathematics, Colorado State University

Abstract. We answer a question of Gillespie, Griffin, and Levinson, that asks for a
combinatorial bijection between two classes of trivalent trees, “Slide trees” and “Tour-
nament trees” that are known via geometric arguments to be equinumerous. We define
an insertion algorithm that gives a direct bijection between these two types of trees.

Secondly, we give a full classification of the Slide trees that are of caterpillar shape via
pattern avoidance criteria.
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1 Introduction and Background

In this extended abstract, which summarizes the results in [8], we establish a bijection
between two sets of trees that naturally arise in the Kapranov embedding of the complex
moduli space M0,n`3. The space M0,n`3 consists of stable genus 0 curves with n ` 3
marked points a, b, c, 1, 2, . . . , n, consisting of one or more copies of P1 joined at nodes
in a tree structure, with at least 3 nodes and marked points on each P1. For more details
on the construction and properties of M0,n`3, we refer the reader to [3] or [7, Chapter 1].

Given a stable curve C P M0,n`3, we may also consider its dual tree. To form the dual
tree to a curve, create a vertex for each component of C, as well as one for every marked
point. Then, for each marked point, connect its vertex to the vertex corresponding to the
component it is contained in. For each node, connect the vertices corresponding to the
two components that intersect at that node. (See Figure 1.)

The space M0,n`3 has an important stratification given by boundary strata. A stratum
consists of all curves in M0,n`3 that share a particular dual tree. The interior M0,n`3 is
a single stratum, as all interior curves have the star graph as their dual tree. We now
define forgetting maps on M0,n`3.

Definition 1. Define the nth forgetting map πn : M0,n`3 Ñ M0,n`2 as the map that
forgets the marked point n. If this results in a component having less than three nodes
plus marked points, we stabilize by collapsing the unstable component.
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Figure 1: An element of M0,n`3 for n “ 4, along with its dual tree.

We define the Kapranov maps as follows. The ith cotangent line bundle Li is the line
bundle whose fiber over C P M0,n`3 is the cotangent space of C at the marked point i.
The ith psi class ψi is the first Chern class of Li. In other words, ψi “ c1pLiq. The ith
omega class ωi is defined as the pullback of ψi under the composition of forgetting maps
that forget the marked points i ` 1, . . . , n.

We make use of the corresponding maps to projective space, |ψi| : M0,n`3 Ñ Pn and
|ωi| : M0,n`3 Ñ Pi, given by |ωi| “ |ψi| ˝ πi`1 ˝ ¨ ¨ ¨ ˝ πn. These can be combined to form
the total Kapranov map Ψn : M0,n`3 Ñ Pn ˆ ¨ ¨ ¨ ˆ Pn given by

ΨnpCq “ p|ψ1|pCq, |ψ2|pCq, . . . , |ψn|pCqq,

and the iterated Kapranov map Ωn : M0,n`3 ãÑ P1 ˆ P2 ˆ ¨ ¨ ¨ ˆ Pn given by

ΩnpCq “ p|ω1|pCq, |ω2|pCq, . . . , |ωn|pCqq.

Throughout, we let k “ pk1, k2, . . . , knq be an n-tuple of nonnegative integers and
assume it is a composition of n, that is, k1 ` k2 ` ¨ ¨ ¨ ` kn “ n.

Definition 2. Consider the intersection between the image of Ψn (resp. Ωn) with n hyper-
planes, where we choose ki general hyperplanes from the ith component of the product.
Then, the multidegree of Ψn (resp. Ωn) is the number of points in this intersection. This
is denoted as degkpΨnq (resp. degkpΩnq).

It is known (see [3], for example) that when
ř

ki “ n,

degkpΨnq “

ż

M0,n`3

ψk
“

ˆ

n
k1, k2, . . . , kn

˙

,

where ψk denotes the product
ś

i ψ
ki
i , and the right hand side denotes a multinomial

coefficient. Similarly, it is shown in [4] that when
ř

ki “ n,

degkpΩnq “

ż

M0,n`3

ωk
“

〈
n

k1, k2, . . . , kn

〉
.
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Other work studying the degrees of projective maps on moduli spaces of curves
include [9], working in terms of cross-ratio degrees, and [2], which works with more
general pullbacks of ψ classes.

The coefficients in the third part of the above equality are the asymmetric multino-
mial coefficients, defined by

〈
1
1

〉
“ 1 and the recursion

〈
n
k

〉
“

n
ÿ

j“i`1

〈
n ´ 1
kpjq

〉
. (1.1)

Above, the symbol kpjq is defined as follows. Let ki be the rightmost 0 in k (we set i “ 0
if there are no zeroes in k), and let j ą i be a positive integer. Define kpjq to be the
composition of n ´ 1 formed by decreasing k j by 1 and then removing the rightmost 0
(which is either in position j or i) from the resulting tuple.

Example 3. We compute the coefficient
〈

4
1,0,2,1

〉
:〈

4
1, 0, 2, 1

〉
“

〈
3

1, 1, 1

〉
`

〈
3

1, 0, 2

〉
“ 3! `

〈
2

1, 1

〉
“ 3! ` 2! “ 8.

Definition 4. Let k “ pk1, k2, . . . , knq be a composition of n. We say that k is reverse-
Catalan if for all i, kn´i`1 ` ¨ ¨ ¨ ` kn´1 ` kn ě i.

Proposition 5 ([4], Corollary 4.14). We have
〈

n
k

〉
‰ 0 if and only if k is reverse Catalan.

Several recent papers [4, 5, 6] have studied these asymmetric multinomial coefficients
from geometric and combinatorial perspectives, and we summarize those results here.

Proposition 6 (From [4], [6], and [5]). Let k be a composition of n. Then,

degkpΩnq “

〈
n
k

〉
“ |CPFpkq| “ |Tourpkq| “ |Slideω

pkq|,

where CPFpkq, Tourpkq, and Slideω
pkq are defined in the next section.

1.1 Main results

The sets Tourpkq and Slideω
pkq are both sets of trivalent trees with leaves labeled by the

set ta, b, c, 1, 2, . . . , nu. Despite this similarity, finding a combinatorial bijection between
these two sets has until now been an open question. (See Problem 6.1 in [5]). Our
first main result constructs an explicit bijection between Tourpkq and Slideω

pkq, thus
proving combinatorially that |Tourpkq| “ |Slideω

pkq|, a fact that was previously only
known through geometric techniques.
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Theorem 7. There is a combinatorial bijection between the sets Tourpkq and Slideω
pkq.

The set CPFpkq was the first combinatorial interpretation of asymmetric multinomial
coefficients, in terms of parking functions [4]. A bijection between Tourpkq and CPFpkq is
given in [6]. Both the parking functions and tournaments interpretations were shown to
satisfy the asymmetric multinomial recursion (1.1).

We similarly build our bijection recursively, with the main step being to show that
|Slideω

pkq| also satisfies the same recursion. In particular, we build a bijection between
Slideω

pkq and a disjoint union of slide sets for compositions kpjq of n ´ 1, via an inser-
tion algorithm on Slideω

pkq. Then, we can unwind the recursive algorithms for each of
Slideω

pkq and Tourpkq to recover a full bijection.
Our second main result is on caterpillar trees. We say a trivalent tree is a caterpillar

tree if its internal edges form a path (see Example 11 below). We can form a word from a
caterpillar tree by reading the slide labels defined in Section 1.2, and obtain the following
pattern avoidance condition that generalizes results in [5].

Theorem 8. Let k be a right-justified composition of n. Then, treepwq is a valid slide tree if and
only if w P Avkp2´1´2, 23´2´1q. (See Section 1.3.)

Otherwise, the set of caterpillar trees can not be characterized solely by a pattern
avoidance criterion. We state the characterization result below and define the terms
precisely in Section 3.

Theorem 9. Let k be a reverse-Catalan composition of n, and let w be a word of content k. Then,
treepwq P Catψ

pkq (respectively, treepwq P Catω
pkq) if and only if w P Avkp2´1´2, 23´2´1q

and TRepwpiq ` ℓwpiq ě zpiq for all i (respectively, LRepwpiq ě zpiq for all i).

We now precisely define some of the notions above.

1.2 Slide trees

We recall one definition of Slideψ
pkq and Slideω

pkq given in [5], via an algorithm for
determining whether a given tree is in a given slide set. Theorem 3.14 from [5] states
that a tree T is in Slideω

pkq (resp. Slideψ
pkq) precisely if it admits an ω (resp. ψ) k-slide

labeling. This is a labeling of the internal edges of T using ki copies of i for each i.

Definition 10. Define the ω (resp. ψ) k-slide labeling of a trivalent tree T as the result of
the following procedure, if it finishes. (Otherwise, the k-slide labeling does not exist.)

0. Start with ℓ “ n, and all edges unlabeled.
1. Contract any labeled edges: Contract any labeled edges of T.
2. Identify the next edge to label: Let e be the first unlabeled internal edge on the

path from the leaf ℓ to a. (If no such edge exists, then the process terminates.) Let
vℓ be the vertex adjacent to ℓ, and va be the other vertex of e.
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3. Verify that label is valid: Let mℓ be the smallest leaf label among all branches of vℓ
not containing a or ℓ, and ma as the smallest leaf label among all branches of va not
containing a or ℓ. If ℓ ě mℓ ě ma (resp. mℓ ě ma), then label e with ℓ. Otherwise,
the process terminates.

4. Iterate: If ℓ has labeled fewer than kℓ edges, repeat this process with the same ℓ.
Otherwise, decrement ℓ, and repeat steps 1–4 until every edge has been labeled.

Example 11. Consider the tree below on the left. As we perform the first round of the ω

p0, 0, 1, 2, 1, 2q-slide algorithm, we have ℓ “ 6, and try to label the edge on the left of the
leaf 6. We have mℓ “ 2 and ma “ 1, so since 1 ă 2 ă 6, we label this edge 6, as shown
below on the left. Continuing this process, we end up with the labeling on the right.

a

b 5 c 1 6 4 2

3
6

a

b 5 c 1 6 4 2

3
5 4 6 6 4 3

As a consequence of Proposition 5, we know that Slideω
pkq is nonempty if and only

if k is reverse Catalan. Note also that from the definitions of Slideψ
pkq and Slideω

pkq, we
have Slideω

pkq Ď Slideψ
pkq.

In order to maintain clarity between edge and leaf labels, we use bolded labels for
the edges of a tree and nonbolded labels for the leaves of a tree, like x vs x. We say that
two leaves i and j of a tree are adjacent if there is a vertex v that is connected by edges
to both i and j. One implication of the definition of slide trees is that the leaves a and
b must always be adjacent. We will think of this structure consisting of a, b, and their
common neighbor as the ‘root’ of the tree, and will always draw T so that the root is on
the left-hand side of the picture. Then, left will be used to mean ‘towards the root’, and
right will be used to mean ‘away from the root’. We say ‘the branch starting at edge e’
to refer to the collection of all edges and vertices (including e itself) on the opposite side
of e as the root.

Example 12. Consider the tree T below on the left, and let e be the bolded edge. Then,
the branch starting at e is the branch below on the right.

a

b

c 1

2

4

3 2

4

3

c 1
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Similarly, we can consider the maximal branch that contains some leaf j but not some
other leaf i. For example, in Example 12 above, the branch B on the right is the maximal
branch of T that contains 3, but not 1, since adding any additional edges to B would
necessarily add the edge to the left of e, which would also add the leaves c and 1.

1.3 Pattern Avoidance

In this section, we define the variants of pattern avoidance that are used in this paper.
For a summary of classical pattern avoidance, we refer the reader to [1]. We first extend
the ideas of classical pattern avoidance to where neither our word σ nor our pattern τ

are permutations. We denote the set of words with content k that avoid a pattern or
collection of patterns τ by Avkpτq.

Example 13. The word σ “ 24665347 contains the pattern τ “ 1221, since it contains the
subword 4664, which has the same relative order as 1221. See Figure 2.

Next, we define barred patterns.

Definition 14. Let τ be a word where some letters are barred and others are unbarred.
We call τ a barred pattern. We say that σ contains τ if σ has a subword with the same
relative order as the non-barred letters of τ that does not extend to a subword with the
same relative order as all of τ. Otherwise, σ avoids τ.

Example 15. The word σ “ 231456 contains the barred pattern τ “ 231. Although the
length-2 subword 45 of 231456 has the same relative order as 23, it does not extend to
a subword with relative order 231. On the other hand, σ “ 234561 avoids the barred
pattern τ “ 231, since any subword with relative order 23 can be extended, by adding
the letter 1 at the end, to a subword with relative order 231. See Figure 2.

Finally, we may also impose adjacency conditions on some entries of our pattern.
Such patterns are called vincular patterns.

Figure 2: On the left, a word containing 1221; in the middle, two permutations con-
taining and avoiding 231, respectively; on the right, two permutations containing and
avoiding 23´1, respectively.
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Definition 16. Let τ be a word of length k with dashes between some entries. We call τ

a vincular pattern. A word σ contains τ if σ contains a subword σ1 that has the same
relative order as τ, and for each i P rk ´ 1s, if the en entries τi, τi`1 in τ are not separated
by a dash, then σ1

i and σ1
i`1 come from adjacent entries σj, σj`1 in σ. Otherwise, we say σ

avoids the vincular pattern τ.

In other words, to contain a vincular pattern, we must have a consecutive subword
with the relative order of the pattern, except that the dashes in the pattern indicate
entries that need not come from consecutive letters of our word.

Example 17. The word σ “ 32541 contains the pattern τ “ 23´1, since it contains the
subword 251, where the 2 and 5 are adjacent, and 251 has the relative order 231.

On the other hand, although σ “ 43152 contains the classical pattern τ “ 231 (con-
sider the subword 352), σ avoids the vincular pattern τ “ 23´1, since the 3 and 5 in 352
(as well as the 4 and 5 of 452) are not adjacent. See Figure 2.

2 The insertion algorithms

In this section, we now answer Problem 6.1 from [5]. We do so by showing that Slideω
pkq

satisfies the same recursion as the asymmetric multinomial coefficients
〈

n
k

〉
. This recur-

rence relation is given in Equation 1.1 and is discussed in more detail in [4].

2.1 Preliminaries

Our insertion algorithms rely on a map lastpTq, which we now define.

Definition 1. For k a composition of n, define maxzeropkq to be the largest z P rns such
that kz “ 0. If k “ p1, 1, . . . , 1q, set maxzerop1, 1, . . . , 1q “ c or maxzerop1, 1, . . . , 1q “ 0 as
appropriate.

Definition 2. Let T P Slideω
pkq, and B be a branch of T. Let i and j be the smallest and

second smallest leaves of B, respectively. Then, define min2pBq to be the largest branch
of B containing j but not i.

Definition 3. Define last : Slideω
pkq Ñ rns as follows:

1. For a given T P Slideω
pkq, let B be the largest branch of T that has maxzeropkq as

its smallest leaf.
2. If B has at least two leaves, replace B with min2pBq.
3. Repeat Step 2 until B has a single leaf.
4. Define lastpTq to be the unique leaf of B.

Lemma 4. For any T P Slideω
pkq, lastpTq ŋ maxzeropkq.

Lemma 5. The map lastpTq returns a leaf j adjacent to another leaf i with j ą i.
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2.2 The map σ̂i,j

In this and the following section, we define the two maps σ̂i,j and σ̂j. These maps take
a slide tree T and add an additional edge j to create a larger slide tree. The map σ̂j
corresponds to the case in Equation 1.1 where we delete a 1 in position j of k, and σ̂i,j
corresponds to the case where we subtract 1 from an entry greater than 1 in position j,
and delete the rightmost zero in position i ă j. We will also show that lastpσ̂‚pTqq will
always return the label of the edge added to T by σ̂‚.

Definition 6. Let k be a reverse-Catalan composition of n, j and i be integers such that
maxzeropkq ă i ă j ď n ` 1, and k1 be the composition of n ` 1 obtained from k by
inserting a zero between ki´1 and ki, and then increasing the jth entry of the result
by 1. Note that using the notation from Equation 1.1, k “ k1pjq. We define the map
σ̂i,j : Slideω

pkq Ñ Slideω
pk1

q as follows:
1. Given a tree T P Slideω

pkq, add 1 to all leaf (and edge) labels greater than or equal
to i.

2. On the path from a to j, consider the maximal length decreasing sequences of edge
labels.

3. Let B1, B2, . . . , Bl be the branches of T off of this path that lie between these maximal
length decreasing sequences, and Bl the branch immediately next to leaf j. Note
that some (or all) of these branches may consist of a single leaf, and there may
be additional branches that connect to this path in the middle of a decreasing
sequence.

4. For r P rls, let mr be the minimal leaf of Br.
5. There are three possible cases for the relative ordering of m1, . . . , ml, i, and j. For

each case, we say how to get σ̂i,jpTq:

• ml ă i ă j or ml´1 ă i ă j ă ml: Replace the leaf j by an edge labeled j with
leaves j and i.

• m1 ă ¨ ¨ ¨ ă md´1 ă i ă md ă ¨ ¨ ¨ ă ml ă j: Replace the leaf md by i, md`1 by
md, and so on, replace ml by ml´1, and replace leaf j by an edge j with leaves
j and ml.

• m1 ă ¨ ¨ ¨ ă md´1 ă i ă md ă ¨ ¨ ¨ ă j ă ml: Replace the leaf md by i, md`1 by
md, and so on up to replacing ml´1 with ml´2, then replace leaf j by an edge j
with leaves j and ml´1.

Note that the first case is actually subsumed by the second two cases, but we write
it out separately for clarity.

Example 7. We compute σ̂3,7pTq, where T P Slideω
p1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1q is the tree

below on the left. The figure depicts T after already incrementing by 1 all the leaf and
edge labels greater than or equal to 3. Then, the maximal decreasing sequences of edge
labels from a to 7 are p14, 5q, p6q, p13, 10, 7q, and p11, 8q. So, l “ 4 and the branches
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B1, B2, B3, B4 are as depicted. Their minimal leaves are m1 “ c, m2 “ 2, m3 “ 5, and
m4 “ 8. We have c ă 2 ă pi “ 3q ă 5 ă pj “ 7q ă 8, so d “ 3 and we are in the third case
of step 5. Thus, we replace 5 with 3 and 7 with an edge 7 with leaves 7 and 5 to form
σ̂3,7pTq P Slideω

p1, 0, 0, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1q below on the right.

a

b 14

c 1

2

4 12

13

6 10

5 11

8 9

7
14 5 6 13 10 7 11 8

1 4

12

10 9

B1

B2

B3

B4

a

b 14

c 1

2

4 12

13

6 10

3 11

8 9

14 5 6 13 10 7 11 8

1 4

12

10 9
5

7
7

Theorem 8. The map σ̂i,j is an injection.

Since σ̂i,j is an injection, there exists an inverse map π̂i,j from the image of σ̂i,j back
to Slideω

pkq. We do not define π̂i,j here for the sake of brevity, but refer the reader to [8]
for the definition.

2.3 The map σ̂j

In this subsection, we define the other map from Slideω
pkq into Slideω

pk1
q, along with

its inverse. This one corresponds to the case in the asymmetric multinomial recursion
where we decrement a 1 in position j, thus removing the 0 that then appears in that
position.

Definition 9. Let k be a reverse-Catalan composition of n, j P N such that maxzeropkq ă

j ď n ` 1, and k1 be the composition of n ` 1 obtained from k by inserting a 1 between
k j´1 and k j. We define the map σ̂j : Slideω

pkq Ñ Slideω
pk1

q as follows:
1. Given a tree T P Slideω

pkq, add 1 to all leaf (and edge) labels greater than or equal
to j.

2. Consider the leaf v “ lastpTq. By Lemma 5, it is at the end of an edge, adjacent to
some other leaf i ă v. There are three cases to consider:

• v ă j: Replace the leaf v by an edge j with leaves j and v. The result is σ̂jpTq.
• i ă j ă v: Replace the leaf i by an edge labeled j with leaves j and i. The result

is σ̂jpTq.
• j ă i: Continue on to step 3.

3. On the path from a to v, consider the maximal length decreasing sequences of edge
labels.

4. Let B1, B2, . . . , Bl be the branches away from this path between the maximal de-
creasing sequences, with Bl the branch immediately next to leaf v.

5. For r P rls, let mr be the minimal leaf of Br.
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6. It can be shown that c “ m1 ă m2 ă ¨ ¨ ¨ ă ml. Let d be such that md ă j ă md`1.
7. Replace the leaf md by an edge j with leaves j and md. The result is σ̂jpTq.

Example 10. Let T P Slideω
p0, 2, 0, 1, 2, 1q be the tree below on the left. We compute

σ̂5pTq. Since lastpTq “ 6, and 5 ă 6, we are in the third case of Step 2. Then, l “ 5, with
m1 “ c, m2 “ 1, m3 “ 3, m4 “ 4, and m4 “ 6 (Since we increment all labels that are at
least 5). Since 5 is between 4 and 6, we attach an edge 5 and leaf 5 to the leaf 4 to get the
tree below on the right.

a

b c

1 2

3 4 5

6
2 4 5 5 6

2

a

b c

1 2

3

4 5

6

7
2 4 6 6 7

2 5

Theorem 11. The map σ̂j is an injection.

Similarly to π̂i,j, since σ̂j is an injection, there is also has an inverse map π̂j from the
image of σ̂j back to Slideω

pkq. Again, we do not define π̂i,j here, but refer the reader to
[8] for its definition.

2.4 Constructing the full bijection

So far, we have defined two maps σ̂i,j and σ̂j. For any tree in their image, the function
lastpq returns the value of the added edge:

Theorem 12. Let T P Slideω
pkq. If T P σ̂i,jpSlideω

pk1
qq or T P σ̂jpSlideω

pk1
qq for some k1, then

lastpTq “ j.

We combine the maps σ̂i,j and σ̂j to construct a bijection between a disjoint union of
slide sets for certain compositions of n ´ 1 and Slideω

pkq. Let k be a composition of n
and i “ maxzeropkq. Then, define

Dω
pkq :“

n
ğ

j“i`1

Slideω
pkpjq

q.

We then define Σk : Dωpkq Ñ Slideω
pkq by:

ΣkpTq :“

#

σ̂i,jpTq if T P Slideω
pkpjq

q with k j ą 1
σ̂jpTq if T P Slideω

pkpjq
q with k j “ 1

.

Theorem 13. The map Σk is a bijection.
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This shows combinatorially that Slideω
pkq and

〈
n
k

〉
satisfy the same recurrence. Since

Tourpkq satisfies this recurrence [6], we get a bijection between Tourpkq and Slideω
pkq by

unwinding this recurrence iteratively.

Theorem 7. There is a combinatorial bijection between the sets Tourpkq and Slideω
pkq.

3 Caterpillars

Recall that a caterpillar tree is a trivalent tree whose edges form a path, as in Example 11.
The word of a caterpillar tree is formed by reading its slide labels from left to right. Given
a word w of content k, there is at most one caterpillar T P Catψ

pkq whose edges read off
as w. In [8], we define a map treepwq that, given a word, will return the caterpillar tree
whose edge word is w, if such a tree exists.

Lemma 1. When w P Avkp2´1´2q, treepwq uses each leaf label a, b, c, 1, 2, . . . , n exactly once.

In other words, treepwq is well-defined as a map from Avkp2´1´2q to the set of leaf-
labeled trivalent caterpillar trees using the labels a, b, c, 1, 2, . . . , n. If a word w avoids the
pattern 23´2´1, then whenever there are indices i, j such that i ` 1 ă j and wj ă wi ă

wi`1, there must be some index k with i ` 1 ă k ă j such that wk “ wi.

Lemma 2. Let treepwq P Catψ
pkq. Then, the word w avoids the patterns 2´1´2 and 23´2´1.

3.1 Pattern avoidance results

In [5], Gillespie, Griffin, and Levinson have shown that the set of caterpillar trees in
Slideω

p1, 1, . . . , 1q correspond precisely to the set of 23´1 avoiding permutations. We
give an analogous statement in the general case where k ‰ p1, 1, . . . , 1q, both for Slideω

pkq

and for Slideψ
pkq. When k is right-justified, that is, when all entries of 0 precede all non-

zero entries, this characterization can still be given in purely pattern avoidance terms.

Theorem 8. Let k be a right-justified composition of n. Then, treepwq is a valid slide tree
if and only if w P Avkp2´1´2, 23´2´1q.

Example 3. The word 546643, corresponding to the caterpillar tree in Example 11, avoids
the patterns 2´1´2 and 23´2´1. The words 543664 and 546633, however, contain 2´1´2
and 23´2´1, respectively.

For the non-right-justified case, define zpiq to be the number of j ą i such that k j “ 0.
Define ℓwpiq to be the total number of consecutive i’s in the rightmost consecutive se-
quence of i’s in w. Define TRepwpiq to be the total number of “repeats” right of the
rightmost i, where a “repeat” is an extra instance of a given letter beyond the first oc-
currence (to the right of the i). Similarly define LRepwpiq to be the number of repeats
defined for TRepwpiq that are larger than i.
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Theorem 9. Let k be a reverse-Catalan composition of n, and let w be a word of con-
tent k. Then, treepwq P Catψ

pkq (respectively, treepwq P Catω
pkq) if and only if w P

Avkp2´1´2, 23´2´1q and TRepwpiq ` ℓwpiq ě zpiq for all i (respectively, LRepwpiq ě zpiq
for all i).

Example 4. The word 135366 corresponds to a tree in Catω
p1, 0, 2, 0, 1, 2q. The word

436632 corresponds to a tree in Catψ
p0, 1, 2, 1, 0, 2qzCatω

p0, 1, 2, 1, 0, 2q, while 436631 does
not correspond to any caterpillar tree, since TRep436631p1q “ 0, ℓ436631p1q “ 1, and zp1q “

2. Note that both 436632 and 436631 have the same relative ordering as 546643 above.
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