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Abstract. Certain affine crystals, known as Kirillov–Reshetikhin (KR) crystals, were re-
alized in a uniform way (for all untwisted affine types) in terms of the quantum alcove
model, and their graded characters were shown to coincide with the specialization of
symmetric Macdonald polynomials at t = 0. We generalize these results by introduc-
ing a “non-symmetric” quantum alcove model for certain level zero Demazure-type
crystals inside tensor products of KR crystals, whose graded characters coincide with
non-symmetric Macdonald polynomials at t = 0. Moreover, in type A, we construct an
explicit affine crystal isomorphism between the non-symmetric quantum alcove model
and the semi-standard key tabloid model for level one affine Demazure crystals due to
Assaf and González.
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1 Introduction

Certain representations of Lie algebras g (including the highest weight ones) possess
crystal bases, when viewed as representations of the quantum algebra Uq(g) [10]. In the
limit q → 0, the structure of a crystal basis is encoded in a colored directed graph on
the basis elements, called a crystal graph. The directed i-edges give the action of the
Kashiwara operators (analogues of the Chevalley generators) as q → 0. Crystal graphs
have various combinatorial models, and are useful tools in representation theory.

Kirillov–Reshetikhin (KR) modules [12] are finite-dimensional modules Wr,s for affine
Lie algebras, not of highest weight, labeled by a positive integer multiple sωr of the
corresponding finite-type fundamental weight ωr. We refer to the KR modules Wr,1

as single-column ones. In most cases, Wr,s was shown to have a crystal basis, and
the crystal graph is denoted Br,s. The latter are building blocks for the highest weight
crystals, constructed as infinite tensor products of certain Br,s.

In [17] it was shown that the quantum alcove model, constructed in [15], is a uniform
model for tensor products of single-column KR crystals, for all untwisted affine types.
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The quantum alcove model generalizes the alcove model in [14], which describes the
highest weight crystals of symmetrizable Kac–Moody algebras. These models are based
on enumeration of certain paths in the quantum Bruhat graph (resp. the Hasse diagram
of the Bruhat order) for the finite Weyl group.

In classical types there are (type-specific) models for tensor products of KR crys-
tals Br,1 based on concatenations of fillings of columns called Kashiwara–Nakashima (KN)
columns [11]. While these tableau models are simpler than the alcove models, they have
less easily accessible information, so it is hard to use them in computations, for instance
of the energy function, and the combinatorial R-matrix (see Section 2.2). As these com-
putations are much simpler in the quantum alcove model [17], an alternative is to relate
them to the tableau models, via affine crystal isomorphisms from the former model to
the latter one. Such maps, to be called “alcoves-to-fillings” maps, were constructed in
types A, C in [15], and in types B, D in [4].

A corollary of the realization of tensor products of KR crystals in terms of the quan-
tum alcove model is their connection with Macdonald polynomials (of the correspond-
ing untwisted affine type). The symmetric Macdonald polynomials Pλ(x; q, t), indexed
by dominant weights λ, are Weyl group invariant polynomials with rational function
coefficients in parameters q, t [18]. They generalize the irreducible characters of the cor-
responding simple Lie algebras, which are recovered for q = t = 0. A uniform combina-
torial formula for Pλ(x; q, t) was given by Ram and Yip [19] in terms of alcove walks. By
comparing with the quantum alcove model, it was shown in [17] that the specialization
Pλ(x; q, t = 0) coincides with the graded character of a tensor product of single-column
KR modules, graded by the energy function.

There are also non-symmetric versions of Macdonald polynomials Eµ(x; q, t), where
µ is an arbitrary weight [18], as well as a Ram–Yip formula for them. Specialized non-
symmetric Macdonald polynomials are related to Demazure characters of affine Kac–
Moody algebras, as discussed in [9]. Later it was shown that Eµ(x; q, t = 0) coincides
with the graded character of a Demazure-type submodule of a tensor product of single-
column KR modules [13]. In the mentioned paper, the latter can be thought of as a
Demazure submodule of a certain quotient of a level zero extremal weight module. The
corresponding crystal is called a DARK crystal (Kirillov–Reshetikhin Affine Demazure)
in [3]. Thus, we expect a combinatorial model for the mentioned DARK crystal based on
the alcove walks in the non-symmetric Ram–Yip formula specialized at t = 0. This is the
first main result of the paper, a “non-symmetric version” of the quantum alcove model.

On the other hand, in type A, Eµ(x; q, t = 0) can be computed in terms of semistan-
dard key tabloids. These were introduced in [2] as special cases of the non-attacking skyline
fillings in the Haglund–Haiman–Loehr formula for non-symmetric Macdonald polynomi-
als [7]. They were given an affine crystal structure in [1], which realizes the crystals of
level one Demazure modules for the affine Lie algebra ŝln. The second main result of
our paper is an explicit affine crystal isomorphism between the non-symmetric quantum
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alcove model in type A and semistandard key tabloids, i.e., an “alcoves-to-fillings” map
in the type A Demazure case.

The last result is expected to generalize to the other classical types B, C, and D. We
will construct alcoves-to-fillings correspondences which would extend the maps in [4, 15]
mentioned above to the Demazure case. These constructions will combine those in [4,
15] with the ones in the current paper. In particular, we will derive the type B, C, and D
analogues of the semistandard key tabloids, which will be Demazure-type analogues of
the corresponding concatenations of KN columns.

2 Background

2.1 Root systems

Let g be a complex simple Lie algebra, and h ⊂ g a Cartan subalgebra. Let Φ+ ⊂ Φ ⊂ h∗R
be the corresponding irreducible root system and choice of positive roots. For a root
α ∈ Φ+, we use the notation α > 0 ⇔ sgn(α) = 1. Let αi be a choice of simple roots for
i in some indexing set I, and let θ be the highest root with respect to the simple roots.
We denote by ⟨·, ·⟩ the nondegenerate scalar product on h∗R induced by the Killing form.
Given a root α, we have the coroot α∨ := 2α/⟨α, α⟩ and reflection sα. The weight lattice P is
generated by the fundamental weights ωi for i ∈ I, which satisfy ⟨ωj, α∨i ⟩ = δi,j. The set of
dominant weights is denoted P+. Define ρ := ∑

i∈I
ωi, and for a root α, set |α| := sgn(α)α.

Let W be the finite Weyl group, generated by si := sαi . With respect to these gener-
ators, W comes with a length function ℓ(·) and longest element w◦. The Bruhat order on
W is defined as the transitive closure of its covers: w ⋖ wsα if ℓ(w) + 1 = ℓ(wsα).

For a root α ∈ Φ+ and an integer k ∈ Z, consider the reflection sα,k in the affine
hyperplane Hα,k := {λ ∈ h∗R|⟨λ, α∨⟩ = k}. The affine Weyl group Waff for the dual root
system Φ∨ is generated by such reflections. The hyperplanes Hα,k divide h∗R into con-
nected components called alcoves. The fundamental alcove is denoted A◦. An important
object in defining the quantum alcove model is a certain directed graph on W.

Definition 2.1. The quantum Bruhat graph of W is the directed graph with vertex set W and

edges w
β−→ wsβ labeled by β ∈ Φ+ if:

(1) w ⋖ wsβ, or

(2) ℓ(wsβ) = ℓ(w)− 2⟨β∨, ρ⟩+ 1.

2.2 Kirillov–Reshetikhin crystals

Given a semisimple or affine Lie algebra g with simple roots αi for i ∈ I, a g-crystal is
a nonempty set B together with maps ei, fi : B → B ⊔ {0} for i ∈ I and wt : B → P
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satisfying fi(b) = b′ if and only if ei(b′) = b for b ∈ B. The maps ei, fi are called crystal

operators and they give B the structure of a colored directed graph with edges b i−→ fi(b).
For g-crystals B1 and B2, the tensor product B1

⊗
B2 is defined on the set B1 × B2 with a

rule that determines on which factor ei and fi act [8].
Kirillov–Reshetikhin (KR) modules, denoted Wr,s, are finite-dimensional modules, not

of highest weight, of affine Lie algebras. They are indexed by positive integer multiples
of a fundamental weight sωr. In classical types sωr corresponds to a rectangle of height
r and length s. In the case s = 1, the modules are called “single-column” KR modules.
In most cases, Wr,s was shown to have a crystal basis, and the corresponding Kirillov–
Reshetikhin crystal is denoted Br,s. For a composition a = (a1, a2, . . . , ak), tensor products
of column-shape KR crystals for untwisted types are defined as follows:

B = Ba :=
k⊗

i=1

Bai,1 . (2.1)

The crystal B is known to be connected as an affine crystal, but disconnected as a classical
crystal. If a’ is a permutation of a, then there is a unique crystal isomorphism between
Ba and Ba’, called he combinatorial R-matrix.

Let ĝ be an affine Lie algebra and let λ ∈ P+ be a dominant weight for g. Consider
the level zero extremal weight module V(λ) over the quantum group Uq(ĝ), generated by
a vector vλ of weight λ. For a Weyl group element w, the Demazure submodule Vw(λ) is
given by Vw(λ) := U+

q (g) · wvλ.
Beck and Nakajima introduced a subtle finite-dimensional quotient of Vw◦(λ), de-

noted U+
w◦(λ) (see [13, Section 3.3]). As a Uq(g)-module, U+

w◦(λ) is isomorphic to a ten-
sor product of KR modules W i,1. The image of the level zero Demazure module V+

w (λ)
under the projection to U+

w◦(λ) is denoted U+
w (λ) and is a Demazure-type submodule.

2.3 The quantum alcove model

Fix a dominant weight λ ∈ P+. The quantum alcove model depends on a sequence of
roots Γ := (β1, β2, · · · , βm) called a λ-chain [15]. This is equivalent to a shortest sequence
of adjacent alcoves from the fundamental alcove A◦ to the translate A◦ − λ. Define the
reflection ri := sβi .

Definition 2.2. A subset J = {j1, j2, . . . , js} ⊆ [m] is called admissible if there is a path in the
quantum Bruhat graph

1 → rj1 → rj1rj2 → · · · → rj1rj2 · · · rjs := end(J).

Denote by A(Γ) the set of admissible subsets of J.
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Theorem 2.3 ([15, 17]). Let λ = ωi1 + ωi2 + · · ·+ ωik be a dominant weight of a untwisted
affine Lie algebra. Then A(Γ) with the proper crystal operators ei, fi is a model for the tensor
product of KR crystals Bλ := Bi1,1 ⊗ Bi2,1 ⊗ · · · ⊗ Bik,1.

Let Wλ ⊂ W be the stabilizer of λ. Given a Weyl group element u, we denote by ⌊u⌋ the
lowest coset representative of uWλ.

Theorem 2.4 ([13]). The set of admissible subsets J ∈ A(Γ) satisfying the condition end(J) ≤
⌊w⌋ is a model for the DARK crystal corresponding to the Demazure-type module U+

w (λ).

Based on the quantum alcove model, the following is derived in [13, 17]:

Theorem 2.5. Let ĝ be an untwisted affine Lie algebra and λ ∈ P+ a dominant weight of g.

1. The symmetric Macdonald polynomial Pλ(x; q, t = 0) is a graded character of the tensor
product of column-shape KR crystals Bλ, so it is expressed by A(Γ).

2. The nonsymmetric Macdonald polynomial Ewλ(x; q, t = 0) is a graded character of the
Demazure-type crystal corresponding to U+

w (λ), so it is expressed by the subset of A(Γ)
defined in Theorem 2.4.

2.4 Semistandard key tabloids and their crystal structure

In this section we describe the model defined in [1] for level one affine Demazure crystals
in type An−1. The objects are fillings of diagrams subject to conditions on pairs and
triples of entries. A diagram dg(µ) of the weak composition µ = (µ1, µ2, . . . µn) consists
of µi boxes left-justified in row i. We label the box in row i column j as (i, j). For example,

if µ = (3, 0, 2) then dg(µ) = .

Definition 2.6. A filling is an assignment of a positive integer m(i,j) ≤ n to each box (i, j).

Definition 2.7. Given a diagram dg(µ), we say two boxes are attacking if they are in the same
column or they are in adjacent columns with the left box strictly higher than the right box. A
filling is non-attacking if every pair of attacking boxes have distinct entries and no entry in the
first column exceeds its row index.

Definition 2.8. A triple is a collection of three boxes with two row adjacent and either (Type I)
the third cell is above the left and the lower row is strictly longer, or (Type II) the third cell is
below the right and the higher row is weakly longer. The orientation of a triple is determined by
reading the entries of the boxes from smallest to largest. A coinversion triple is a Type I triple
oriented counterclockwise or a Type II triple oriented clockwise.
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Definition 2.9 ([1]). The semi-standard key tabloids of shape µ, denoted SSKD(µ), are the
non-attacking fillings of dg(µ) with no coinversion triples.

Example 2.10. The filling
3 2

1 1 3
is a semi-standard key tabloid of shape µ = (3, 0, 2).

The weight of a tabloid T, denoted wt(T), is defined as the weak composition with
i-th part equal to the number of entries i in T. For example wt(T) = (2, 1, 2) in the
example above. Assaf and González defined raising and lowering operators ei, fi for
i = 0, 1, · · · , n − 1, which act on T by swapping certain entries i and i + 1 (1 and n for
i = 0). The affected entries are determined by a pairing rule [1, Definitions 3.1-3.6]. The
operators ei, fi, and the map wt give an affine Demazure crystal structure on SSKD(µ).

Theorem 2.11 ([1]). The above crystal structure on semi-standard key tabloids of shape µ is
isomorphic to a certain level one Demazure crystal of the affine Lie algebra ŝln.

Theorem 2.12 ([7]). The type A specialized non-symmetric Macdonald polynomial is given by

Eµ(x; q, t = 0) = ∑
T∈SSKD(µ)

qmaj(T)xwt(T) , (2.2)

where maj(T) is the sum of all legs of boxes (i, j) of T with m(i,j) < m(i,j+1).

Remark 2.13. The level zero and level one Demazure crystals discussed above are known
to be isomorphic. [5].

3 Nonsymmetric quantum alcove model

We introduce a new model for the crystal of the Demazure-type module U+
w (λ). The

objects of the model are non-symmetric analogues of admissible subsets as in Defini-
tion 2.2. This model has two benefits over the original quantum alcove model: 1) of
removing the condition end(J) ≤ ⌊w⌋ in Theorem 2.4, and 2) of being compatible with a
tableau model for a type A level one affine Demazure crystal, to be discussed in Section
4.

3.1 w-admissible subsets

Given a weight µ ∈ P, let w ∈ W be the element of maximal length such that µ = wλ for
a dominant weight λ. Consider a reduced alcove path Γ from A◦ to ww◦A◦ + µ:

Γ := A◦
−γ1−−→ A1

−γ2−−→ A2
−γ3−−→ · · · −γm−−→ Am = ww◦A◦ + µ. (3.1)
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The sequence of crossed hyperplanes is given by H|γk|,mk
where mk is defined by this

relation. To describe the objects of the model, we need another alcove path Γ′ obtained
from Γ by applying −w−1 on the left:

Γ′ = −w−1Γ = −w−1A◦
−β1−−→ A′

1
−β2−−→ A′

2
−β3−−→ · · · −βm−−→ A′

m = A◦ − λ. (3.2)

Note that in this case all the roots βi are positive. Let J = {j1 < j2 < · · · < js} ⊆ [m] and
define the reflections rji := sγji

for i = 1, 2, . . . , s. We can interpret J as a “folding” of the
alcove path Γ, resulting in a “folded” alcove path Γ(J) := (δ1, δ2, . . . , δm), where

δk := rj1rj2 · · · rji(γk). (3.3)

Here i = i(k) is the largest index for which ji < k. After folding Γ, the k-th hyperplane
crossed in the path Γ(J) is given by:

H|δk|,l
J
k

:= r̃j1 · · · r̃ji H|γk|,mk
(3.4)

where r̃k := sγk,mk and the integers l J
k are defined by this relation. The objects of our

model are subsets J ⊂ [m] satisfying the following condition:

Definition 3.1. We say J = {j1 < j2 < · · · < js} ⊂ [m] is w-admissible and write J ∈ A(Γ′)
if there is a path ending at w in the quantum Bruhat graph:

wsβ j1
sβ j2

· · · sβ js
→ · · · → wsβ j1

sβ j2
→ wsβ j1

→ w .

Define wt(J) := r̃j1 r̃j2 · · · r̃js(µ) and ht(J) := ∑
i

(
⟨µ, γji⟩ − mji

)
where the sum is over all i such

that the edge corresponding to β ji is a quantum edge, i.e. an edge of type (2) in Definition 2.1.

Theorem 3.2 ([19]). The above model computes the non-symmetric Macdonald polynomial

Eµ(x, q, t = 0) = ∑
J∈A(Γ′)

qht(J)xwt(J) . (3.5)

3.2 Crystal operators and the first main result

Using the setup in the previous section, we define crystal operators ei, fi on A(Γ′). For J
a w-admissible subset, recall the “folded” alcove path Γ(J) = (δ1, δ2, . . . , δm) from Equa-
tion (3.3). The action of the operators is determined by the levels l J of the hyperplanes
crossed by the folded path Γ(J). Fix a root α ∈ Φ and define:

Iα(J) := {i ∈ [m] | δi = ±α} , Îα = Îα(J) := Iα ∪ {∞} ,

l∞
α := ⟨wt(J), sgn(α)α∨⟩, δ∞ := rj1rj2 · · · rjs vρ .
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Îα = {i1 < i2 < · · · < in < in+1 = ∞} and εi :=

{
1 if i ̸∈ J

−1 if i ∈ J
.

If α > 0, we define the continuous piece-wise linear function gα : [0, n + 1
2 ] → R by

gα(0) = −1
2

, g′α(x) =


sgn(δik) if x ∈ (k − 1, k − 1

2), k = 1, . . . , n
εiksgn(δik) if x ∈ (k − 1

2 , k), k = 1, . . . , n
sgn(⟨δ∞,−α∨⟩) if x ∈ (n, n + 1

2).

(3.6)

If α < 0, then gα is the graph obtained by reflecting g−α across the x-axis. For any α:

sgn(α)l J
ik
= −gα

(
k − 1

2

)
for k = 1, . . . , n (3.7)

sgn(α)l∞
α := −⟨wt(J), α∨⟩ = −gα

(
n +

1
2

)
. (3.8)

Fix i ∈ {0, . . . , n − 1}. If i > 0 then αi is a simple root, and if i = 0 then α0 := −θ.
Define M := max(gαi). Assuming that M > ⟨wt(J), α∨i ⟩, let k be the maximum

index j in Iαi for which we have sgn(αi)l
J
j = −M, and let m be the successor of k in Îαi .

Assuming also that M ≥ δi,0, we have k ∈ J, and either m ̸∈ J or m = ∞. Define:

fi(J) :=

{
(J\ {k}) ∪ {m} if M > ⟨µ(J), α∨i ⟩ and M ≥ δi,0

0 otherwise.
(3.9)

The operators ei are defined similarly. We use the convention that J\ {∞} = J ∪{∞} = J.
Using the properties of the quantum Bruhat graph, we show that the set A(Γ′) is closed
under the crystal operators fi, ei, so the model is well-defined. Based on this, and by
using a similar approach to the one in [13, 17], we derive our first main result.

Theorem 3.3. The set of w-admissible subsets A(Γ′), together with the operators ei, fi and map
wt defined above, is a model for the Demazure-type crystal corresponding to the module U+

w (λ).

Remark 3.4. The entire crystal is constructed by repeated application of the operators ei
and fi, starting from the lowest element J = ∅ ( fi(J) = 0 for all i). By comparison, the
Demazure-type crystal from Theorem 2.4 is constructed by repeated application of only
the operators fi, starting from the highest element J = ∅ (ei(J) = 0 for all i) but checking
the condition end(J) ≤ ⌊w⌋ at each step.

Remark 3.5. Viewing J as a folding of the alcove path Γ, the crystal operator fi acts by
removing the fold along the hyperplane Hαi,−x for x ≥ 0 maximal, and adding a fold
along the hyperplane Hα1,−(x+1) (if such x exists). The value of x is determined by the
maximum M of the function gαi defined above. The action of ei is similar, this time
moving folds in one level. See Figure 1.
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J = {1, 5} f0(J) = {5, 6} f0 f0(J) = {5} f1 f0 f0(J) = ∅

Figure 1: Action of the composition f1 f0 f0 on the folded alcove path Γ(J) in type A2.

4 Specializing the model to type An−1

4.1 A choice of µ-chain

Recall that the nonsymmetric quantum alcove model depends on a choice of alcove path
Γ′, i.e. a sequence of positive roots called a µ-chain. To relate the alcove model to the
tabloid model, a particular sequence of roots is needed. In this section we explicitly give
such a sequence.

To this end, consider the setup as in Section 3, now specialized to type An−1. Let
λ′ be the conjugate partition to λ and let dg(µ) be an empty diagram of shape µ. The
alcove path Γ′ will be constructed by concatenating smaller sequences of roots Γ′(j), one
for each column of dg(µ):

Γ′ = Γ′(1)Γ′(2) · · · Γ′(λ1).

Suppose λ′
j = k. Rename and reorder w(1), w(2), · · · , w(k) as i1, i2, · · · , ik with

i1 < i2 < · · · < ik . (4.1)

For s ≤ k, define ms := min({a ∈ {k + 1, · · · , λ′
j−1}|is > w(a)} ∪ {λ′

j−1 + 1}) (by conven-
tion λ′

0 = n). Then Γ′(j) is given by the following sequence of roots:

Γ′(j) =


(w−1(i1), m1) (w−1(i1), m1 + 1) . . . (w−1(i1), n)

· · · · · · · · · · · ·
· · · · · · · · · · · ·

(w−1(ik), mk) (w−1(ik), mk + 1) . . . (w−1(ik), n)

 . (4.2)

Proposition 4.1 ([6]). The sequence of roots Γ′, defined as the above concatenation, encodes an
alcove path of the form (3.2), with which it is identified.

Example 4.2. Let µ = (1, 0, 3, 1). Then µ = wλ for λ = (3, 1, 1, 0) and w = w−1 = 3412.

The corresponding diagram has the following shape: dg(µ)= .
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• The first column has 3 boxes: i1 = 1, m1 = 5; i2 = 3, m2 = 4; i3 = 4, m3 = 4.

• The second column has 1 box: i1 = 3, m1 = 3.

• The third column has 1 box: i1 = 3, m1 = 2.

The corresponding sequences of roots Γ′(j) are:

Γ′(1) = ((1, 4)(2, 4)); Γ′(2) = ((1, 3)(1, 4)); Γ′(3) = ((1, 2)(1, 3)(1, 4)) .

Concatenating produces the alcove path Γ′ with vertical bars separating each part.

Γ′ = ((1, 4)(2, 4)|(1, 3)(1, 4)|(1, 2)(1, 3)(1, 4)) .

4.2 The filling map

We now describe a map from w-admissible subsets A(Γ′) to semi-standard key tabloids
SSKD(µ). Recall that a w-admissible subset selects a subsequence of roots within the
alcove path Γ′. Let Tj be the sequence of transpositions corresponding to the roots in
Γ′(j) that are selected, noting that Tj could possibly be empty. Given a w-admissible
subset J and a column j of the empty diagram dg(µ), define:

uj := wT1T2 · · · Tj

where the right hand side is the permutation obtained from w by consecutively multi-
plying by each transposition present in T1, T2, . . . , Tj from left to right.

Definition 4.3. The map fill is a map from subsets J (not necessarily w-admissible) to fillings of
shape µ with entry in row i, column j given by

fill(J)(i, j) := uj(w−1(i)).

Theorem 4.4. If J is w-admissible, then fill(J) is non-attacking and has no coinversion triples.
Moreover, “fill” is a weight preserving and height preserving bijection between w-admissible
subsets and semi-standard key tabloids of shape µ.

Example 4.5. Continuing Example 4.2, let J = {2, 5, 6, 7}. One can check that J is w-
admissible. From the decomposition of Γ′ = ((1, 4)(2, 4)|(1, 3)(1, 4)|(1, 2)(1, 3)(1, 4))
into Γ′(1)Γ′(2)Γ′(3), we have:

T1 = (2, 4); T2 = ∅; T3 = (1, 2)(1, 3)(1, 4) .

Starting from w = 3412, we apply in order the transpositions above:

w =

2
1
4
3

(2,4)−−→

4
1
2
3

= u1
∣∣∣∣

4
1
2
3

= u2
∣∣∣∣ (1,2)−−→

4
1
3
2

(1,3)−−→

4
2
3
1

(1,4)−−→

1
2
3
4

= u3
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u1 = 3412(2, 4) = 3214; u2 = 3214; u3 = 3214(1, 2)(1, 3)(1, 4) = 4321

Since w−1 = 3412, the entry in box (i, j) is uj(w−1(i)), so fill(J) =

2
3 3 4

1

.

4.3 The inverse map

Given a semi-standard key tabloid T, to reconstruct a w-admissible subset J such that
T = fill(J), a “greedy” algorithm is run once for each box of T, working up the columns
then across the rows. The initial input is the permutation w. If the target box is in column
j, row i and has entry b, we select every root of Γ′(j) (see Equation (4.2)) of the form
(w−1(i), x) that brings us closer to our target entry with respect to a clockwise order,
and consecutively multiply the current permutation by each selected transposition.

Proposition 4.6. Repeated application of the process described above terminates, produces a
unique path in the quantum Bruhat graph, and is the inverse of the map “fill”.

4.4 The second main result

Here we recap the main constructions and state our main result. For a dominant weight
λ and a Weyl group element w, we construct a crystal structure on w-admissible subsets
that realizes the crystal of the level zero Demazure-type module U+

w (λ). In type A, Assaf
and González constructed a crystal on semi-standard key tabloids that realizes a certain
level one affine Demazure crystal. Through the bijection fill, we show that the crystal
operators on tabloids agree with the crystal operators on w-admissible subsets. More-
over, “fill” identifies the statistics “ht” and “maj”, which compute the energy function
[16].

Theorem 4.7. The map fill is an affine crystal isomorphism from w-admissible subsets to semi-
standard key tabloids. Moreover, ht(J) = maj(fill(J)).
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