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Abstract. We introduce multivariate rational generating series called Hall–Littlewood–
Schubert (HLSn) series. They are defined in terms of polynomials related to Hall–
Littlewood polynomials and semistandard Young tableaux. We show that HLSn series
provide solutions to a range of enumeration problems upon judicious substitutions of
their variables. These include the problem to enumerate sublattices of a p-adic lattice
according to the elementary divisor types of their intersections with the members of a
complete flag of reference in the ambient lattice. This is an affine analog of the stratifi-
cation of Grassmannians by Schubert varieties. Other substitutions of HLSn series yield
new formulae for Hecke series and p-adic integrals associated with symplectic p-adic
groups, and combinatorially defined quiver representation zeta functions. HLSn series
are q-analogs of Hilbert series of Stanley–Reisner rings associated with posets arising
from parabolic quotients of Coxeter groups of type B with the Bruhat order. Special
values of coarsened HLSn series yield analogs of the classical Littlewood identity for
the generating functions of Schur polynomials.
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Introduction

We offer a unifying framework for a wide variety of counting problems from geom-
etry, number theory, and algebra. To this end we introduce Hall–Littlewood–Schubert
series HLSn for n ∈ N; see Definition 1.2. These are multivariate rational generating
functions defined as sums over semistandard Young tableaux (or just tableaux in the
sequel), involving polynomials related to Hall–Littlewood polynomials. We show that
they specialize, under judicious substitutions of their 2n variables, to generating series
solving various counting problems.
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What makes each of these problems amenable to Hall–Littlewood–Schubert series is
that they all factor over natural maps from the set of all finite-index sublattices of a fixed
lattice of finite rank n to the infinite set SSYTn of tableaux with entries from {1, . . . , n}.
In each case, the key to reducing the respective counting problem to HLSn is to compute
and enumerate the fibers of the relevant map. En route we discover connections with
further classical objects of algebraic combinatorics, such as Dyck words, the Bruhat order,
and Stanley–Reisner rings. Three such instantiations, all related to lattice enumeration,
stand out.

(1) Let V be a module over a compact discrete valuation ring o, free of finite rank n,
equipped with a complete flag of isolated submodules {0} = V(0) ⊊ V(1) ⊊ V(2) ⊊
· · · ⊊ V(n) = V. The affine Schubert series affSin

n,o introduced in Definition 2.1 enumerates
sublattices of finite index in V by the elementary divisors of their intersections with
each of the lattices V(i). This may be seen as an affine analog of the classical concept
of Schubert varieties, stratifying Grassmannians by the intersection dimensions with a
fixed complete flag in the ambient vector space; see [7]. Theorem B asserts that HLSn
specializes to affSin

n,o under a monomial substitution of the variables. Theorem C is a
similar result for the affine Schubert series affSpr

n,o, enumerating lattices by the elementary
divisors of their projections to, rather than intersections with, the members of a complete
flag of reference.

(2) Hecke series play an important role in algebra and number theory. Theorem E
shows that Hall–Littlewood–Schubert series HLSn specialize to the Hecke series associ-
ated with groups of symplectic similitudes over local fields as studied by Macdonald [13,
Chapter V]. This leads to new formulae for and new results about these classical series.
As byproducts we prove, for instance, conjectures raised in [16, 22].

(3) Quiver representation zeta functions enumerate subrepresentations of integral quiver
representations; see [11]. Specializations of Hall–Littlewood–Schubert series yield new
and explicit formulae for these zeta functions associated with combinatorially defined
quiver representations over compact discrete valuation rings; see Theorem F. Our work
brings ideas and tools from algebraic combinatorics to bear where previously algebro-
geometric methods dominated.

Our explicit formulae show that the generating series associated with these lattice
enumeration problems depend only mildly on the local rings over which they are de-
fined. More precisely, they all turn out to be rational functions whose coefficients are
polynomials in the residue field cardinalities. This so-called uniformity is reminiscent of
the well-known fact that the numbers of rational points of Schubert varieties over finite
fields are given by integral polynomials in the cardinalities of these fields.

Additional applications flow from the fact that HLSn is a Y-analog of the Hilbert
series of the Stanley–Reisner ring of a natural simplicial complex. This is the order
complex ∆(Tn) of the poset Tn = 2[n] \ {∅} equipped with the tableaux order introduced
in Section 6. The poset Tn may be interpreted in terms of the Bruhat order on parabolic
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quotients of finite Coxeter groups of type B [23, Theorem 1].
We state a general self-reciprocity result for the Hall–Littlewood–Schubert series HLSn

upon inversion of their variables (Theorem A). Through the relevant variable substitu-
tions, self-reciprocity is passed on to the generating series described above, vastly ex-
tending the scope of this well-studied symmetry phenomenon. Our proof of Theorem A
is facilitated by interpreting HLSn in terms of p-adic integrals. Conversely, we give pleas-
ing formulae for well-studied p-adic integrals associated with symplectic p-adic groups
in terms of Hall–Littlewood–Schubert series.

This abstract is an exposition of some results from our preprint [14].

1 Hall–Littlewood–Schubert series

For a tableau T = (Tij) in SSYTn, write T = (C1, . . . , Cℓ) to denote the columns of T. For
i, j ∈ N we define the leg set of T:

Leg+
T (i, j) =

{
Cj ∩ [Tij, Ti(j+1)] if Ti(j+1) /∈ Cj,
∅ otherwise.

We set LT =
{
(i, j) ∈ N2 | Leg+

T (i, j) ̸= ∅
}

.

Definition 1.1. The leg polynomial associated with T ∈ SSYTn is

ΦT(Y) = ∏
(i,j)∈LT

(
1 − Y# Leg+T (i,j)

)
∈ Z[Y].

We introduce further 2n − 1 variables X = (XC)∅ ̸=C⊆[n]. We call a tableau reduced
if its columns are pairwise distinct and write rSSYTn for the finite (!) subset of reduced
tableaux of SSYTn.

Definition 1.2. The Hall–Littlewood–Schubert series is

HLSn (Y, X) = ∑
T∈rSSYTn

ΦT(Y) ∏
C∈T

XC

1 − XC
∈ Z[Y] (X) .

Remark 1.3. The leg polynomial ΦT coincides with a known polynomial invariant of
Gelfand–Tsetlin patterns, written pA in [6, Theorem 1.1]. We also note that leg sets index
the cells contained in the leg of the (i, j)-cell for a suitable partition in Macdonald’s
terminology; see [13, p. 337]. In [14] we give an interpretation of leg polynomials in
terms of statistics on Dyck words.

We define the denominator polynomial Dn(X) = ∏∅ ̸=C⊆[n](1− XC) ∈ Z[X]. We then
define the numerator polynomial Nn(Y, X) ∈ Z[Y, X] via

HLSn(Y, X) =
Nn(Y, X)

Dn(X)
. (1.1)
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Example 1.4 (HLSn for n ⩽ 3). Given subsets I1, I2, . . . ⊂ N we write XI1|I2|... = XI1 XI2 · · · .
We further simplify the subscripts by displaying only the sets’ elements: e.g. we write
X13 instead of X{1,3}. For n ⩽ 3, we find N1(Y, X) = 1 and N2(Y, X) = 1 − YX1|2, and

N3(Y, X) = 1 − X1|23

− Y
(
X1|2 + X1|3 + X2|3 + X2|13 + X12|13 + X12|23 + X13|23 + X2|13|23 + X1|2|13|23

)
+ Y

(
X1|2|3 + X1|2|13 + X1|2|23 + X1|3|23 + X1|12|23 + X1|13|23 + X12|13|23

)
+ Y2 (X1|2|3 + X2|3|13 + X1|3|13 + X2|3|12|13 + X3|12|13 + X3|12|23 + X12|23|13

)
− Y2 (X3|12 + X1|3|12 + X1|2|3|12 + X1|2|3|13 + X1|3|12|23 + X1|12|13|23

+X2|12|13|23 + X3|12|13|23
)

− Y3 (X2|3|12|13 − X1|2|3|12|13|23
)

.

♢

Our first main result establishes a general self-reciprocity property for HLSn.

Theorem A. We have

HLSn(Y−1, X−1) = (−1)nY−(n
2)X[n] · HLSn(Y, X).

(Self-)Reciprocity results as the one established in Theorem A are ubiquitous, but not
universal, phenomena seen in numerous counting problems in algebra, geometry and
combinatorics; see, for instance, [2, 15, 25]. As a corollary we obtain reciprocity results
for instantiations of HLSn. One such result is Corollary 4.1, which establishes a functional
equation for Fourier transforms of the Hecke series associated with symplectic groups.

We now present the principal applications of Hall–Littlewood–Schubert series to p-
adic lattice enumeration problems as well as some of their combinatorial and topological
properties.

2 Affine Schubert series

Enumerating full lattices in Zn by their index is a classical problem with a well-known
solution. The monograph [12] lists no fewer than five proofs of the following identity:

ζZn(s) := ∑
Λ⩽Zn

|Zn : Λ|−s =
n−1

∏
i=0

ζ(s − i), (2.1)

where the sum runs over all lattices of finite index, ζ(s) = ∑∞
n=1 n−s is the Riemann zeta

function and s is a complex variable.
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One way to prove (2.1) is to enumerate matrices in Hermite normal form; see [4,
Section 1]. Its simplicity notwithstanding, this approach has two drawbacks: it is basis-
dependent and is oblivious of an important set of intrinsic invariants, namely the ele-
mentary divisors of Λ with respect to the ambient lattice Zn.

Enumeration of lattices by their elementary divisors is achieved through suitable
specializations of Igusa functions. The Igusa function of degree n is the rational function
in variables Z1, . . . , Zn

In(Y; Z1, . . . , Zn) = ∑
I⊆[n]

(
n
I

)
Y

∏
i∈I

Zi

1 − Zi
∈ Z[Y](Z1, . . . , Zn).

Here, (n
I)Y ∈ Z[Y] is the Y-multinomial coefficient. The zeta function in (2.1) satisfies the

following Euler product decomposition (see [26, Example 2.20]):

ζZn(s) = ∏
p prime

In

(
p−1;

(
pi(n−i−s)

)
i∈[n]

)
.

Hall–Littlewood–Schubert series may be seen as substantial generalizations of Igusa
functions. Indeed, one of their principal applications is to the enumeration of lattices
Λ ⩽ Zn by the elementary divisors of their intersections with all the members of a fixed
complete isolated flag of Zn. As in the case of ζZn(s), it suffices to solve this problem
locally for all primes p, or equivalently for lattices in Zn

p, where Zp is the ring of p-adic
integers. More generally, we consider lattices over a compact discrete valuation ring
(cDVR) o of arbitrary characteristic.

In this local setup, the relevant elementary divisors are encoded by n partitions,
one for each intersection. More precisely, let V• denote the flag 0 = V(0) < V(1) <
· · · < V(n−1) < V(n) = on of submodules of V with V(i+1)/V(i) torsion free and V(i)

free of rank i. For a lattice Λ ⩽ on, denote the type of Λ ∩ V(i) in V(i) by the parti-
tion λ(i)(Λ) of at most i parts. Given a partition λ = (λj), we denote by inc(λ) = (λj −
λj+1)j the composition comprising the increments of the parts of λ. Set inc (λ•(Λ)) =(

inc(λ(i)(Λ))
)

i∈[n]
∈ N

(n+1
2 )

0 . We introduce (n+1
2 ) variables Z = (Zij)1⩽j⩽i⩽n and set

Zinc(λ•(Λ)) = ∏n
i=1 Zinc(λ(i)(Λ))

i .

Definition 2.1. The affine Schubert series of intersection type is

affSin
n,o(Z) = ∑

Λ⩽on
Zinc(λ•(Λ)) ∈ ZJZK, (2.2)

where the sum runs over all finite-index sublattices Λ of on.

Remark 2.2. The term affine Schubert series is a nod to the fact that the defining sum (2.2)
may (up to a factor) be interpreted as the generating function of a weight function on
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the vertices of the affine Bruhat–Tits building associated with the group SLn(K), where
K is the field of fractions of the cDVR o. Indeed, homothety classes of lattices in Kn form
a natural model for the vertex set of the simplicial complex underlying this building.
For an early exploitation of this perspective in the enumeration of lattices; see [24]. To
what extent affine Schubert series are invariants of affine Schubert varieties remains an
interesting open question.

Theorem B shows that the affine Schubert series affSin
n,o is a specialization of the Hall–

Littlewood–Schubert series HLSn. Given C ⊆ [n], we set

dn(C) =

 ∑
i∈[n]\C

i

−
(

n − #C + 1
2

)
.

This is the dimension of the Schubert variety associated with C; see [10, page 1071]. We
denote by C(k) the kth smallest member of C. Set C(#C + 1) = n + 1 and

Zn,C =
#C

∏
k=1

C(k+1)−C(k)−1

∏
ε=0

Z(C(k)+ε)k.

Note that the (total) degree of Zn,C is n + 1 − C(1).

Theorem B. For all cDVR o with residue field cardinality q we have

affSin
n,o(Z) = HLSn

(
q−1,

(
qdn(C)Zn,C

)
C

)
.

Dually, we define affSpr
n,o by recording the elementary divisor types of the projections

onto a flag of reference. The duality between the two affine Schubert series is explained
by a jigsaw operation on partitions and extended to tableaux, which is used to prove the
following theorem.

Theorem C. For all cDVR o with residue field cardinality q we have

affSpr
n,o(Z) = HLSn

(
q−1,

(
qdn([n]\C)Zn,C

)
C

)
.

In particular, both affSin
n,o(Z) are affSpr

n,o(Z) are rational functions in Z whose coef-
ficients are polynomials in q. Key to the proof of Theorems B and C is to enumerate
lattices Λ in on by associated intersection tableaux resp. projection tableaux. They encode
the information stored by the partitions inc(λ(i)(Λ)) for i ∈ [n], in the intersection case
and, analogously, by a vector of partitions encoding the types of the relevant projec-
tions. For the enumeration of the lattices with associated tableau T we deploy the leg
polynomial ΦT(Y) from Definition 1.1.

Combining Theorem A with Theorems B and C yields that the affine Schubert series
also satisfies the following self-reciprocity property:



Affine Schubert series 7

Corollary 2.3. We have

affSin
n,o(Z−1)

∣∣∣
q→q−1

= (−1)nq(
n
2)

(
n

∏
i=1

Zii

)
· affSin

n,o(Z),

affSpr
n,o(Z−1)

∣∣∣
q→q−1

= (−1)nq(
n
2)

(
n

∏
i=1

Zii

)
· affSpr

n,o(Z).

3 Hermite–Smith series

A further substitution of HLSn pertains to the generating series enumerating lattices in
on according to their elementary divisor types and Hermite composition simultaneously.
For the former, let λ(Λ) be the partition encoding the elementary divisor type of a lattice
Λ ⩽ on. For the latter, recall that Λ may be represented by a matrix M ∈ Matn(o), whose
rows record coordinates of generators of Λ with respect to some ordered o-basis of on.
The coset GLn(o)M comprises all such matrices. Let

δ(Λ) = (δ1(Λ), . . . , δn(Λ)) ∈ Nn
0

be the vector of valuations of the diagonal entries of any upper-triangular matrix in
GLn(o)M. The vector δ(Λ) is in fact an invariant of Λ and the flag V• whose ith member
is generated by the first i elements of the ordered basis. We thus call δ(Λ) the Hermite
composition of Λ relative to V•.

Definition 3.1. For variables x = (x1, . . . , xn) and y = (y1, . . . , yn) the Hermite–Smith
series is

HSn,o(x, y) = ∑
Λ⩽on

xinc(λ(Λ))yδ(Λ) ∈ ZJx, yK.

The Hermite–Smith series was first defined in [1, Section 1.3] because of its con-
nection to the symplectic Hecke series; see Section 4. For S ⊆ [n], let xC = ∏i∈C xi
and yC = ∏i∈C yi. Hermite–Smith series are instantiations of Hall–Littlewood–Schubert
series:

Theorem D. For C ⊆ [n], set C∗ = {n − i + 1 | i ∈ C}. We have

HSn,o(x, y) = HLSn

(
q−1,

(
qdn(C)x#CyC∗

)
C

)
.

4 Symplectic Hecke series

The Hecke series τ(Z) and its Fourier transforms τ̂(s, Z) associated with the groups of
symplectic similitudes GSp2n(F) over a local field F are the focus of [13, Section V.5],
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where Z and s = (s0, . . . , sn) are variables. In [13, V.5 (5.3)] Macdonald gives a formula
for τ̂(s, Z) as a sum of 2n rational functions in Z and q−s0 , . . . , q−sn , where q is the residue
field cardinality of the ring of integers o of K. For a variable X, Macdonald exhibits a
function

Hn,o(x, X) =
Hnum

n (q−1, x, X)

∏I⊆[n](1 − xIX)
∈ Q(x, X),

where Hnum
n (Y, x, X) is a polynomial of degree 2n − 2 in X, that satisfies

τ̂(s0, . . . , sn, Z) = Hn,o(q−s1 , . . . , q−sn , qN−s0 Z) (4.1)

for N = 1
4 n(n + 1). We extend the terminology (symplectic) Hecke series to the rational

functions Hn,o. We show that they are substitutions of HLSn.

Theorem E. For all cDVR o with residue field cardinality q we have

Hn,o(x, X)(1 − X) = HLSn

(
q−1, (xCX)C

)
.

In particular,

Hnum
n (Y, x, X) = ∑

T∈rSSYTn

ΦT(Y) ∏
C∈T

xCX ∏
∅ ̸=I ̸∈T

(1 − xIX) ∈ Z[Y, x, X].

In addition to providing an alternative to Macdonald’s expression, this formula ex-
plicates a numerator of the rational function τ̂(s, X). It also reveals additional properties
of the Hn,o. Furthermore, Theorems A and E imply that the Hecke series also satisfies a
self-reciprocity property.

Corollary 4.1. For all cDVR o with residue cardinality q we have

Hn,o

(
x−1, X−1

)∣∣∣
q→q−1

= (−1)n+1q(
n
2)x1 · · · xnX2 · Hn,o(x, X).

One can show that the numerator polynomials Nn(Y, X) in (1.1) have no linear term
in X, that is, the coefficient, as an element of Z[Y], of XI is 0 for all non-empty I ⊆ [n]. By
Theorem E and Corollary 4.1, the coefficients of X and X2n−3 in Hnum

n are both 0, thereby
proving a conjecture of Panchishkin and Vankov concerning the Hecke series τ(Z) [16,
Remark 1.3]. Moreover Corollary 4.1 proves a conjecture of Vankov [22, Remark 4]
concerning the palindromicity of Hnum

n .
In [14] we explore different interpretations of Hall–Littlewood–Schubert series as p-

adic integrals. We show, specifically, that classical integrals over the integral p-adic points
of groups of symplectic similitudes are instances of Hall–Littlewood–Schubert series.
This yields a simplified proof of a combinatorial identity for these integrals in terms of
Igusa functions, previously proven in [3]. We use a different expression of HLSn as a
p-adic integral to prove Theorem A.
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5 Submodule and quiver representation zeta functions

Submodule zeta functions generalize the zeta function ζZn(s) introduced in Section 2.
Whereas the latter enumerates all sublattices in Zn, the former enumerate submodules
of finite index that are invariant under an integral matrix algebra.

Before we set out our contributions to this class of zeta functions, we briefly sample
a few of the milestones in the development of this class of Dirichlet series. A classical
prototype is Dedekind’s zeta function associated to a number field, enumerating ideals in
the number field’s ring of integers. Solomon was interested in submodule zeta functions
in the context of integral representation theory; see [21]. Grunewald, Segal, and Smith
studied global and local submodule zeta functions associated with nilpotent Lie rings
in [9], pioneering tools from model theory and p-adic integration. An algebro-geometric
approach was taken in du Sautoy and Grunewald’s seminal paper [5]. Rossmann turned
a toroidal vantage point into theoretical [17] and practical [18] advances. The second
author studied submodule zeta functions associated with nilpotent matrix algebras of
class 2 via affine Bruhat–Tits buildings [24] and established self-reciprocity results akin
to Theorem A in [25]. Both authors introduced zeta functions as invariants of hyperplane
arrangements in [15] and established connections with zeta functions associated with
hypergraphs in [20].

Algebraic geometry, notably p-adic integration, has been the prevalent source of
methodology in the development of the theory of submodule zeta functions in the recent
decade [19]. We argue that Hall–Littlewood–Schubert series HLSn are a powerful new
tool in the study of these and related Dirichlet generating series. We substantiate this
with Theorem F, which we believe to be one of many instances of this phenomenon.

As explained in [11, Section 1.3.3], submodule zeta functions are exactly the zeta
functions of integral quiver representations. To explain the latter, recall that a quiver Q is
a finite directed graph with vertex set Q0 and arrow set Q1. For α ∈ Q1, write h(α) ∈ Q0
and t(α) for the respective head and tail of α: if α : i → j, then h(α) = i and t(α) = j.
Let R be a commutative ring. An R-representation of Q is a collection U = (Uι)ι∈Q0
of R-modules Ui, together with an R-module homomorphisms fα : Ut(α) → Uh(α) for
each α ∈ Q1. An R-representation U′, with modules U′

i and homomorphisms f ′α, is
a subrepresentation of U if U′

j ⩽ Uj with inclusion ιj : U′
j ↪→ Uj for all j ∈ Q0 and

fαιj = ιk f ′α for all arrows α : j → k. In this case, we write U′ ⩽ U. The index of U′ in U is
the product of the indices |Ui : U′

i | for each i ∈ Q0.
The representation zeta function ζU(s) associated with a fixed R-representation U of

a quiver Q was first introduced in [11] for the case when R is a global or local ring
of integers and the Ui free, finite-rank R-modules; see [11, (1.1)]. Let s = (si)i∈Q0 be
complex variables. The representation zeta function is defined as

ζU(s) = ∑
U′⩽U

∏
i∈Q0

|Ui : U′
i |−si , (5.1)
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where the sum runs over finite index subrepresentations of U. Certain substitutions of
the rational functions HLSn yield concrete formulae for the (local) representation zeta
functions of various quiver representations. We exemplify this with certain representa-
tions of dual star quivers.

For n ∈ N, the dual star quiver S∗n is the quiver with vertex set [n] and arrows αi : i → n
for all i ∈ [n − 1]. We define a representation Vn(o) of S∗n, as follows: let Vi = oi for all
i ∈ [n], and let fαi : oi → on be an embedding whose images form a complete isolated
flag in Vn = on.

Theorem F. For C ⊆ [n], set C0 = C ∪ {0} and let vC = (max(C0 ∩ [i]0))n
i=1 ∈ Nn

0 . For the
o-representation Vn(o) of S∗n as above, we have

ζVn(o)(s) = HLSn

(
q−1,

(
qdn(C)−vC·s

)
C

) n−1

∏
i=1

ζoi(si).

6 Tableaux and Bruhat orders

Hall–Littlewood–Schubert series are defined as finite sums over reduced tableaux. Iden-
tifying this index set with the set of chains in a poset opens further combinatorial and
topological vantage points.

We define a partial order ⊑ which we call tableaux order on the set Tn of non-empty
subsets of [n] and explore the topological properties of its associated order complex. In
this poset structure, we compare non-empty subsets A and B of [n], written A ⊑ B, if A
and B arise as labels of adjacent columns in some tableau T ∈ SSYTn. This refines the
usual containment relation ⊇ on [n]: if A ⊇ B, then A ⊑ B. This partial order has been
studied in different contexts and is also known as the Gale order; see [8].

Hall–Littlewood–Schubert series are Y-analogs of Stanley–Reisner rings of a simpli-
cial complex, namely the order complex ∆(Tn) of the poset Tn. As an abstract simplicial
complex, ∆(Tn) is isomorphic to the set of rSSYTn of reduced tableaux with labels in [n].
We denote by |∆(Tn)| a geometric realization of ∆(Tn).

Theorem 6.1. The simplicial complex |∆(Tn)| is Cohen–Macaulay over Z and homeomorphic
to an

(
(n+1

2 )− 1
)

-ball. The number of maximal flags in ∆(Tn) is

(n+1
2 )! · ∏n−1

a=1 (a!)
∏n

b=1((2b − 1)!)
.

At the heart of the proof of Theorem 6.1 is a poset isomorphism between Tn and a
poset arising from the parabolic quotient of the hyperoctahedral group of degree n by
its maximal symmetric group. The partial order on that set is given by the Bruhat order.
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In [14] we study special values of Hall–Littlewood–Schubert series. We focus on
univariate series obtained by setting all the XC to X and Y to one of 0, 1, or −1. In the
case Y = 0 the Cohen–Macaulay property of certain (Stanley–Reisner) rings implies the
non-negativity of the relevant series’ numerators. In the other cases Y = 1 or Y = −1, we
formulate non-negativity conjectures that seem to transcend the remit of Stanley–Reisner
rings of simplicial complexes.
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