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Abstract. Let H be the Iwahori–Hecke algebra corresponding to any Coxeter group.
Deodhar’s defect statistic [Geom. Dedicata 36, no. 1 (1990)] allows one to expand prod-
ucts of simple Kazhdan–Lusztig basis elements of H in the natural basis of H. Billey
and Warrington [J. Algebraic Combin. 13, no. 2 (2001)] provided a graphical interpreta-
tion of the type-A case of this formula. Clearwater and the third author [Ann. Comb. 25,
no. 3 (2021)] extended the graphical type-A case of this formula to combinatorially ex-
pand products of Kazhdan–Lusztig basis elements indexed by “smooth" elements of
the symmetric group. We similarly extend the type-BC case of Deodhar’s result to
combinatorially expand products of Kazhdan–Lusztig basis elements indexed by hy-
peroctahedral group elements which are “simultaneously smooth" in types B and C.
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1 Introduction

Let (W, S) be a Coxeter system with generating set S = {s1, . . . , sm}, let ≤ denote the
Bruhat order on W, let H be the Iwahori–Hecke algebra corresponding to W, and let
{Tw |w ∈ W} be the natural basis of H as a Z[q

1
2 , q̄

1
2 ]-module. (See, e.g., [4].) A second

basis {C′w(q) |w ∈ W} introduced by Kazhdan and Lusztig [12], sometimes rescaled as
{C̃w(q) |w ∈W}with C̃w(q) := qℓ(w)/2C′w(q), is important in many areas of mathematics.
Products of these elements expand nonnegatively in the natural and Kazhdan–Lusztig
bases, and have appeared in intersection homology [1], [16], combinatorial description
of Kazhdan–Lusztig basis elements themselves [2, 7], Schubert varieties [2], total non-
negativity [9, 14, 17, 18], trace evaluations [5, 6, 10, 11, 15], and chromatic symmetric
functions [5, 15].

We will focus on Deodhar’s result [7, Proposition 3.5], where he considered sequences
(si1 , . . . , sik) of generators in S, products of the corresponding Kazhdan–Lusztig basis
elements C̃sij

(q) = Te + Tsij
of H, and their natural expansions

C̃si1
(q) · · · C̃sik

(q) = ∑
w∈W

awTw. (1.1)

Deodhar described the coefficients {aw |w ∈ W} ⊂ Z[q] in terms of subexpressions of
(si1 , . . . , sik): sequences σ = (σ1, . . . , σk) of elements of S with σj ∈ {e, sij} for j = 1, . . . , k.
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Call index j a defect of σ if σ1 · · · σj−1sij < σ1 · · · σj−1, and let dfct(σ) denote the number
of defects of σ. Then each coefficient on the right-hand side of (1.1) is given by

aw = ∑
σ

qdfct(σ), (1.2)

where the sum is over all subexpressions σ of (si1 , . . . , sik) satisfying σ1 · · · σk = w.
Billey and Warrington [2, Remark 6] observed that when W and H are the symmetric

group Sn and type-A Iwahori–Hecke algebra HA
n (q), Deodhar’s defect statistic has the

following simple graphical interpretation. Let F = Fsi1
◦ · · · ◦ Fsik

be the wiring diagram
corresponding to (si1 , . . . , sik), where ◦ denotes concatenation, and the factor wiring dia-
grams Fs1 , . . . , Fsn−1 are the planar networks

n n

n−1 n−1
...

3 3

22

1 1

,

n n

n−1 n−1
...

3 3

22

1 1

, . . . ,

n n

n−1 n−1
...

3 3

22

1 1

, (1.3)

respectively. Edges of F are understood to be oriented from left to right, with n source
vertices on the left, n sink vertices on the right, and k more interior vertices, one per factor.
We can cover F with 2k different path families of the form π = (π1, . . . , πn), if we allow
two paths meeting at the interior vertex of a factor Fsij

either to cross or not to cross
there. Let Πw(F) be the subset of these path families having type w, i.e., for i = 1, . . . , n,
path πi begins at source i and terminates at sink wi. Call index j a (type-A) defect of π

if the two paths meeting in Fsij
cross an odd number of times in Fsi1

◦ · · · ◦ Fsij−1
, and let

dfct(π) be the number of defects in π. Then each coefficient on the right-hand side of
(1.1) is given by

aw = ∑
π∈Πw(F)

qdfct(π). (1.4)

Clearwater and the third author [6, Corollary 5.3] extended this type-A result to
products of the form

C̃v(1)(q) · · · C̃v(k)(q) = ∑
w

awTw (1.5)

in HA
n (q), where v(1), . . . , v(k) are maximal elements of parabolic subgroups of Sn (and

more generally, 3412-avoiding, 4231-avoiding elements of Sn), and each factor

C̃v(j)(q) := ∑
u≤v(j)

Tu

belongs to the rescaled Kazhdan–Lusztig basis of HA
n (q). Again we have (1.4), where F

has the form Fv(1) ◦ · · · ◦ Fv(k) , with factor networks generalizing those in (1.3) by allowing
interior vertices to have indegree and outdegree greater than 2.
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We extend this result further to analogous products of elements of the Kazhdan–
Lusztig basis of the type-BC Iwahori–Hecke algebra HBC

n (q) in Section 5. To do so,
we review necessary background material on the hyperoctahedral group, HBC

n (q), and
type-BC planar networks in Sections 2 – 4.

2 The hyperoctahedral group

Recall that for a Coxeter group W with generating set S and an element w ∈ W, an
expression w = si1 · · · siℓ for w as a product of generators is called reduced if it is as short
as possible, and ℓ = ℓ(w) is called the length of w. We define the Bruhat order on W
by declaring v ≤ w if some (equivalently, every) reduced expression for w contains a
subsequence which is a reduced expression for v.

For a J ⊆ S let WJ denote the parabolic subgroup of W generated by J. Each coset
wWJ of WJ has a unique Bruhat-minimal element [4, Corollary 2.4.5]. Let W J

− denote
the set of minimal coset representatives. It is known that we have [4, Definition 2.4.2,
Lemma. 2.4.3]

W J
− = {w ∈W |ws > w for all s ∈ J} = {w ∈W |wv > v for all v ∈WJ} (2.1)

and that there is a bijection [4, Proposition 2.4.4]

W J
− ×WJ

1−1←→ W (2.2)

given by simple multiplication (w, u) 7→ wu. The Bruhat order on W induces a re-
lated partial order on the set W/WJ of cosets {wWJ |w ∈ Bn}: we declare vWJ ≤ wWJ
if the minimal element of vWJ is less than or equal to the minimal element of wWJ .
(Equivalently, we may define ≤ by comparing arbitrary elements of the two cosets [8,
Lemma 2.2].) We call this poset the Bruhat order on W/WJ .

The hyperoctahedral group Bn is the Coxeter group of type Bn = Cn, generated by
S = {s0, . . . , sn−1}, subject to relations

si
2 = e for i = 0, . . . , n− 1,

s0s1s0s1 = s1s0s1s0,
sisj = sjsi for i, j ≥ 0 and |i− j| ≥ 2,

sisjsi = sjsisj for i, j ≥ 1 and |i− j| = 1.

(2.3)

The parabolic subgroup of Bn generated by {s1, . . . , sn−1} is the symmetric group Sn, the
Coxeter group of type An−1.

Like elements of Sn, elements of Bn naturally correspond to permutations of letters
belonging to a certain alphabet. Specifically, we define the alphabet

[n, n] := {−n, . . . , n}∖ {0}
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with notation a := −a for all a ∈ [n, n], and we consider permutations wn · · ·w1w1 · · ·wn
of [n, n] which satisfy wi = wi for all i ∈ [n, n]. We define a correspondence between
Bn and such permutations via the (left) action of Bn on these permutations: s0 swaps
the letters in positions 1 and 1; si (i = 1, . . . , n− 1) simultaneously swaps the letters in
positions i, i+ 1 with each other, and the letters in positions i, i + 1 with each other. Then
for w = si1 · · · sir ∈ Bn, we define the (long) one-line notation of w to be the permutation

wn · · ·w1w1 · · ·wn = si1(si2(· · · (sir(n · · · 11 · · · n)) · · · )). (2.4)

For example, when n = 4, the element s0s1 ∈ B4 has long one-line notation

s0(s1(43211234)) = s0(43122134) = 43122134. (2.5)

It follows that w−1
i is the index j satisfying wj = i. By counting certain inversions in the

long one-line notation of w, we can compute ℓ(w).

Lemma 2.1. The length of w ∈ Bn equals the number of pairs (i, j) with |i| ≤ j and j appearing
earlier than i in wn · · ·w1w1 · · ·wn.

Proof. Omitted.

The condition wi = wi implies that each element (2.4) is completely determined by
the subword w1 · · ·wn, called the short one-line notation of w. The set of short one-line
notations of elements of Bn is the set of signed permutations of [1, n]: words w1 · · ·wn
with letters in the alphabet [n, n] with no repeated absolute values.

Certain elements of the hyperoctahedral group are most easily defined in terms of
subintervals of [n, n], where we declare any subset [a, b] := {a, . . . , b}∖ {0} of [n, n] to
be an interval, even if a < 0 < b. Roughly speaking, we define a reversal of Bn to be an
element s[a,b] obtained from the identity by reversing letters [a, b] in positions [a, b], and
ensuring that the resulting permutation belongs to Bn. To be precise, we describe such
elements using three cases: a = b, a = b (b > 0), and 0 < a < b. When a = b, we have the
trivial reversal s[b,b] = s∅ = e. For b > 0, the reversal s[b,b] is the element having one-line
notation

n · · · (b + 1) · b · · · 1 · 1 · · · b · (b + 1) · · · n, (2.6)

and equal to the product of generators s0(s1s0s1)(s2s1s0s1s2) · · · (sb−1 . . . s1s0s1 . . . sb−1).
For 0 < a < b the reversal s[a,b] is the element having one-line notation

n · · · (b + 1) · a · · · b · (a− 1) · · · 1 · 1 · · · (a− 1) · b · · · a · (b + 1) · · · n,

and equal to the product of generators sa(sa+1sa)(sa+2sa+1sa) · · · (sb−1 · · · sa). Each re-
versal s[a,b] is the unique element of maximum length in a parabolic subgroup of Bn,
generated by

J[a,b] :=

{
{s0, . . . , sb−1} if a = b (b > 0),
{sa, . . . , sb−1} if 0 < a < b.

(2.7)
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The first equality in (2.1) implies that when J = J[a,b], the subset W J
− of Bn may be

characterized in terms of long one-line notation as follows.

Lemma 2.2. Given reversal s[a,b] ∈ Bn and corresponding generators J = J[a,b], each minimum-
length coset representative w ∈W J

− satisfies
(1) w−1

i < w−1
i+1 for i = max{1, a}, . . . , b− 1, and

(2) w−1
1

< w−1
1 if a = b.

Proof. Omitted.

3 The Hecke algebra of the hyperoctahedral group

Given Coxeter group W with generator set S, define the Hecke algebra H = H(W) of W
to be the Z[q

1
2 , q̄

1
2 ]-span of {Tw |w ∈W} with unit Te and multiplication defined by

TwTs =

{
qTws + (q− 1)Tw if ws < w,
Tws if ws > w,

(3.1)

where s ∈ S and w ∈ W. This formula guarantees that for w ∈ W and any reduced
expression si1 · · · siℓ for w, we have Tw = Tsi1

· · · Tsiℓ
. Call {Tw |w ∈ W} the natural basis

of H. It is easy to see that the specialization of H at q
1
2 = 1 is isomorphic to Z[W]. A

second basis [12] of H is the (rescaled) Kazhdan–Lusztig basis {C̃w(q) |w ∈W}, related to
the natural basis by

C̃w(q) = ∑
v≤w

Pv,w(q)Tv, (3.2)

where {Pv,w(q) | v, w ∈ W} ⊆ Z[q] are the Kazhdan–Lusztig polynomials, whose recursive
definition appears in [12]. Coefficients of these polynomials may be interpreted in terms
of intersection cohomology IH∗(Ωw) [13], where Ωw is a certain Schubert variety indexed
by w. (See, e.g., [3].) In particular, when Ωw is rationally smooth, all polynomials
{Pv,w(q) | v ≤ w} are identically 1 [12, Theorem A.2].

For each subset J of generators of W, one forms a natural Z[q
1
2 , q̄

1
2 ]-submodule of H

by taking the span of sums
TuWJ := ∑

v∈uWJ

Tv (3.3)

of natural basis elements of H with each sum corresponding to a coset of WJ . This
submodule

HJ := span
Z[q

1
2 ,q¯

1
2 ]
{TuWJ | u ∈W J

−} (3.4)

in fact forms a left H-module. A nice formula for the action of H on HJ was given by
Douglass [8, Proposition 2.3].
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Proposition 3.1. Let s be a generator of W, and let J be some subset of the generators. Then for
all w ∈W, we have

TsTwWJ =


qTswWJ + (q− 1)TwWJ if swWJ < wWJ ,

TswWJ if swWJ > wWJ ,
qTwWJ if swWJ = wWJ .

(3.5)

Corollary 3.2. If v ∈WJ , then TvTWJ = qℓ(v)TWJ .

Let us consider the module HBC
J := HJ in the special case that H = HBC

n (q) and
J = J[a,b], and its relation to Kazhdan–Lusztig basis elements. By [3, Section 13.3.7],
rational smoothness of Schubert varieties of types A, B, C is implied by pattern avoidance.
In particular, when w ∈ Bn avoids the patterns 3412 and 4231, we have the stronger
property that type-B and C Schubert varieties indexed by w are both smooth. Since a
reversal in Bn avoids both of these patterns, we have the following.

Proposition 3.3. For each reversal s[a,b] ∈ Bn, we have

C̃s[a,b](q) = ∑
v≤s[a,b]

Tv.

Thus each Kazhdan–Lusztig basis element indexed by a reversal s[a,b] is itself a coset
sum (3.3) for the parabolic subgroup generated by J = J[a.b]:

TWJ = C̃s[a,b](q). (3.6)

By (2.2) and (3.5), other defining basis elements (3.4) of HBC
J can be written as

TuWJ = TuC̃s[a,b](q), (3.7)

for u ∈W J
−. It follows that each product of the form

C̃s[a1,b1]
(q) · · · C̃s[ak ,bk ]

(q) (3.8)

belongs to HBC
J[ak ,bk ]

and we can expand it in the defining basis of this module as follows.

Proposition 3.4. Suppose that the product of the first k− 1 factors of (3.8) expands in the natural
basis of HBC

n (q) as
C̃s[a1,b1]

(q) · · · C̃s[ak−1,bk−1]
(q) = ∑

v∈Bn

cvTv, (3.9)

for some polynomials {cv = cv(q) | v ∈ Bn} in Z[q], and define J = J[ak,bk]
. Then the full

product (3.8) expands in the defining basis of HBC
J as

∑
w∈W J

−

(
∑

u∈WJ

qℓ(u)cwu

)
TwC̃s[ak ,bk ]

(q). (3.10)
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Proof. Using (2.2) to factor each element v on the right-hand side of (3.9) as v = wu with
w ∈W J

−, u ∈WJ , we may express the product (3.8) as

∑
w∈W J

−

(
∑

u∈WJ

cwuTwTu

)
C̃s[ak ,bk ]

(q).

Then by Corollary 3.2, we have TuC̃s[ak ,bk ]
(q) = qℓ(u)C̃s[ak ,bk ]

(q) and the claimed formula.

4 Type-BC star networks

To graphically represent products of the form (3.8), we extend the idea of type-BC wiring
diagrams to include planar networks in which interior vertices may have indegrees and
outdegrees greater than 2. In particular, we associate to each reversal s[a,b] ∈ Bn a type-
BC simple star network F[a,b] having 2n source vertices on the left and 2n sink vertices on
the right, both labeled n, . . . , n from bottom to top. For the three cases a = b, a = b
(b > 0), 0 < a < b of reversals, we include edges and 0, 1, or 2 additional interior
vertices as follows.

1. When F[a,a] = F∅ has a directed edge from source i to sink i, for i = n, . . . , n.

2. When a = b (b > 0), F[a,b] has one interior vertex. For i = a, . . . , b, a directed edge
begins at source i and terminates at the interior vertex, and another directed edge
begins at the interior vertex and terminates at sink i.

3. When 0 < a < b, F[a,b] has two interior vertices. For i = a, . . . , b, a directed edge
begins at source i and terminates at the upper interior vertex, and another directed
edge begins at the upper interior vertex and terminates at sink i. For i = b, . . . , a,
a directed edge begins at source i and terminates at the lower interior vertex, and
another directed edge begins at the lower interior vertex and terminates at sink i.

For example, the seven type-BC simple star networks
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correspond to the reversals s∅ = e, s[1,1], s[2,2], s[3,3], s[1,2], s[2,3], s[1,3] in B3. Define
FBC

n to be the set of all concatenations F = F[a1,b1]
◦ · · · ◦ F[ak,bk]

of type-BC simple star
networks and call these type-BC star networks. For instance, the type-BC star network
F = F[1,3] ◦ F[2,3] ◦ F[1,2] ◦ F[1,1] ∈ FBC

3 is shown in (4.3).
Following [2], [6], we consider families π = (πn, . . . , π1, π1, . . . , πn) of paths covering

a star network F ∈ FBC
n , i.e., using all edges in F. Call π a BC-path family if for each

factor F[a,b] of F and each index i ∈ [1, n], there exist indices j, k, such that paths πi and
πi enter F[a,b] via sources j, j and exit F[a,b] via sinks k, k, respectively. That is, πi must be
the reflection of πi. Define π to have type u = un · · · u1u1 · · · un ∈ Bn if for all i, path πi
begins at source i and terminates at sink ui. For F ∈ FBC

n and u ∈ Bn, define the sets

ΠBC(F) = {π |π a BC-path family covering F},
ΠBC

u (F) = {π ∈ ΠBC(F) | type(π) = u}.
(4.2)

For example, the star network F = F[1,3] ◦ F[2,3] ◦ F[1,2] ◦ F[1,1] ∈ FBC
3 and path families

F =
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(4.3)
satisfy π ∈ ΠBC

123(F), σ ∈ ΠBC
312

(F), τ ̸∈ ΠBC
123(F), with τ failing to be a BC-path family

because τ1, τ1 in blue (also τ2, τ2 in red) are not reflections of one another.
Each element F ∈ FBC

n combinatorially interprets a product of Kazhdan–Lusztig basis
elements in HBC

n (q). To describe this interpretation, we extend the defect statistic [2], [6],
[7] described in Section 1. Given a BC-path family π covering F, define a type-BC defect
of π to be a triple (πi, πj, k) with |i| ≤ j, and πi, πj meeting at one of the internal vertices
of F[ck,dk]

after having crossed an odd number of times. Let dfctBC(π) denote the number
of type-BC defects of π. Observe that a single vertex can be the location of more than
one defect. For example, consider the star network and BC-path family

F[2,2] ◦ F[1,1] ◦ F[1,2] ◦ F[2,2] =

2

1

1

2

2

1

1

2

, π =

2

1

1

2

2

1

1

2

. (4.4)

We have dfctBC(π) = 4: defects of π are (π1, π1, 2), (π1, π2, 3), (π1, π2, 4), (π2, π2, 4).
Refining the sets (4.2) by counting defects of path families in them, let us define

ΠBC
u,d(F) = {π ∈ ΠBC

u (F) |dfctBC(π) = d}. (4.5)
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5 Main results

When one compares concatenations F′ of k− 1 simple star networks and F of k simple
star networks, one sees bijections between certain sets of path families in F and F′.

Proposition 5.1. Fix a sequence (s[a1,b1]
, . . . , s[ak,bk]

) of reversals in Bn, define the generator
subset J = J[ak,bk]

, and choose an element w ∈W J
−. Consider two type-BC star networks

F′ = F[a1,b1]
◦ · · · ◦ F[ak−1,bk−1]

and F = F′ ◦ F[ak,bk]
.

Then for each element v ∈WJ and each d ≥ 0, we have a bijection

ΠBC
wv,d(F) 1−1←→

⋃
u∈WJ

ΠBC
wu, d−ℓ(u)(F′). (5.1)

Proof. First we demonstrate the bijection (5.1) in the case that v = e. Observe that each
path family π in ΠBC

w (F) can be decomposed uniquely as the concatenation of its trun-
cation π′ to F′ with its truncation π′′ to F[ak,bk]

: π = π′ ◦ π′′. These truncations satisfy
type(π′)type(π′′) = w and type(π′′) ∈ WJ . Thus we have π′ ∈ ΠBC

wu(F′) for some
u ∈WJ . Let us write the first truncation map π 7→ π′ as trunc : Π(F)→ Π(F′). Let ψ be
the restriction of trunc to ΠBC

w (F). We claim that the map

ψ : ΠBC
w (F)→

⋃
u∈WJ

ΠBC
wu(F′) (5.2)

is bijective. To see this, keep w ∈ W J
− fixed, and choose a path family τ belonging to

∪u∈WJ Π
BC
wu(F′) and define y = y(τ) = w−1type(τ) ∈ WJ . The set ΠBC

y−1(F[ak,bk]
) contains a

unique element, call it σy−1 . It is easy to see that the map

κ :
⋃

u∈WJ

ΠBC
wu(F′)→ ΠBC

w (F)

τ 7→ τ ◦ σy(τ)−1

(5.3)

inverts ψ. Now we claim that for π ∈ ΠBC
w (F), the paths π, π′ = ψ(π) satisfy

dfctBC(π′) = dfctBC(π)− ℓ(u).

To see this, observe that Lemma 2.2 implies the paths of π = π′ ◦ σu−1 terminating at
certain sinks to have increasing indices: sinks [bk, bk] if ak = bk, and sinks [bk, ak] and
[ak, bk] if 0 < ak < bk. Therefore by Lemma 2.1, the paths of π′ terminating at the
corresponding sinks of F′ include ℓ(u−1) = ℓ(u) path pairs (π′i , π′j) with |i| ≤ j and
with π′j terminating at a sink with smaller index than that of π′i . Each such pair has
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crossed an odd number of times in F′ and crosses again, defectively, in F[ak,bk]
. Thus

dfctBC(π′) = dfctBC(π)− ℓ(u) and the bijection (5.2) restricts for all d to

ΠBC
w,d(F) 1−1←→

⋃
u∈WJ

ΠBC
wu,d−ℓ(u)(F′).

We complete the proof of the bijections (5.1) by demonstrating bijections between all
pairs of sets ΠBC

wv,d(F) and ΠBC
wy,d(F) with v, y ∈ WJ . In particular, for fixed v, y ∈ WJ ,

define the map ϕv,y : ΠBC
wv(F)→ ΠBC

wy(F) by writing π = trunc(π) ◦ σz−1 for some z ∈WJ
and by mapping

π 7→ trunc(π) ◦ σz−1v−1y. (5.4)

To see that ϕv,y is well defined, observe that since the type of trunc(π) is wvz, the type of
ϕv,y(π) is wvzz−1v−1y = wy. To see that ϕv,y is invertible, note that ϕy,v(ϕv,y(π)) equals

ϕy,v(trunc(π) ◦ σz−1v−1y) = trunc(π) ◦ σ(z−1v−1y)y−1v = trunc(π) ◦ σz−1 = π.

Finally, we claim that ϕv,y restricts to a bijection from ΠBC
wv,d(F) to ΠBC

wy,d(F) for all d. To
see this, observe that as z varies over WJ , the set of paths of trunc(π) ◦ σz−1 which meet
at the central vertex of F[ak,bk]

is constant.

This leads to our main result: combinatorial formulas for coefficients appearing in
the natural expansions of certain products of Kazhdan–Lusztig basis elements.

Theorem 5.2. Fix a sequence (s[a1,b1]
, . . . , s[ak,bk]

) of reversals in Bn and define the type-BC star
network F = F[a1,b1]

◦ · · · ◦ F[ak,bk]
. Then we have

C̃s[a1,b1]
(q) · · · C̃s[ak ,bk ]

(q) = ∑
y∈Bn

∑
d≥0
|ΠBC

y,d(F)|qdTy. (5.5)

Proof. (Idea) For any reversal s[a,b] and corresponding generator set J = J[a,b], we have by
Proposition 3.3 that the coefficient of Tu in C̃s[a,b](q) is 1 for u ∈ WJ and is 0 otherwise.
On the other hand, the star network F[a,b] satisfies

|ΠBC
u,d(F[a,b])| =

{
1 if u ∈WJ and d = 0,
0 otherwise.

Thus the identity (5.5) holds for a single Kazhdan–Lusztig basis element indexed by a
reversal. Now assume that the identity holds for products of 1, . . . , k− 1 such elements
and consider a product of k of them. Writing F′ = F[a1,b1]

◦ · · · ◦ F[ak−1,bk−1]
, we have

C̃s[a1,b1]
(q) · · · C̃s[ak−1,bk−1]

(q) = ∑
v∈Bn

∑
d≥0
|ΠBC

v,d(F′)|qdTv. (5.6)
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Defining J = J[ak,bk]
and applying Proposition 3.4 to (5.5) – (5.6) we have that the left-hand

side of (5.5) equals

∑
w∈W J

−

(
∑

u∈WJ

∑
d≥0
|ΠBC

wu,d(F′)|qℓ(u)+d
)

TwC̃s[ak ,bk ]
(q). (5.7)

Applying Proposition 5.1 and using (3.7), we may rewrite (5.7) as

∑
w∈W J

−

(
∑
d≥0

qd|ΠBC
w,d(F)|

)
TwC̃s[ak ,bk ]

(q) = ∑
w∈W J

−

(
∑
d≥0

qd|ΠBC
w,d(F)|

)
∑

u∈WJ

Twu

= ∑
w∈W J

−

∑
u∈WJ

∑
d≥0

qd|ΠBC
w,d(F)|Twu

= ∑
w∈W J

−

∑
u∈WJ

∑
d≥0

qd|ΠBC
wu,d(F)|Twu,

(5.8)

which by (2.2) equals the right-hand side of (5.5).

To illustrate Theorem 5.2, consider the coefficient of Te in C̃s[1,3](q)C̃s[2,3](q)C̃s[1,2](q)C̃s[1,1]
(q).

Exactly four path families of type e cover the network F = F[1,3] ◦ F[2,3] ◦ F[1,2] ◦ F[1,1] in
(4.3). These include the defect-free path family π in (4.3) and the three path families

3

2

1

3

2

1

3

2

1

3

2

1
,

3

2

1

3

2

1

3

2

1

3

2

1
,

3

2

1

3

2

1

3

2

1

3

2

1
,

with circled defects. The four families contribute 1, q, q, q2, respectively, to the coefficient
of Te. Thus the desired coefficient is 1 + 2q + q2.

As a corollary of Theorem 5.2, one may similarly interpret the natural expansion of
products C̃w(1)(q) · · · C̃w(r)(q) ∈ HBC

n (q) when w(1), . . . , w(r) ∈ Bn avoid the patterns 3412
and 4231. By [15, Theorem 5.21], each of these Kazhdan–Lusztig basis elements factors
as on the left-hand side of (5.5), and by the comment preceding Proposition 3.3, each of
these elements of Bn corresponds to Schubert varieties which are simultaneously smooth
in types B and C. It would be interesting to extend the theorem to Hecke algebras of
Coxeter groups of type D.
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