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Abstract. We show that interlacing triangular arrays, introduced by Aggarwal–Borodin–
Wheeler to study certain probability measures, can be used to compute various kinds
of Schubert structure constants. We do this by establishing a splitting lemma, allowing
for arrays of high rank to be decomposed into arrays of lower rank, and by constructing
a bijection between interlacing triangular arrays of rank 3 and certain proper vertex
colorings of the triangular grid graph that factors through generalizations of Knutson–
Tao puzzles. This proves one enumerative conjecture of Aggarwal–Borodin–Wheeler
and disproves another.
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1 Introduction

The LLT polynomials are a 1-parameter family of symmetric polynomials introduced by
Lascoux, Leclerc, and Thibon [9]. They have close connections to Macdonald polynomi-
als and Kazhdan–Lusztig theory, among other areas of representation theory and geom-
etry. In recent work, Aggarwal, Borodin, and Wheeler [1] studied probability measures
arising from the Cauchy identity for LLT polynomials. They show that these measures
asymptotically split into a continuous part, given by a product of GUE corners processes,
and a discrete part, supported on interlacing triangular arrays. They conjectured that these
arrays are equinumerous with vertex colorings of the triangular grid graph in the "rank-
3" case, and with vertex colorings of another grid graph in the rank-4 case. We construct
a bijection between interlacing arrays and vertex colorings, proving the first conjecture,
and we disprove the second1.

Our bijection factors through intermediate objects which are certain edge colorings of
the triangular grid graph. We recognize these edge labelings as cryptomorphic to certain
Schubert calculus puzzles [5]. We apply various geometric interpretations of puzzles [4, 7,
10, 11] to prove that the corresponding families of interlacing triangular arrays compute
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structure constants in cohomology H∗(Gr(d, n)) and K-theory K(Gr(d, n)) of Grassman-
nians, in the (localized) cohomology H∗loc

C× (T∗ Gr(d, n)) of their cotangent bundles, and
for the multiplication in the cohomology of partial flag varieties of classes pulled back
from smaller partial flag varieties.

We now define interlacing triangular arrays, the main objects of study.

Definition 1.1 (Aggarwal–Borodin–Wheeler [1]). An interlacing triangular array T of rank
m and height n is a collection {T(i)

j,k | 1 ≤ i ≤ m, 1 ≤ j ≤ k ≤ n} of positive integers from
[m] = {1, 2, . . . , m}, subject to the following conditions:

(a) For each k = 1, . . . , n we have an equality of multisets:

{T(i)
j,k | 1 ≤ i ≤ m, 1 ≤ j ≤ k} = {1k} ∪ · · · ∪ {mk}.

(b) Let the horizontal coordinate of T(i)
j,k be h(i, j, k) := in + j − (n + k)/2. If T(i)

j,k =

T(i′)
j′,k = a for some i, j, i′, j′, k with h(i, j, k) < h(i′, j′, k), then there must exist i′′, j′′

with T(i′′)
j′′,k−1 = a and h(i, j, k) < h(i′′, j′′, k − 1) < h(i′, j′, k). This entry T(i′′)

j′′,k−1 is said

to interlace with T(i)
j,k and T(i′)

j′,k .

For each k ∈ [n], view T(•)
•,k := {T(i)

j,k | 1 ≤ i ≤ m, 1 ≤ j ≤ k} as the rows of an array of
m triangles, from bottom to top. Denote by T m,n the set of interlacing triangular arrays
of rank m and height n and by T m,n(λ(1), . . . , λ(m)) the subset whose top row (that is,
the row k = n) consists of λ(1), . . . , λ(m); here λ(i) ∈ [m]n for i ∈ [m]. For T ∈ T m,n, use
T(i) to denote the i-th triangle from left to right, and use T(i)

•,k to denote its k-th row.

See Figure 1 for an interlacing trangular array of rank 3 and height 4.

1 2 1 3

1 2 1

1 2

1

1 3 3 2

3 3 1

3 1

3

1 2 3 2

2 3 2

3 2

2

Figure 1: An interlacing triangular array T of rank 3 and height 4. Throughout the
paper, we draw interlacing triangular arrays in green (■), 1/2/3-puzzles in blue (■),
0/1/10-puzzles in cyan (■), and vertex-colored graphs in red (■).
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1.1 Interlacing triangular arrays and graph colorings

The following conjecture was our original motivation for this work.

Conjecture 1.2 (Conjecture A.3 of Aggarwal–Borodin–Wheeler [1]). For n ≥ 1, we have

| T 3,n | =
1
4
|{proper vertex 4-colorings of ∆n}| ,

where ∆n denotes the equilateral triangular grid graph with n edges on each side.

Our first main theorem resolves and significantly refines and extends Conjecture 1.2.

Theorem 1.3. Fix λ(1), λ(2), λ(3) ∈ [3]n. Then the following sets of objects are in bijection:

(1) Interlacing triangular arrays T 3,n(λ) of rank 3 with top row λ;

(2) 1/2/3-puzzles Pn(λ) with boundary conditions λ;

(3) 0/1/10-puzzles P̃n(ξ) with boundary conditions ξ = str(λ);

(4) Proper vertex 4-colorings Cn(κ) of ∆n with boundary colors κ = col(λ).

The functions str, col, and top are straightforward conversions between the different
kinds of indexing data. The colorings

⊔
κ=col(λ) Cn(κ) from Theorem 1.3(4) are exactly

those proper vertex 4-colorings of ∆n in which a fixed base vertex is colored with the first
color. The number of these is one fourth the total number of proper vertex 4-colorings,
so Theorem 1.3 implies Conjecture 1.2.

The particular bijections underlying Theorem 1.3 allow us to give geometric interpre-
tations for certain sets of interlacing triangular arrays (see Section 1.2).

Aggarwal, Borodin, and Wheeler also conjectured a connection between interlacing
triangular arrays of rank 4 and graph colorings. Let ⊠n be the graph obtained from the
n × n square grid graph □n by adding the two diagonal edges of each face of □n.

Conjecture 1.4 (Conjecture A.5 of Aggarwal–Borodin–Wheeler [1]). For n ≥ 1, we have

| T 4,n | =
1
5
|{proper vertex 5-colorings of ⊠n}| . (1.1)

In Theorem 1.5 we give a bijection between interlacing triangular arrays of rank 4
and certain edge labelings of the square grid graph □n, which are analogous to the
1/2/3-puzzles of Theorem 1.3(2).

Theorem 1.5. Fix λ(1), λ(2), λ(3), λ(4) ∈ [4]n. Then the followings are in bijection:

(1) Interlacing triangular arrays T 4,n(λ) of rank 4 with top row λ;
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(2) Edge labelings Dn(λ) of the square grid graph □n having boundary conditions λ and
satisfying the conditions of Section 3.2.

Unlike in the rank-3 case, there is no straightforward way to biject the objects in
Theorem 1.5 with proper vertex colorings. In particular, by enumerating D4 we show
that Conjecture 1.4 is false2, as

| T 4,4 | = 191232 ̸= 187008 =
1
5
|{proper vertex 5-colorings of ⊠4}| .

1.2 Geometric interpretations of interlacing triangular arrays

The 0/1/10-puzzles appearing in Theorem 1.3(3) are known to have various geomet-
ric interpretations when certain puzzle pieces are forbidden and when the boundary
conditions are appropriate. The number of such puzzles with boundary conditions
ξ = (ξ(1), ξ(2), ξ(3)) computes the coefficient of the basis element indexed by ξ(3) in
the product of basis elements indexed by ξ(1) and ξ(2) in cohomology H∗(Gr(d, n)) and
K-theory K(Gr(d, n)) of Grassmannians, in the (appropriately localized) cohomology
H∗loc

C× (T∗ Gr(d, n)) of their cotangent bundles, and for the multiplication in the cohomol-
ogy of the 2-step flag variety [6, 7, 10, 11].

We use the specific bijections underlying Theorem 1.3 to show that interlacing tri-
angular arrays with forbidden patterns and specified top row likewise compute these
coefficients. One advantage of interlacing triangular arrays is that they allow for an in-
terpretation of coefficients in the expansion of an (m− 1)-fold product, without the need
to iteratively apply a rule for products of two elements.

For ξ a 0, 1-string with content 0d1n−d, let Gξ denote the class of the structure sheaf of
the Schubert variety Xξ ⊂ Gr(d, n) inside K(Gr(d, n)). These classes can be represented
by the (Grassmannian) Grothendieck polynomials. The {Gξ} form a basis for K(Gr(d, n)).
In Theorem 1.6 we show that the structure constants for multiplication in the basis {Gξ}
are equal (up to signs) to the number of certain interlacing triangular arrays. Even the
positivity of these structure constants (up to predictable signs) is not obvious, and is due
originally to Buch [2].

Given ξ = (ξ(1), . . . , ξ(m)) of 0, 1-strings, define |ξ| = ∑i |ξ(i)|, where |ξ(i)| is the
number of inversions of ξ(i). For ξ of content 0d1n−d, denote by ξ⊥ the reversed string.

Theorem 1.6. Let ξ(1), . . . , ξ(m) have content 0d1n−d. Let coefficients gξ = gξ(1),...,ξ(m) be deter-
mined by

m−1

∏
i=1

Gξ(i) = ∑
ξ(m)

gξG(ξ(m))⊥ .

2Leonid Petrov has independently observed the failure of Conjecture 1.4 (personal communication).



Bijections between interlacing triangles, Schubert puzzles, and graph colorings 5

Then (−1)d(n−d)−|ξ|gξ is the number of interlacing triangular arrays T from T m,n(top(ξ)) such
that, for i = 2, . . . , m − 1, T(i) avoids

m − i

m
and

m − i + 1 m

m

.

(1.2)

Dual to {Gξ} is the basis {G∗
ξ } of ideal sheaves: functions on Schubert varieties

vanishing on smaller Schubert varieties.

Theorem 1.7. Let ξ(1), . . . , ξ(m) have content 0d1n−d. Let coefficients g∗ξ = g∗
ξ(1),...,ξ(m) be deter-

mined by
m−1

∏
i=1

G∗
ξ(i)

= ∑
ξ(m)

g∗ξ G∗
(ξ(m))⊥

.

Then (−1)d(n−d)−|ξ|g∗ξ is the number of interlacing triangular arrays T from T m,n(top(ξ)) such
that, for i = 2, . . . , m − 1, T(i) avoids

m

m − i
and

m m − i + 1

m .

(1.3)

Interlacing triangular arrays avoiding both the patterns (1.2) and (1.3) compute struc-
ture constants in the ordinary cohomology of the Grassmannian. We can generalize this
case to products of certain classes in the cohomology of arbitrary partial flag varieties.

For d = (0 = d0 ≤ d1 ≤ · · · ≤ dm = n), let Fl(d; n) denote the partial flag variety of
flags of subspaces of Cn with dimension vector d. Let Sd

n denote the set of permutations
whose descents are contained in d. Then H∗(Fl(d; n)) has a basis {σw}w∈Sd

n
consisting of

the classes of the Schubert varieties in Fl(d; n). In particular, the class σwd
0

of the longest

element of Sd
n is the class of a point. For w ∈ Sd

n, write w∨d := w0ww0(d) ∈ Sd
n. For

w(1), . . . , w(m) ∈ Sd
n, let coefficients cw = cw(1),...,w(m) be determined by

m−1

∏
i=1

σw(i) = ∑
w(m)

cwσ(w(m))∨d ,

For a finite alphabet with a total order Σ = {q1 < · · · < qk}, we say that λ has type
qα = qα1

1 · · · qαk
k if λ contains αi copies of qi, for i = 1, . . . , k. For such a string, we associate

a permutation w(λ)Σ = w ∈ Sn such that w(di−1 + 1) < · · · < w(di) are the positions of
qi’s in λ, where α = α(d) is defined by α1 + · · ·+ αi = di for i = 1, . . . , k.

Theorem 1.8. Let d = (0 = d0 ≤ d1 ≤ · · · ≤ dm = n). For i ∈ [m] let Σi = {m − i <
m < m− i + 1}, let λ(i) be a string of type (m− i)dm−i mdm−i+1−dm−i(m− i + 1)n−dm−i+1 , and let
w(i) = w(λ(i))Σi ∈ Sd

n. Then cw is the number of interlacing triangular arrays T from T m,n(λ)

such that, for i = 2, . . . , m − 1, T(i) avoids the patterns from (1.2) and (1.3).
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The Schubert classes σw(i) appearing in Theorem 1.8 are the pullbacks of Schubert
classes under the projection from Fl(d; n) to certain 2-step flag varieties.

Finally, let H∗loc
C× (T∗ Gr(d, n)) denote the equivariant cohomology of the cotangent

bundle of Gr(d, n) with respect to the C×-action scaling the cotangent spaces, localized
as in [7, Section 2.2]. For ξ of content 0d1n−d, let Sξ ∈ H∗loc

C× (T∗ Gr(d, n)) denote the
Segre–Schwartz–MacPherson (SSM) class of the corresponding Schubert variety, using the
conventions of [7, Sections 2.4 and 5.2]. In our last main theorem, we show that inter-
lacing triangular arrays, with no forbidden patterns, compute structure constants for the
{Sξ}.

Theorem 1.9. Let ξ(1), . . . , ξ(m) have content 0d1n−d. Let coefficients sξ = sξ(1),...,ξ(m) be deter-
mined by

m−1

∏
i=1

Sξ(i) = ∑
ξ(m)

sξS(ξ(m))⊥ .

Then (−1)d(n−d)−|ξ|sξ is the cardinality of T m,n(top(ξ)).

1.3 Examples of the geometric interpretations

Example 1.10. Let m = 4 and n = 4. Consider the 0, 1-strings ξ(1) = ξ(2) = ξ(3) = 0101
with length 1. Correspondingly, λ(1) = top(ξ(1)) = 3434, and analogously, λ(2) = 2323
and λ(3) = 1212. They also correspond to the permutation 1324 and the partition with
one box. As an example of Theorem 1.8, in H∗(Gr(2, 4)), σ3

1324 = 2σ2413, whose 0, 1-string
is 1010 and the coefficient 2 counts the interlacing triangular arrays in Figure 2.

3 4 3 4
3 4 3

3 4
3

2 3 2 3
2 3 2

3 2
4

1 2 1 2
1 4 2

1 2
2

4 1 4 1
1 4 1

4 1
1

3 4 3 4
3 4 3

3 4
3

2 3 2 3
2 4 3

2 3
2

1 2 1 2
2 1 2

2 1
4

4 1 4 1
1 4 1

4 1
1

Figure 2: Interlacing triangular arrays with top row λ(1) = 3434, λ(2) = 2323, λ(3) =

1212, λ(4) = 4141.

There are more interlacing triangular arrays whose top row starts with λ(1) = 3434,
λ(2) = 2323, λ(3) = 1212. Besides the ones in Figure 2, all the others have top row
λ(4) = 4411 shown in Figure 3. The first five of them contain patterns from (1.2) and the
last one contains patterns from (1.3), highlighted in the figure.
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3 4 3 4
3 4 3

3 4
3
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2 3 2

3 2
4

1 2 1 2
4 1 2

4 2
2

4 4 1 1
4 1 1

1 1
1

3 4 3 4
3 4 3

3 4
3

2 3 2 3
2 3 4

3 2
4

1 2 1 2
2 1 2

4 2
2

4 4 1 1
4 1 1

1 1
1

3 4 3 4
3 4 3

3 4
3

2 3 2 3
2 4 3

2 3
2

1 2 1 2
2 1 2

2 4
4

4 4 1 1
4 1 1

1 1
1

3 4 3 4
3 4 3

3 4
3

2 3 2 3
4 2 3

3 2
4

1 2 1 2
2 1 2

4 2
2

4 4 1 1
4 1 1

1 1
1

3 4 3 4
3 4 3

3 4
3

2 3 2 3
2 4 3

2 3
4

1 2 1 2
2 1 2

4 2
2

4 4 1 1
4 1 1

1 1
1

3 4 3 4
3 4 3

3 4
3

2 3 2 3
2 4 3

3 2
4

1 2 1 2
2 1 2

4 2
2

4 4 1 1
4 1 1

1 1
1

Figure 3: Interlacing triangular arrays with top row λ(1) = 3434, λ(2) = 2323, λ(3) =

1212, λ(4) = 4411.

Now, Theorem 1.6, Theorem 1.7 and Theorem 1.9 imply that

G3
0101 = 2G1010 − G1100, (G∗

0101)
3 = 2G∗

1010 − 5G∗
1100, S3

0101 = 2S1010 − 6S1100.

1.4 Outline

In Section 2, we prove Theorem 2.4, establishing bijections between rank-3 interlacing
triangular arrays T 3,n and 1/2/3-puzzles Pn. In Section 3 we in turn prove Theorem 3.2,
giving bijections between 1/2/3-puzzles Pn and proper vertex colorings Cn of ∆n. In
Theorem 3.4 we also give bijections between rank-4 interlacing triangular arrays T 4,n
and certain edge labelings Dn of □n. Finally, in Section 4 we sketch some key ideas that
go into the proofs of the geometric interpretations in Theorems 1.6 to 1.9. These include
a correspondence between 1/2/3-puzzles and 0/1/10-puzzles for which we are grateful
to Allen Knutson and a splitting lemma on certain interlacing triangular arrays allowing
us to reduce to the case m = 3.
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2
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3
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1

1
2

3

3
2

1

1

2

33

2

Figure 4: A 1/2/3-puzzle P with boundary conditions (1213, 1332, 1232).

2 From interlacing triangular arrays to puzzles

The goal of this section is to establish a bijection T between interlacing triangular arrays
of rank 3 and certain edge labelings of ∆n. We call these labelings 1/2/3-puzzles since
they in turn are in bijection with the 0/1/10-puzzles of Knutson–Tao [5] as generalized
by Knutson–Zinn-Justin [7, Section 4].

Definition 2.1. We denote by ∆n the triangular grid graph with side length n; see Figure 4.
We view ∆n as embedded in the plane as pictured, allowing us to distinguish between
the ∆-oriented and ∇-oriented faces. We take the lower left corner as a distinguished
base point, and view ∆n−1 as a subgraph of ∆n, sharing the base point.

A 1/2/3-puzzle is a labeling of the edges of ∆n with labels 1, 2, and 3 so that each
face has distinct edge labels. We write Pn for the set of these puzzles.

The boundary conditions µ = (µ(1), µ(2), µ(3)) of a puzzle P ∈ Pn are the labelings of
the three sides of the triangle ∆n, read clockwise starting from the base point. We write
Pn(µ) for the set of puzzles from Pn with boundary conditions µ.

Definition 2.2. Given a 1/2/3-puzzle P ∈ Pn, we produce a collection

T (P) = {T(i)
j,k | 1 ≤ i ≤ 3, 1 ≤ j ≤ k ≤ n}

of integers from {1, 2, 3} as follows. For each k = 1, . . . , n, consider the copy of ∆k inside
∆n justified into the lower left corner of ∆n. The k-th row of T (P) is obtained by reading
the labels of P clockwise around ∆k, starting from the lower left vertex.

Example 2.3. The 1/2/3-puzzle P from Figure 4 is sent by T to the array T from Figure 1.

Theorem 2.4. For any P ∈ Pn, the array T (P) is an interlacing triangular array of rank 3 and
height n. Furthermore, map T is a bijection Pn → T3,n restricting, for each boundary condition
λ, to a bijection Pn(λ) → T3,n(λ).
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3 From puzzles to graph colorings

In this section, we relate interlacing triangular arrays and 123-puzzles to graph colorings.
We prove Conjecture A.3 of [1] and disprove Conjecture A.5. We also formulate a new
conjecture (Conjecture 3.5) on the enumeration of T 4,n.

3.1 T 3,n and the triangular grid

Recall from Section 2 that ∆n denotes the triangular grid graph with side length n, a
graph on (n+2

2 ) vertices. Let Cn denote the set of proper colorings of the vertices of ∆n by
{0, 1, 2, 3} such that the base point is colored 0. We write Cn(κ) for the set of colorings
from Cn with fixed coloring κ of the boundary vertices. We have proven in Theorem 2.4
that the map T is a bijection T : Pn → T3,n. We now define a map P : Cn → Pn, proven
in Theorem 3.2 to be a bijection.

Definition 3.1. Given a proper vertex coloring C ∈ Cn, define an edge labeling P(C)
as follows: for an edge e of ∆n incident to vertices v and v′, set P(C)(e) = i if
{c(v), c(v′)} = {0, i} or {0, 1, 2, 3} \ {0, i}. See Figure 5 for an example. By Theorem 3.2
below, P is invertible on 1/2/3-puzzles and so determines boundary colors col(λ) given
boundary conditions λ of a puzzle.

Theorem 3.2. The map P is a bijection Cn → Pn sending C(col(λ)) to Pn(λ).

0 2 1 3 2

1 0 2 0

3 1 3

2 0

1

P7−→

1

1

2

2

3

3

1

3

2

3

2
1

2

3

1
1 3

2

1

1
2

3

3
2

1

1

2

33

2

Figure 5: The bijection P from Theorem 3.2.

3.2 T 4,n and the square grid

Let □n be the square grid graph with side length n. For k < n, we view □k as a
southwest-justified subgraph of □n, and we fix the southwest corner as the basepoint.
Let Dn be the set of edge labelings of □n with four labels satisfying the following:

• for each face on the main SW-NE diagonal, all four edges are labeled differently;
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• for each of the off-diagonal faces, the four edges are labeled with exactly two dis-
tinct labels so that either one label is assigned to the west and south boundaries
(with the other label assigned to the north and east boundaries), or one label is
assigned to the north and south boundaries (with the other label assigned to the
west and east boundaries).

We now define a map D ′ from Dn to certain triangular arrays of integers.

Definition 3.3. Given an edge labeling D ∈ Dn, let D ′(D) be the triangular array of
integers whose k-th row is obtained by reading the D-labels around the boundary of □k
in the clockwise direction, starting from the base point. See Figure 6 for an example.

1 3 1 4

3 3 1 1

3 2 1 1

3 2 3 1

2 3 4 2

2

1

4

3

4

1

4

2

4

4

4

3

4

4

2

4

1

4

2

3

•

D ′
7−→

2 1 4 3
2 1 4

2 1
2

2 3 4 2
3 2 3

3 2
3

3 2 4 1
2 4 4

4 4
4

4 1 3 1
1 3 1

3 1
1

Figure 6: The bijection D ′ from Theorem 3.4.

Theorem 3.4. The map D ′ is a bijection Dn → T 4,n.

By enumerating the labelings Dn, we have computed for n = 0, 1, 2, 3 that | T 4,n | =
1, 24, 1344, 191232. This last value disagrees with 1

5 |{proper vertex 5-colorings of ⊠n}|
from [1, Conjecture A.5] which for n = 0, 1, 2, 3 is equal3 to 1, 24, 1344, 187008, disprov-
ing the conjecture of Aggarwal–Borodin–Wheeler. However we make a new conjecture
for | T 4,n | that has been checked up to n = 7. This replaces vertex colorings of ⊠n with
edge labelings of □n and is a direct extension of the equinumerosity of Pn and T 3,n.

Conjecture 3.5. | T 4,n | equals the number of edge labelings of □n with four labels such that the
four sides of each face have distinct labels.

4 Ingredients in the geometric interpretations

We end by giving a couple of combinatorial ingredients used in our proofs of Theo-
rems 1.6 to 1.9. The full details are available in [3, Section 5].

3See the OEIS entry A068294.
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4.1 The splitting lemma

Lemma 4.1. Fix m ≥ 3 and d and strings λ(i) of type (m − i)dm−i mdm−i+1−dm−i(m − i +
1)n−dm−i+1 . Then there is a bijection split from T m,n(λ(1), . . . , λ(m)) to⊔

µ

T 3,n(λ
(1), λ(2), µ)× T m−1,n(µ

†, λ(3), . . . , λ(m)), (4.1)

where µ runs over type (m − 2)n−dm−2mdm−2 and µ† reverses and swaps the letters of µ.

Example 4.2. Let T ∈ T4,5 be as below; then split(T) ∈ T 3,5 ×T 3,5 is shown on bottom.

3 3 4 4 3
3 3 4 4

3 3 4
3 3

3

2 2 3 2 3
2 3 2 3

2 3 2
2 4

2

1 2 4 2 4
2 1 2 4

4 2 1
2 4

4

1 1 4 1 1
1 4 1 1

4 1 1
1 1

1

3 3 4 4 3
3 3 4 4
3 3 4
3 3
3

2 2 3 2 3
2 3 2 3
2 3 2
2 4
2

4 2 4 2 4
2 4 2 4
4 2 4
2 4
4

2 4 2 4 2
2 4 2 4
2 4 2
2 4
2

1 2 4 2 4
2 1 2 4
4 2 1
2 4
4

1 1 4 1 1
1 4 1 1
4 1 1
1 1
1

4.2 Puzzle conversion

A 0/1/10-puzzle is a labeling of the edges of ∆n with labels 0, 1, and 10 so that each
∆-oriented face is labeled in one of the following ways

0
0

0 1
1

1 0
1
10 1

10
0 10

0
1 10

10
10

,

and so that each ∇-oriented face is labeled by a 180◦ rotation of one of these4. We write
P̃n(ξ) for the set of 0/1/10-puzzles on ∆n with boundary conditions ξ.

We are grateful to Allen Knutson for sharing with us the following correspondence
between 1/2/3-puzzles and 0/1/10-puzzles. Given λ = (λ(1), λ(2), λ(3)), let str(λ) be
the 0, 1-strings (ξ(1), ξ(2), ξ(3)) obtained by applying the transformation below:

2 3 1 3 1 21 2 3
↕

0 1 10 0 1 100 1 10 .

Proposition 4.3. For any boundary condition λ, the transformation of edge labels shown above
determines a bijection Pn(λ) → P̃n(str(λ)), where top denotes the inverse to str.

4See [8, Section 5] for the relationship between these puzzles and others which have appeared in the
literature.
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