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Abstract. We study random permutations corresponding to pipe dreams. Our main
model is motivated by the Grothendieck polynomials with parameter β = 1 arising in
the K-theory of the flag variety. The probability weight of a permutation is proportional
to the principal specialization (setting all variables to 1) of its Grothendieck polyno-
mial. By mapping this random permutation to a version of TASEP (Totally Asymmetric
Simple Exclusion Process), we describe the limiting permuton and fluctuations around
it as the order n of the permutation grows to infinity. The fluctuations are of order n

1
3

and have the Tracy–Widom GUE distribution, which places this algebraic (K-theoretic)
model into the Kardar–Parisi–Zhang universality class.

Inspired by Stanley’s question for the maximal value of principal specializations of
Schubert polynomials, we resolve the analogous question for β = 1 Grothendieck
polynomials, and provide bounds for general β. This analysis uses a correspondence
with the free fermion six-vertex model, and the frozen boundary of the Aztec diamond.

Keywords: Grothendieck polynomials, pipe dreams, TASEP, six vertex model

1 A story from Algebra to Probability

Algebraic Combinatorics established itself as a field that uses combinatorial methods
to understand algebraic behavior in problems ranging from Group Theory to Algebraic
Geometry. It started with stark exact formulas, like the celebrated hook-length for-
mula for the dimension of irreducible modules of the symmetric group Sn; beautiful
interpretations, such as the Littlewood–Richardson rule for the structure constants of
representations of the general linear group GLn; powerful and intricate bijections, such
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as the Robinson–Schensted–Knuth correspondence. However, such answers only go so
far, leaving room for questions like “approximately how many”, “what are the typical
objects”, and “what is the typical behavior”. These questions lead us into the realm of
Asymptotic Algebraic Combinatorics, which aims to answer them with the help of tools
originating outside of Combinatorics. In the present work, we employ Integrable Proba-
bility, a rapidly evolving field focused on developing and analyzing interacting particle
systems and random growth models possessing a certain degree of structure or sym-
metry. The arising probabilistic models exhibit rich structure leading to new permutons
representing “typical permutations”. The connection between the algebraic model and
statistical mechanics is multi-fold via a correspondence between the so-called bumpless
pipe dream models for Schubert/Grothendieck and the six-vertex model. The well stud-
ied free fermion six-vertex model and the frozen boundary of the Aztec diamond are
key to understanding the permutations which maximize the principal specialization of
Grothendieck polynomials.

Stanley [14] asked the most basic question on the principal specializations of Schu-
bert polynomials Sw (representing cohomology classes of the flag variety): does the
following limit exist

lim
n→∞

1
n2 log2 max

w∈Sn
Sw

(
1, . . . , 1︸ ︷︷ ︸

n

)
,

and if so, what is it and for which permutations w is this achieved. This question
(including the existence of the limit) is still open. In [12], a lower bound of about 0.29
was established for layered permutations. An upper bound of about 0.37 comes from a
remarkable connection with Alternating Sign Matrices and the six-vertex model.

The Grothendieck polynomials Gβ
w, which represent K-theoretic classes of the flag va-

riety, are a natural one-parameter generalization of the Schubert polynomials. Extending
Stanley’s questions, we would like to understand the asymptotic behavior of maximal
principal specializations maxw∈Sn G

β
w(1n) of Grothendieck polynomials. This question

was first touched on in [11], [5].
Thanks to a combinatorial model for Grothendieck and Schubert polynomials, these

questions have very natural statistical mechanics interpretations. Namely, both poly-
nomials are partition functions of tilings into crosses and elbows of a size n triangle
(staircase) shape, which result in a configuration of n “pipes”. Such pipe configurations
are often called pipe dreams. In the Schubert case, the only valid tilings are the ones
where no two pipes cross more than once. This is a global (long-range interaction) con-
dition, and no tools in Statistical Mechanics are known to compute the asymptotics of
the energy (equivalent to Stanley’s question and estimating the number of such pipe
dreams). In the Grothendieck case for β = 1, all tilings are allowed, but the pipes must
be resolved (reduced) to obtain a permutation. One of the key ideas leading to our
analysis is that this model can be mapped to a colored stochastic six-vertex model (and
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further to TASEP, the Totally Asymmetric Simple Exclusion Process). The resulting in-
teracting particle systems have only local (short-range) interactions, and are amenable to
techniques from Integrable Probability.

In this work, we investigate the asymptotics of the typical β = 1 Grothendieck ran-
dom permutations and characterize their limit shape which is described by a permuton.
We also study fluctuations of Grothendieck random permutations around the limiting
permuton. They are of order n

1
3 and asymptotically have the Tracy–Widom GUE distri-

bution. This distribution was first observed in the fluctuations of the largest eigenvalue
of Gaussian random matrices with unitary symmetry. By now, having Tracy–Widom
fluctuations is an indication that a model is within the Kardar–Parisi–Zhang (KPZ) uni-
versality class [3], which includes a wide range of random growth models and interact-
ing particle systems. We also derive the expected number of inversions, which are of
order n2. This is in contrast to the model of Colin Defant [4] where no pipes are resolved
and the inversions are of order n3/2.

Returning to Stanley’s original question, when β = 1, we have

log2 max
w∈Sn

G
β
w(1n) =

1
2

n2 − O(n log n).

Using the correspondence with 2-enumerated Alternating Sign Matrices (equivalently,
the six-vertex model with domain wall boundary conditions and free-fermion weights;
or the model of uniform domino tilings of the Aztec diamond), we show that a large
family of layered permutations also achieve this asymptotic maximum which strength-
ens the intuition that layered also maximize Schubert polynomials asymptotically [10].
For general β, we establish certain bounds for the maximal principal specialization.

This is the extended abstract of [13], which contains all the proofs and references,
background on TASEP and six-vertex model. Here we will informally describe our main
results and sketch the connections.

2 Pipe dreams and permutations

We denote by Sn the set permutations of {1, 2, . . . , n} that we write in the one-line nota-
tion w = w1w2 · · ·wn unless indicated otherwise. We also denote the image of i under
w by w(i), and use the notation wi = w(i) interchangeably when this does not lead to
confusion. The longest permutation n n − 1 . . . 2 1 is denoted by w0 = w0(n). For a per-
mutation w of length ℓ, we denote by R(w) the set of reduced words of w, that is, tuples
(r1, . . . , rℓ) such that sr1 · · · srℓ is a reduced decomposition of w, where si = (i, i + 1) are
the simple transpositions.

A pipe dream of order n is a tiling of the staircase shape (having n − 1 boxes in the
first row, n − 2 boxes in the second row, and so on, with boxes left-justified) by tiles of



4 Morales, Panova, Petrov, Yeliussizov

two types: bumps and crossings . The n-th diagonal below the staircase is equipped
with half bumps . Without any restrictions there are 2(

n
2) pipe dreams of order n.
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Figure 1: Left: A reduced pipe dream without any double intersections corresponding
to permutation w = 241653, and an unreduced pipe dream D of order 6. Center:
A reduction of the pipe dream leading to the permutation w(D) = 241653. Right: A
reduction D′ of a bumpless pipe dream D leading to the permutation w(D) = w(D′) =
45128637. Dashing is added for the printed version and accessibility.

A pipe dream (a tiling of the staircase shape) forms a collection of strands (or pipes)
labeled 1 to n from the row where they start. A pipe dream is called reduced if any two
pipes cross through each other at most once.

Definition 2.1 (Reduction of a pipe dream). Given a pipe dream D that is not necessarily
reduced, the reduction of D is a unique reduced pipe dream D′ obtained as follows:
starting at the bottom left tile traverse the pipe dream upwards along columns and to
the right. For each encountered crossing, replace it with a bump if the pipes have already
crossed in the already traversed squares. The labeling of pipes together with a reduction
is indicated by colored paths in Figure 1, center.

Definition 2.2 (Permutation from pipe dream). One can associate a permutation w(D) ∈
Sn to a pipe dream of order n as follows. If D is reduced then w(D)−1

j is the column
where the pipe j ends up in.1 Equivalently, the column j contains the exiting pipe of color
w(D)j. If D is not reduced, then w(D) is the permutation associated to the reduction
D′ of D. Alternatively, associating transpositions si to each cross and reading from the
bottom left to top right, we obtain a (non-necessarily reduced) word. Multiplying the
transposition using the Demazure (0-Hecke) product rule (where s2

i = si) gives w.

Let PD(n) and RPD(n) be the sets of pipe dreams and reduced pipe dreams of size
n. For each w ∈ Sn, let PD(w) and RPD(w) be, respectively, the sets of pipe dreams
and reduced pipe dreams D such that w(D) = w. Note that # PD(n) = 2(

n
2), whereas

1Throughout the paper, the column coordinate j increases from left to right, and the row coordinate i
increases from top to bottom.
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there is no simple known formula for # RPD(n). Given a pipe dream D, let cross(D) be
the set of coordinates (i, j) of the cross tiles. The weight of D is the monomial wt(D) :=
∏(i,j)∈cross(D) xi. For example, for the unreduced pipe dream in Figure 1, left, we have
wt(D) = x3

1x2
2x2

3x4x5. The Grothendieck and Schubert polynomials are originally defined
recursively, via certain divided difference operators, but using [7] and [1] we can define
them as partition functions of the pipe dream models.

Theorem 2.3. For any w ∈ Sn, we have that the Grothendieck polynomial is given by

G
β
w(x1, . . . , xn) = ∑

D∈PD(w)

β# cross(D)−ℓ(w) wt(D). (2.1)

In particular, setting β = 0 forbids non-reduced pipe dreams, so the Schubert polynomial is

Sw(x) = ∑
D∈RPD(w)

wt(D). (2.2)

3 Asymptotics of Grothendieck random permutations

Fix p ∈ (0, 1). Equip the set of all pipe dreams with a probability measure by indepen-
dently placing the tiles in each box:

with probability p, with probability 1 − p. (3.1)

In particular, for p = 1
2 , we have the uniform measure on the set of pipe dreams.

Figure 2: Left and center: A sample of a Grothendieck random permutation of order
n = 2000 with p = 4

5 and p = 1
2 , respectively. Right: An average of Grothendieck

random permutations with n = 2000 and p = 1
2 over 2000 samples. We take a sum

of permutation matrices, and coarse-grain the result into 8 × 8 blocks. The plot is the
heat map of the resulting matrix, which approximates the Grothendieck permuton.
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By reducing this random pipe dream as in Definition 2.1, we obtain a random per-
mutation w ∈ Sn which we call the Grothendieck random permutation (of order n and with
parameter p; we suppress the dependence on n and p in the notation). The name is
justified by a connection with the polynomials G

β=1
w . Indeed, we have for any w ∈ Sn:

P(w = w) = ∑
D∈PD(w)

pcross(D)(1 − p)elbow(D) = (1 − p)(
n
2)G

β=1
w

(
p

1−p
, . . . ,

p
1−p

)
. (3.2)

For w ∈ Sn, define its height function as in Figure 3 by

H(x, y) := #
({

w−1(x), w−1(x + 1), . . . , w−1(n)
}
∩ {y, y + 1, . . . , n}

)
,

where 1 ⩽ x, y ⩽ n. In terms of the pipe dream as in Figure 1, center, H(x, y) is the
number of pipes of color ⩾ x which exit through the positions ⩾ y at the top. H(x, y)
gives also the number of 1s in the rectangle with lower left corner at (x, y).
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Figure 3: Left: Permutation matrix of w = (2, 4, 1, 6, 5, 3) coming from the pipe dream
in Figure 1, center (dots indicate 1’s). The highlighted rectangle has H(4, 3) = 2 entries.
Right: the limit shape h of the rescaled H.

Let now w ∈ Sn be the Grothendieck random permutation with the fixed parameter
p ∈ (0, 1). We show that the random H(x, y) satisfies the law of large numbers, and
characterize its asymptotic fluctuations illustrated in Figure 2.

Theorem 3.1. 1. There exists a limiting height function h◦ such that

lim
n→∞

n−1 H(⌊nx⌋, ⌊ny⌋) = h◦(x, y), (x, y) ∈ [0, 1]2,

where the convergence is in probability. The function h◦(x, y) is explicit, see [13]. It is
continuous and depends only on p. The graph of h◦ is given in Figure 3, right.

2. The fluctuations of H(x, y) around h◦ belong to the KPZ universality class:

lim
n→∞

P

(
H(⌊nx⌋, ⌊ny⌋)− nh◦(x, y)

v(x, y)n1/3 ≤ r
)
= F2(r), r ∈ R,
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where F2 is the cumulative distribution function of the Tracy–Widom GUE distribution,
and v(x, y) is given in [13].

The law of large numbers in the first part of Theorem 3.1 means that the Grothen-
dieck random permutations w ∈ Sn converge to a deterministic permuton. Recall that
permutons are Borel probability measures µ on [0, 1]2 with uniform marginals, that is,
µ ([0, 1]× [a, b]) = µ ([a, b]× [0, 1]) = b − a. Our limiting Grothendieck permuton is com-
pletely determined by the limiting height function via µ ([x, 1]× [y, 1]) = h◦(x, y). Its
singular part (a positive portion of its mass) is concentrated along the curve

Ep :=
{
(x, y) : (y− x)2/p + (y+ x− 1)2/(1 − p) = 1, 1 − p ⩽ x ⩽ 1

}
⊂ [0, 1]2.

The total mass supported on this curve is equal to γp defined below in (3.3).
As a corollary of the permuton convergence of Theorem 3.1, one can also obtain laws

of large numbers for arbitrary pattern counts in Grothendieck random permutations.
The simplest example is the number of inversions:

Proposition 3.2. Let w = w(n) ∈ Sn be the Grothendieck random permutations with a fixed
parameter p ∈ (0, 1). We have

lim
n→∞

inv (w(n))
(n

2)
= γp := 1 −

√
1 − p

p
arccos

√
1 − p. (3.3)

In the original model we have γ 1
2
= 1 − π

4 . The fact that the scaled number of inver-
sions converges to γp, the singular part of the Grothendieck permuton, is surprising. Be-
sides exact computations we do not have a conceptual explanation for this phenomenon.

3.1 Proofs via colored vertex models and TASEP

The colored stochastic six-vertex model on Z2 has the following vertex weights

wp(a, b; c, d) = wp
(

a
b

c
d
)
,

where a, b, c, d ∈ {0, 1, . . . , n}. Here 0 represents the absence of a pipe, and positive
numbers indicate the pipes’ colors. We view (a, b) and (c, d) as incoming and outgoing
pipes, respectively. The weights are defined as follows: wp(a, a; a, a) = 1, wp(b, a; b, a) =
p, wp(b, a; a, b) = 1 − p, wp(a, b; a, b) = 0, and wp(a, b; b, a) = 1, where 0 ⩽ a < b ⩽ n
(weights of all other configurations are 0). The weights conserve the pipes, meaning
wp(a, b; c, d) = 0 unless {a, b} = {c, d} as sets, and are stochastic: wp(a, b; c, d) ⩾ 0 and
∑n

c,d=0 wp(a, b; c, d) = 1 for all a, b. Assign coordinates (i, j) ∈ Z2
⩾1 to the boxes of the

staircase shape, with i increasing downward and j increasing to the right. The staircase
shape is then δn := {(i, j) : i + j ⩽ n}.
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Place a stochastic vertex with the weight wp at each box (i, j) ∈ δn. Let the initial
condition along the left boundary of δn be the rainbow one, with colors 1 to n from top to
bottom. Then we can sample a random configuration of pipes as in Figure 1, center, by
running a discrete time Markov chain with time τ = j − i, where −(n − 1) ⩽ τ ⩽ n − 1.
At each step τ → τ + 1, the configuration with j − i ⩽ τ is already sampled, which
determines the incoming colors at all boxes (i, j) ∈ δn with j − i = τ + 1. The next
step τ → τ + 1 consists in an independent update of the outgoing colors at all boxes
(i, j) ∈ δn with j− i = τ + 1, using the stochastic vertex weights wp(a, b; ·, ·), 1 ⩽ a, b ⩽ n.
Here we view each wp(a, b; ·, ·) as a probability distribution on possible outputs, (a, b) or
(b, a). Reading off the outgoing colors at the top boundary of δn, we arrive at a random
permutation w ∈ Sn.

Proposition 3.3. The random permutation w ∈ Sn obtained from the colored stochastic six-
vertex model as described above has the same distribution as the Grothendieck random permuta-
tion defined in Section 3.

The permutation height function H(x, y) is also the height function for that model:

H(x, y) := #
{

pipes of colors ⩾ x which exit through positions j ⩾ y at the top
}

(3.4)

Consider an uncolored (color-blind) stochastic vertex model with all pipes of the same
color (1) or no pipes (0) and the following weights w•

p(0, 0; 0, 0) = 1, w•
p(1, 1; 1, 1) = 1

w•
p(1, 0; 1, 0) = p, w•

p(1, 0; 0, 1) = 1 − p, w•
p(0, 1; 0, 1) = 0, w•

p(0, 1; 1, 0) = 1.

Proposition 3.4. Fix 1 ⩽ x ⩽ n. In the colored stochastic vertex model, erase all pipes of colors
< x, and identify all the remaining pipes for colors ⩾ x. The resulting random configuration of
uncolored pipes evolves according to the color-blind stochastic vertex model w•

p.

Definition 3.5. Let k ⩾ 1. Let ξ(t) :=
(
ξ1(t) > . . . > ξk(t)

)
⊂ Z be the k-particle discrete

time TASEP (Totally Asymmetric Simple Exclusion Process) having parallel updates and
geometrically distributed jumps. In detail, ξ(t), t ∈ Z⩾0, is a discrete time Markov chain
on particle configurations in Z which at each time step t → t + 1 evolves as follows:

ξi(t + 1) = ξi(t) + min (Gi(t + 1), ξi−1(t)− ξi(t)− 1) , 1 ⩽ i ⩽ k, (3.5)

where Gi(t + 1) are independent geometric random variables with parameter p ∈ (0, 1),
i.e. P (Gi(t + 1) = m) = (1 − p) pm, m ∈ Z⩾0. The update (3.5) occurs in parallel
for all particles 1 ⩽ i ⩽ k, that is, the new positions ξi(t + 1) depend only on the
configuration ξ(t) at the previous time step, and new independent random variables. By
agreement, we have ξ0(t) ≡ +∞, so that the first particle ξ1(t) performs an independent
random walk with geometrically distributed jumps.

Start the TASEP from the densely packed (step) initial configuration {1, 2, . . . , k}, that is,
ξi(0) = k + 1 − i, 1 ⩽ i ⩽ k. Fix n ⩾ k, and introduce a moving exit boundary of staircase
shape The exit time of a particle ξi(t) is then Texit(i) := min {t : ξi(t) ⩾ n + 1 − t} .



Grothendieck Shenanigans 9

η1

η2

η3
j = t

1 2 3 4 5i

1

2

3

4

5

6
Z

t

0

1

2

3

4

5

ξ3 ξ2 ξ1

1 2 3 4 5 6

Figure 4: Left: The evolution of the uncolored pipes η(t). Here n = 6 and x = 4, so
k = 3. At time t = 2, we have η2(2) = 2, η3(2) = 4, and the pipe η1 has exited before
t = 2. We have H(4, 3) = 2. Right: The evolution of the process ξ(t), in bijection with
the pipe configuration on the left (that is, ξm(t) = n + 1 − t − ηm(t)). In detail, a move
of the particle ξℓ by r ⩾ 0 steps corresponds to the pipe moving r + 1 steps up.

Theorem 3.6. For any 1 ⩽ x, y ⩽ n and 0 ⩽ h ⩽ n − x + 1, we have

Pw
(

H(x, y) ⩽ h
)
= PTASEP

(
ξn−x+1−h(y − 1) ⩾ n − y + 2

)
.

Here Pw corresponds to the Grothendieck random permutation of order n, and PTASEP is the
probability distribution of the TASEP with k = n − x + 1 particles and moving exit boundary.

To prove Theorem 3.1 we use the integrability of TASEP [9] with the given moving
boundary (via asymptotics of Schur functions) to analyze the asymptotics of H(x, y).

4 Asymptotics of Grothendieck principal specializations

We are interested in the principal specializations of the Grothendieck polynomials:

Υw(β) := G
β
w
(
1, 1, . . . , 1︸ ︷︷ ︸

n

)
, w ∈ Sn. (4.1)

In particular, Υw(0) is the principal specialization of the Schubert polynomial studied
in [12] and [14]. For β = 1, these quantities are the (unnormalized) probability weights
of the Grothendieck random permutation w with p = 1

2 (see (3.2)). Set

vn(β) := ∑
w∈Sn

Υw(β) and un(β) := max
w∈Sn

Υw(β).

From Theorem 2.3, we have vn(1) = 2(
n
2) and un(1) = 2(

n
2)−o(n2) as n → ∞. The

first equality is exact, while the second one is asymptotic. This asymptotic behavior
follows from the cardinality n! ∼ en log n+O(n) ≪ 2(

n
2) of the set of all n! permutations.
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For u ∈ Sk and w ∈ Sm, we denote u×w := (u(1), . . . , u(k), w(1) + k, . . . , w(m) + k) ∈
Sk+m. For a composition b = (bℓ, . . . , b1) of n = b1 + · · · + bℓ, the layered permutation
w(b) ∈ Sn is defined as w(b) := w0(bℓ)× · · · × w0(b1), where w0(k) = (k, k − 1, . . . , 1) is
the full reversal permutation in the one-line notation. Denote by Ln ⊂ Sn the subset of
layered permutations of size n, and let u′

n(1) := maxw∈Ln Υw(1).

−2−4−6−8−10−12−14 2018161412108(0, 0)

. . . . . .

n b1 f (n)
...

...
...

311 91 0.490735
439 128 0.493404
621 182 0.495329
877 256 0.496684

Figure 5: Left: Domino tilings with Schroder paths, frozen boundary indicated as
the inscribed circle. Right: Permutation matrix of a layered permutation w(b) ∈ S877,
where the composition is b = (256, 182, 128, 91, 64, 46, 32, 23, 16, 12, 8, 6, 4, 3, 2, 2, 1, 1).
Note that bi/bi+1 ≈ 1/

√
2. Table of exact values for 3 ⩽ k ⩽ 19 of layered permutations

w(b) with bi/bi+1 ≈ 1/
√

2. The third column is f (n) := 1
n2 log2 Υw(b)(1) for n = ∑i bi.

Regarding Stanley’s problem on permutations achieving the maximal Schubert spe-
cialization un(0) (the case β = 0), the Merzon–Smirnov conjecture [10] states that the
maximum is attained on layered permutations. In [12], 1

n2 maxw∈Ln log2 Sw(1n) ≈ 0.29 was
computed. As some evidence that indeed layered permutations are good candidates, we
prove that Υw(β) at β = 1 attain their asymptotic maximum in Ln:

Theorem 4.1. There are sequences of layered permutations w(b(n)) ∈ Sn so that

lim
n→∞

1
n2 log2 Υw(b(n))(1) =

1
2

.

Explicit constructions of such sequences of layered permutations can be obtained
with geometric bi ∼ (1 − α)αi−1n for any α ∈ [1/

√
2, 1). See Figure 5 for an illustration.

Note, however that we do not know in the limit what compositions b of size n yield
the global maximum of Υw(b) over all layered permutations. For Schubert polynomials,
the analogous question was settled in [12] with an explicit limiting composition. Our
Theorem 4.1 establishes that an asymptotic analog of the Merzon–Smirnov conjecture
holds for the β = 1 Grothendieck polynomials. Bounds on the quantities vn(β) and
un(β) for general values of β can also be obtained (see [13, Section 6.5]).

Sketch of proof of Theorem 4.1. Let u ∈ Sk, w ∈ Sn. We have Υu×w(β) = Υu(β) ·
Υidk×w(β), where u × w is the block permutation. Let sk be the little Schröder numbers,
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which count paths from (0, 0) to (2k, 0) of steps (1, 1), (1,−1), (2, 0) and which do not
have a horizontal step on the x-axis. We have the following identity:

Theorem 4.2 ([11, Theorem 5.9]). For nonnegative integers k and n, we have

Υw0(k;n)(1) = G
β=1
w0(k;n)(1, . . . , 1) = 2−(k

2) det[sn−2+i+j]
k
i,j=1. (4.2)

Lemma 4.3. Let k ∈ (n/
√

2, n]. We have

log2 Υw0(k;n−k)(1) =
n2

2
− k2

2
− O(n), n → ∞. (4.3)

Proof of Lemma 4.3. By Lindstrom–Gessel–Viennot, the determinant (4.2) counts k-tuples
of nonintersecting Schöder paths staying above height 0 and starting from (−2i, 0) and
ending at (2(n − k + i − 1), 0), respectively, where i = 1, . . . , k. Denote this space of
configurations by Mk,n−k.

A well-known correspondence (e.g., see [6]) between domino tilings of the Aztec
diamond and nonintersecting paths allows to interpret

det[sn−k−2+i+j]
k
i,j=1

2(
n
2)

(4.4)

as a probability of a certain event in the uniformly random domino tiling of the Aztec
diamond Dn−1 of order n − 1. The ratio |Mk,n−k|/|Sn| given by (4.4) is equal to the
probability that the n − k paths in Sn \Mk,n−k are in their lowest possible configuration.

The model of uniformly random domino tilings of the Aztec diamond develops an
arctic circle [8]. In particular, the configuration outside of the circle inscribed in the
Aztec diamond (illustrated in Figure 5) is frozen (nonrandom). Qualitatively, by [2,
Proposition 13], this means that with probability 1 − e−O(n), the n − k paths in Sn \
Mk,n−k are indeed in their lowest possible configuration. Note that here we rely on the
assumption k > n/

√
2, which guarantees that the top of the n − k paths in Sn \Mk,n−k

does not reach the arctic circle. Therefore, we get desired asymptotics (4.3).

Let w0(k; n) := idk × w0(n) = (1, . . . , k, k + n, k + n − 1, . . . , k + 1) ∈ Sk+n. Us-

ing Lemma 4.3 we can estimate that if k > n/
√

2 then log2 Gw0(k;n)(1
n) =

n2

2
− k2

2
−O(n).

Via the multiplicativity property Gu×v(1n) = Gu(1|u|) ·Gid|u|×v(1n) we can then estimate
the values for a layered permutation recursively as

log2 Gw(...,b2,b1)
(1n) = log2 Gw(...,b3,b2)(1

n−b1) +
n2

2
− k2

1
2
− O(n),

where ki := n − b1 − · · · − bi and ki/ki−1 ∈ (1/
√

2, 1) and establish Theorem 4.1.
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