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Bijections for faces of braid-type arrangements
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Abstract. We establish a general bijective framework for encoding faces of some clas-
sical hyperplane arrangements. Precisely, we consider hyperplane arrangements in IR”
whose hyperplanes are all of the form {x; — x; = s} for some i,j € [n] and s € Z.
Such an arrangement A is strongly transitive if it satisfies the following condition: if
{xi—xj =s} ¢ Aand {x; —x; = t} ¢ A for some i,j,k € [n] and 5,t € N, then
{xi —xy = s+1t} ¢ A. For any strongly transitive arrangement .4, we establish a
bijection between the faces of A and some set of decorated plane trees.
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1 Introduction

In this extended abstract we establish bijective results about the faces of some classical
families of hyperplane arrangements. Specifically, we consider real hyperplane arrange-
ments made of a finite number of hyperplanes of the form

{(x1,. o xn) €R" | x; — xj =5}, (1.1)

withi,j € {1,...,n} and s € Z. We call them braid-type arrangements. From now on, we
make an abuse of notation and denote by {x; — x; = s} the hyperplane in (1.1).

Given a set of integers S C Z we define, for every dimension n > 0, the braid-type
arrangement A¢ C R" as follows:

At:= |J {xi—x=s}
1<i<j<n
SES

Classical examples include the braid, Catalan, Shi, semiorder, and Linial arrangements
represented in Figure 1, which correspond to S = {0}, {—1,0,1}, {0,1}, {—1,1}, and

{1} respectively.
There is an extensive literature on counting regions of braid-type arrangements, start-
ing with the work of Shi [13]. Seminal counting results were established by Stanley [15,
], Postnikov and Stanley [1”], and Athanasiadis [*]. Since then, the subject has become
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Figure 1: The braid, Catalan, Shi, semiorder, and Linial arrangements in dimension
n = 3 (seen from the direction (1,1,1)).

quite popular among combinatorialists, and many beautiful counting formulas and bi-
jections were discovered for various families of arrangements; see for instance [1, 4, 7, 5,
7 Yr 7y ]

By contrast, there is a paucity of results about lower dimensional faces in braid-type
arrangements. Notable exceptions are enumerative formulas by Athanasiadis [?] and
bijections by Levear [10] about the Catalan and Shi arrangements.

In the present abstract, we develop a general bijective framework for encoding the
faces of a large class of braid-type arrangements. Our framework applies to all strongly
transitive arrangements, which are the braid-type arrangements A satisfying the follow-
ing condition: if {x; —xj = s} ¢ A and {x; — x; = t} ¢ A for some distinct indices i, j, k
and s,t € IN, then {x; — x; = s +t} ¢ A. For any such arrangement we give an explicit
bijection between the set of faces of A and a set of trees. Our bijection coincides with
the one established by Levear [10] for the case of the Catalan and Shi arrangements, up
to minor changes in notation. Our bijective results for faces of braid-type arrangements
are an extension of a general bijective framework for regions of (transitive) arrangements
that we established in [0]. We actually use the results from [6] to establish those in the
present abstract.

The abstract is organized as follows. In Section 2 we set our notation, and recall some
necessary background from [6]. In Section 3 we state our main result, which gives a bi-
jection for faces of strongly transitive arrangements. In Section 4 we apply our bijection
to a few classes of strongly transitive arrangements. In particular we discuss a multivari-
ate generalization of the Catalan arrangement, a family of arrangements interpolating
between the Catalan and Shi arrangements, and symmetric arrangements such as the
semiorder arrangements. The proof of our main result is sketched in Section 5.

2 Notation and background

In this section we set our notation and recall some relevant results from [6].
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For a positive integer n, we define [n] := {1,2,...,n}, and we denote by &, the set
of permutations of [n]. For any integers m < n we define [m;n] :={k € Z | m < k < n}.
For a real hyperplane arrangement A, we denote by R(.A) the set of regions of A.

Definition 1. Let m,n € IN. The m-Catalan arrangement in dimension 7 is

An= |J {xi—xj=s} CR"
1<i<j<n
s€[—m;m|
We will now introduce a canonical way to label the hyperplanes in braid-type ar-
rangements.

Notation 2. For m,n € IN we define
Triplely, := {(i,j,s) | i,j € [n], s € [0;m] such that i # jand (s > 0ori > j)}.

Observe that each hyperplane of Aj, is of the form {x; — x; = s} for exactly one triple
(i,j,5) in Triple}, . For an arrangement A C AJ;, we define

Triplely (A) := {(i,,s) € Tripley, | {x; — xj = s} € A},

so that

A= U {xi —x; = s}.

(i,j,5)eTriplel (A)

Definition 3. An arrangement A C A is transitive if for all distinct indices i, ],k € [n] and
integers s, t > 0 such that (i,],s) and (j, k, t) are in Triple, the following holds:
if{xi—xj=sy & Aand {xj — xp =t} ¢ A, then {x; —xy =s+t} ¢ A

Definition 4. A (m,n)-tree is a rooted (m + 1)-ary tree with n nodes labeled with distinct

labels in [n] (the leaves have no labels). We denote by T,)! the set of all (m,n)-trees (there are
) ((mzl)”) of them).

For a tree T € T, we identify the nodes with their labels in [n] (so that the node set of T is
[n]). By definition, a node j € [n] of T has exactly m + 1 (ordered) children, which are denoted
by 0-child(j), 1-child(j), ..., m-child(j) respectively.

The node i € [n] is the s-cadet of the node j € [n] in T if i = s-child(j) and t-child(j) is a
leaf for all t € [s + 1;m]. In this case, we write i = s-cadet(j), and we call {i,j} a cadet-edge.

Definition 5. Let A C AJ}, be an arrangement. We define
Ta(A) :={T €T, | V(i j,s) € Triple, \ Tripley (A), i # s-cadet(j)}.

It was established in [6] that, for any transitive arrangement A, the regions of A are in
bijection with the trees in 71 (.A). In order to describe the bijection we need to introduce
a total order on the vertices of each tree in 7).
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Definition 6. For every vertex v of in a tree T, we consider the sequence vy, v1,...,Vx = 0
on the path of T from the root vy to the vertex v, and define pathy(v) := (s1,...,s;), where

k
v; = si-child(v;_1) for all i € [k]. We also define the drift of v as drift(v) := ) _s;.
i=1

Definition 7. Let T be a tree in T,}. We define a total order <1 on the vertices of T as follows.
Let v, w be distinct vertices of T. Let pathy(v) = (s1,...,sx) and pathp(w) = (t1,...,t;). Then
v <t w if either
* drifty(v) < driftp(w), or
e drifty(v) = drifty(w) and there exists j < k such that (s1,...,s;) = (t,...,t;) and
(j=korsj1 > tir)

Definition 8. Let A C A}, be an arrangement. For every tree T € Tn(A) we define the
polyhedron

¢A<T>:=(( N (A){xi—x]-<s})m(( REEEED)]

i,j,s)€Tripleqy i,j,s)eTripley (A)
i <7 s-child(j) i =t s-child(j)

The following result was proved in [6, Theorem 8.8].

Theorem 9 ([0]). If an arrangement A C A}, is transitive, then ® 4 is a bijection between the
set Th(A) of trees and the set R(.A) of regions of A.

3 Main results

In this section we state our main result, which is a bijection between the set of faces of
any “strongly transitive” arrangement and some set of marked trees.

Definition 10. An arrangement A C Al is strongly transitive if for all distinct indices
i,j,k € [n] and integers s, t > 0 the following holds:
if{xi—xj=s}y & Aand {xj —x, =t} ¢ A, then {x; —xy =s+1t} ¢ A

The only difference between transitive and strongly transitive arrangements is that
the conclusion {x; — x;y = s+ t} ¢ A needs to hold even in the cases (s = 0 and i < j) or
(t =0and j < k). In fact, an arrangement .4 C A}, is strongly transitive if and only if
n(A) is transitive for every permutation 77 € &,,.

Example 11. The (extended) Catalan, Shi and semiorder arrangements are strongly tran-
sitive. The Linial arrangement is transitive, but not strongly transitive. Any transitive
arrangement containing the braid arrangement is strongly transitive.

Let us state which arrangements of the form A% are strongly transitive (the proof is
omitted):
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Lemma 12. Let S C Z be a set of integers. The following are equivalent:
(i) A% is strongly transitive for every integer n > 0,
(i1) A% is strongly transitive for at least one integer n > 3,
(iii) for all integers s, t ¢ S, if st > Othens+t ¢ Sandif st <0thens—t,t —s ¢ S.

We will now define the trees in bijection with the faces of a strongly transitive ar-
rangement.

Definition 13. A marked (m, n)-tree is a pair (T, u), where T € T} is a (m,n)-tree and u
is a set of cadet-edges of T such that if an edge e € y is of the form e = {j,0-cadet(j)} then
j < 0-cadet(j). We refer to the edges in u as the marked edges.

We denote by T, the set of marked (m, n)-trees.

Note that the marked edges of a marked tree in 7, form a collection of vertex-disjoint

paths. Let (T,u) € T, be a marked (m,n)-tree. For nodes i,j € [n], we write i X j if
i =jori# jand all the edges on the path of T between i and j are marked. This is an
equivalence relation, and we call its equivalence classes the blocks of (T, u).

Definition 14. Let A C A", be an arrangement. A block B C [n] of a marked tree (T, 1) € T py
is called A-connected if the graph G with vertex set B and edge set

E={{ij}|ij€ Bsuch that {x; — xj = drift;(i) — drift;(j)} € A}

is connected. We say that the marked tree (T,u) is A-connected if every block of (T, ) is
A-connected.

We say that a marked tree (T, ) € T n, satisfies the A-cadet condition if every non-marked
cadet-edge e = {i,j} of (T, u), with i = s-cadet(j), satisfies (s = 0 and i < j) or (there exists
i K iand j Iy j such that the hyperplane {xy — xy = drifty(i') — drifty(j') } is in A).

We define To(A) as the set of marked trees in T . which are A-connected and satisfy the
A-cadet condition.

Definition 15. Let A C A?”,. We associate to each marked tree (T, ) in T (A) a polyhedron

Satu) = () n-xn=s))

{ij}en
i=s-child(j)
ﬂ( N {xi—xj<s}>ﬂ( N {xi—xj>s}>.
(i,j,5)ETripler, (A) (i,j,s) ETriplel (A)
i%j, i < s-child(j) il i1 s-child(j)

We are now ready to state our main result, which is illustrated in Figure 2.
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Figure 2: The bijection ® 4 between the faces of an arrangement .4 and the set 7 o, (A).

Theorem 16. If an arrangement A C A, is strongly transitive, then D 4 is a bijection between
the set T (A) of marked trees and the set F(A) of faces of A. The number of marked edges of
(T, u) is equal to the codimension of the corresponding face ® (T, ).

The special cases of Theorem 16 corresponding to A = AJ;, (the m-Catalan arrange-
ment) or A = A?_m Fm] (the m-Shi arrangement) give bijections which are the same as
that of Levear [10] (up to small differences of presentation). We discuss these special

cases, and some other examples, in the next section.
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4 Applications

In this section we apply Theorem 16 to several families of braid-type arrangements.

4.1 From the Catalan arrangement to the Shi arrangement, and back

Theorem 16 readily implies the following results of Levear [10] about the m-Catalan and
m-Shi arrangements.

Corollary 17 ([10]). Let m, n be positive integers. The faces (of codimension k) of the m-Catalan
arrangement A", are in bijection with the marked trees in T n, (having k marked edges).

Corollary 18 ([10]). Let m,n be positive integers. The faces (of codimension k) of the m-Shi
arrangement Shil;, = A’f_m F1m) BT€ in bijection with the set Sy, of marked trees (T, ) in T
(having k marked edges) such that if i = m-child(j) for some nodes i,j € [n] of T, then i < j.

It is clear that A}, and Shi},, are strongly transitive. We can therefore apply Theo-
rem 16, and we only need to check that 7, (A”%) = T, and T (Shi®,) = Sy.. These
proofs are rather straightforward. We will actually prove a more general result that
interpolates between the case of the Catalan arrangement and the case of the Shi ar-
rangement.

Observe that, for all m,n > 0, any arrangement A such that A} ; € A C Aj], is
strongly transitive. We now describe a family of arrangements .A which interpolates
between A _; and A}, and for which the set T (A) admits a simple description.

Let

Rui={(i,j) € [ | £/} and R :={(i,j) € [ | i < j}.

For a subset I C R, we define the arrangement

mi = Ap_1 U ( U {xi—x= m}>
(ij)€l
Note that A7 | = BZL@, Al = B}, r,, and Shij, = B}’;’R:.
We say that I C R, is an ideal if the following holds for all (4, ), (7/,j') € Ru:
if (i,j)isin I and i’ <iand j > j, then (7,j') isin I.
Note that @, R, and R, are ideals.

Theorem 19. Let m, n be positive integers. For any ideal I C Ry, the faces (of codimension k)
of the arrangement A = BB), | are in bijection, via the bijection D 4, with the set of marked trees
(T, 1) € T (with k marked edges) such that if i = m-child(j) for some nodes i,j € [n] of T,
then (i,j) is in I.
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Note that Theorem 19 generalizes both Corollary 17 (which corresponds to I = Ry)
and Corollary 18 (which corresponds to I = R;).

Proof. We apply Theorem 16 to the strongly transitive arrangement A = 5, |, and need

to check that 7, (A) is the set S of marked trees (T, ) in T, such that if i = m-child(j)
for some nodes i,j € [n] of T, then (i, ]) is in I. Before starting this proof let us observe
that for any marked tree (T, ) € T, and any nodes i,j such that i = s-cadet(j) the
hyperplane {x; — x; = driftr(i) — driftr(j)} = {x; —x; = s} is in A unless s = m and
(i) ¢ I.

Now we will determine under which conditions a marked tree (T, 1) € T o, is A-
connected. Let B be a block of (T, ), and let G be the graph with vertex set B and edge
set

E = {{i,j} | i,j € B such that {x; — x; = driftr (i) — drifty(j) } € A}.

Recall that B is of the form B = {iy,...,i;}, where for all k € [¢ — 1], i1 = si-cadet(iy)
for some s; < m. By the above observation, the edge {ik, ix,1} is in E whenever s, < m.
Hence the graph G is connected if and only if for all k € [¢ — 1] such that i, =
m-cadet(i;) there exist k' < k and k" > k+ 1 such that drifty(ip) = driftr(iy) and
drif’[T('ku) = driftT(ik+1) (so that driftr(igr) — drifty (i) = m) and (ik//, ir) € I (so that
{zku ir} € E). Moreover, drifty (i) = drifty(ix) and k' < k imply iy < iy (since (T, u) €
To) and similarly driftr(ixs) = driftr(ix1) and K’ > k+ 1 imply i > i 1. Hence,
there exists k' and k" satisfying the above conditions if and only if (ix,,i) € I (because
I is an ideal). This shows that a marked tree (T, u) € T is A-connected if and only if
(i,7) is in I for every marked edge {i,j} such that i = m-child(j).

A similar reasoning shows that (T, i) satisfies the A-cadet condition if and only if
(i,7) is in I for every non-marked edge {i,j} such that i = m-child(j). O

4.2 Multi-Catalan arrangements

Let n be a positive integer. Given a n-tuple of integers m = (my, ..., m,) € IN", we define
the m-Catalan arrangement as

-Am = U {x,- — x]- = S}.
1<i<j<n
s€[—m;mij]

Given a marked tree (T, i) € T n,, we define the m-reach of a node j € [n] of T as
rm(j) := max(my + drifty (k) — driftp(j) | k IS j and k ancestor of j).

It is easy to see that Ap is strongly transitive for all m € IN”, and that applying Theo-
rem 16 gives the following bijection.
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Proposition 20. Let n be a positive integer, let m = (mq, ..., my) € N", and let m = max(m; |
i € [n]). The faces of the m-Catalan arrangement A, are in bijection with the set of marked trees
(T, 1) € T oy such that for every node j € [n], the vertex s-child(j) is a leaf for all s > 7, (j).

4.3 Generating function for symmetric transitive arrangements

In this section we focus on symmetric braid-type arrangements, that is, braid-type ar-
rangements A such that 7(A) = A for all m € &,,. It is easy to see that the symmetric
braid-type arrangements are the arrangements of the form A for a set S C Z such that
S = —S. From Lemma 12, one gets that the strongly transitive symmetric arrangements
in dimension n > 3 are precisely the arrangements of the form A%, where the set S C Z
satisfies

S=-Sand Vs,t e N\S, s+t¢S. (4.1)

Given a finite set S, we define the face generating function of the arrangements A as

Fs(x,t) := Z ch,kt L

n=0k=0
where ¢, is the number of faces of codimension k of A%. Applying Theorem 16 gives
the following result for any finite set S C Z satisfying (4.1):

Fs(x,t) = Z ¥ ‘T_|'/
(T.)ET(S) .

where T (S) := U2, Tmm(.Ag), |T| is the number of nodes of the tree T, and |u| is the
number of marked edges. Using this expression one can establish the following result:

Theorem 21. Let S C Z be a finite set satisfying (4.1). The face generating function Fs(x, t)
is characterized by a finite equation, which is computable from S. This equation takes the form
P(Fs(x,t),e*,e*,t) = 0 for some (non-zero) polynomial P with coefficients in Q.

We omit the (non-trivial) proof of Theorem 21. Let us write down two cases explic-

itly: the case of m-Catalan arrangements for which a generating function equation was
established by Levear [10], and the case of the semiorder arrangement (which is new).

Proposition 22 ([10]). The generating function G = Fj_y,.,(x,t) counting the faces of the
m-Catalan arrangements is characterized by the following equation:

Xym+1

1— xXyl=x"

1
G=1+ ;Q(e’“ —1,F), where Q(X,Y) =
1-Y

Proposition 23. The generating function H = Fi_,..)\ f0y (X, t) counting the faces of the m-
extended semiorder arrangements is characterized by the following equation:

1

B 5 Ym+2 _ Y2m+2
H=1+1—-e*)H" + ?Q(ext —1,H), where Q(X,Y) = X?

1-Y — XY+ Xym+1’
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5 Proof of Theorem 16 (sketch)

In this section we sketch the proof Theorem 16. Roughly speaking, the proof consists

in seeing the faces of an arrangement A C Aj, as the regions of the restrictions of A to

each subspace in the intersection lattice, and applying Theorem 9 to these arrangements.
Recall that the intersection lattice of A is

L(A) = { (k]Hi

k
k>0,Hy,...,H € A such that ﬂH,- #@}.
i=1

i=1

For an affine space L € £(A) we want to identify the restriction A, of A to L with an
arrangement A; C A%, where d = dim(L).

If L is contained in a hyperplane of the form {x; — x; = s}, we write i L j. This is
an equivalence relation, and we denote by blocks(L) the set of equivalence classes. Let
{B1,...,Bs} = blocks(L). For all i € [n] we define dr (i) = max(x; — x; | j & i) for any
point (xy,...,x,) in L. Finally, we define the arrangement /TL C R? as follows:

A= | U {x—x=s-60) +6()}-

k,tc|d] i€By, jEBy, s€EZ
k#£¢ {xi—xj=s}cA

It is easy to check that the arrangements .4; and .,ZL are isomorphic, and that A C Azm,
where d = dim(L). A key observation (wWhose proof we omit) is the following.

Lemma 24. If A C A, is strongly transitive, then for any affine space L in L(A), the arrange-
ment Ay is strongly transitive.

The proof of Theorem 16 consists in establishing the commutative diagram of bijec-
tions represented in Figure 3, where F(.A) is the set of faces of A and

T(A) = {(LT) | LeL(A), TeTm ™" (A},
F(A) :={(L,R) | LeL(A), ReER(AL)}.
(T, 1) € T (A) P4 . Fe F(A)
bijection l"l bijection @T
<L, T) e T(A) T (L, ﬁ) e F(A)

Figure 3: Commutative diagram representing the proof of Theorem 16.
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We start by defining Dy T(A) —>~f (A) as the map which associates to each pair
(L, T) € T(A) the pair (L, ® 4 (T)) € F(A). By combining Lemma 24 with Theorem 9
from [0], we deduce that ® 4 is a bijection between the sets 7 (A) and F(A). It is also
clear that the sets /(.A) and F(A) are in bijection. It remains to describe the bijection I
between 7, (A) and 7 (A). We first need to encode the subspaces in £(.A).

Definition 25. Let A C A, let B C [n] be a set, and let § : [n] — IN be a map. The
pair (B,6) is called A-connected if the graph G with vertex set B and edge set E := {{i, ]} |
i,j € B, {xi —x; = (i) —4(j)} € A} is connected. We define P(.A) as the set of pairs
({B1,...,B4},0), where {By, ..., By} is a partition of [n] and 6 : [n] — IN is a map such that,
Vk € [d], min(6(i) | i € Bx) = 0and (B, 6) is A-connected.

Lemma 26. Let A C A". The lattice L(.A) is in bijection with P(A). The bijection A :
L(A) — P(A) associates to each affine subspace L € L(A) the pair A(L) = (blocks(L),p).

Given a marked tree (T, 1) € T (A), we consider the set partition {By,..., By} =
blocks(y) with the convention min(B;) < min(By) < --- < min(B;). We define a map
0y ¢ [n] = N by setting 6, (i) = max(drifty(i) — driftr(j) | j € Bx) for all i € By. By def-
inition, each block By is A-connected (see Definition 14), which is equivalent to the fact
that the pair (By, d,) is A-connected (see Definition 25). Thus, the pair ({B,...,Bs},6,)
is in P(A), and corresponds to a subspace L € L(.A) via the bijection A of Lemma 26.
Now consider the tree T obtained from T by

1. contracting all the marked edges: for all k € [d], the marked path of T correspond-

ing to By is replaced by a node of T labeled k,
2. adding leaves as right children of each node of T so as to get a total of mn + 1
children for each node.
We define I'(T, 1) := (L, T). This is illustrated in Figure 4.

789 10 11
200 3 2

Figure 4: The bijection I'.
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In order to conclude the proof of Theorem 16, one needs to check that Tisin 79, (AL)
(there is a technical subtlety there), and that any tree in 7,%,(A;) is obtained uniquely
in this manner. Lastly, one must show that the diagram in Figure 3 is commutative.
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