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Bijections for faces of braid-type arrangements
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Abstract. We establish a general bijective framework for encoding faces of some clas-
sical hyperplane arrangements. Precisely, we consider hyperplane arrangements in Rn

whose hyperplanes are all of the form {xi − xj = s} for some i, j ∈ [n] and s ∈ Z.
Such an arrangement A is strongly transitive if it satisfies the following condition: if
{xi − xj = s} /∈ A and {xj − xk = t} /∈ A for some i, j, k ∈ [n] and s, t ∈ N, then
{xi − xk = s + t} /∈ A. For any strongly transitive arrangement A, we establish a
bijection between the faces of A and some set of decorated plane trees.
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1 Introduction

In this extended abstract we establish bijective results about the faces of some classical
families of hyperplane arrangements. Specifically, we consider real hyperplane arrange-
ments made of a finite number of hyperplanes of the form

{(x1, . . . , xn) ∈ Rn | xi − xj = s}, (1.1)

with i, j ∈ {1, . . . , n} and s ∈ Z. We call them braid-type arrangements. From now on, we
make an abuse of notation and denote by {xi − xj = s} the hyperplane in (1.1).

Given a set of integers S ⊆ Z we define, for every dimension n > 0, the braid-type
arrangement An

S ⊂ Rn as follows:

An
S :=

⋃
1≤i<j≤n

s∈S

{xi − xj = s}.

Classical examples include the braid, Catalan, Shi, semiorder, and Linial arrangements
represented in Figure 1, which correspond to S = {0}, {−1, 0, 1}, {0, 1}, {−1, 1}, and
{1} respectively.

There is an extensive literature on counting regions of braid-type arrangements, start-
ing with the work of Shi [13]. Seminal counting results were established by Stanley [15,
14], Postnikov and Stanley [12], and Athanasiadis [3]. Since then, the subject has become
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Figure 1: The braid, Catalan, Shi, semiorder, and Linial arrangements in dimension
n = 3 (seen from the direction (1, 1, 1)).

quite popular among combinatorialists, and many beautiful counting formulas and bi-
jections were discovered for various families of arrangements; see for instance [1, 4, 2, 5,
7, 8, 9, 11].

By contrast, there is a paucity of results about lower dimensional faces in braid-type
arrangements. Notable exceptions are enumerative formulas by Athanasiadis [3] and
bijections by Levear [10] about the Catalan and Shi arrangements.

In the present abstract, we develop a general bijective framework for encoding the
faces of a large class of braid-type arrangements. Our framework applies to all strongly
transitive arrangements, which are the braid-type arrangements A satisfying the follow-
ing condition: if {xi − xj = s} /∈ A and {xj − xk = t} /∈ A for some distinct indices i, j, k
and s, t ∈ N, then {xi − xk = s + t} /∈ A. For any such arrangement we give an explicit
bijection between the set of faces of A and a set of trees. Our bijection coincides with
the one established by Levear [10] for the case of the Catalan and Shi arrangements, up
to minor changes in notation. Our bijective results for faces of braid-type arrangements
are an extension of a general bijective framework for regions of (transitive) arrangements
that we established in [6]. We actually use the results from [6] to establish those in the
present abstract.

The abstract is organized as follows. In Section 2 we set our notation, and recall some
necessary background from [6]. In Section 3 we state our main result, which gives a bi-
jection for faces of strongly transitive arrangements. In Section 4 we apply our bijection
to a few classes of strongly transitive arrangements. In particular we discuss a multivari-
ate generalization of the Catalan arrangement, a family of arrangements interpolating
between the Catalan and Shi arrangements, and symmetric arrangements such as the
semiorder arrangements. The proof of our main result is sketched in Section 5.

2 Notation and background

In this section we set our notation and recall some relevant results from [6].
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For a positive integer n, we define [n] := {1, 2, . . . , n}, and we denote by Sn the set
of permutations of [n]. For any integers m < n we define [m; n] := {k ∈ Z | m ≤ k ≤ n}.
For a real hyperplane arrangement A, we denote by R(A) the set of regions of A.

Definition 1. Let m, n ∈ N. The m-Catalan arrangement in dimension n is

An
m =

⋃
1≤i<j≤n
s∈[−m;m]

{xi − xj = s} ⊆ Rn.

We will now introduce a canonical way to label the hyperplanes in braid-type ar-
rangements.

Notation 2. For m, n ∈ N we define

Triplen
m := {(i, j, s) | i, j ∈ [n], s ∈ [0; m] such that i ̸= j and (s > 0 or i > j)}.

Observe that each hyperplane of An
m is of the form {xi − xj = s} for exactly one triple

(i, j, s) in Triplen
m. For an arrangement A ⊆ An

m we define

Triplen
m(A) := {(i, j, s) ∈ Triplen

m | {xi − xj = s} ∈ A},

so that
A =

⋃
(i,j,s)∈Triplen

m(A)

{xi − xj = s}.

Definition 3. An arrangement A ⊆ An
m is transitive if for all distinct indices i, j, k ∈ [n] and

integers s, t ≥ 0 such that (i, j, s) and (j, k, t) are in Triplen
m the following holds:

if {xi − xj = s} /∈ A and {xj − xk = t} /∈ A, then {xi − xk = s + t} /∈ A.

Definition 4. A (m, n)-tree is a rooted (m + 1)-ary tree with n nodes labeled with distinct
labels in [n] (the leaves have no labels). We denote by T n

m the set of all (m, n)-trees (there are
n!

mn+1(
(m+1)n

n ) of them).
For a tree T ∈ T n

m we identify the nodes with their labels in [n] (so that the node set of T is
[n]). By definition, a node j ∈ [n] of T has exactly m + 1 (ordered) children, which are denoted
by 0-child(j), 1-child(j), . . . , m-child(j) respectively.

The node i ∈ [n] is the s-cadet of the node j ∈ [n] in T if i = s-child(j) and t-child(j) is a
leaf for all t ∈ [s + 1; m]. In this case, we write i = s-cadet(j), and we call {i, j} a cadet-edge.

Definition 5. Let A ⊆ An
m be an arrangement. We define

T n
m(A) := {T ∈ T n

m | ∀(i, j, s) ∈ Triplen
m \Triplen

m(A), i ̸= s-cadet(j)}.

It was established in [6] that, for any transitive arrangement A, the regions of A are in
bijection with the trees in T n

m(A). In order to describe the bijection we need to introduce
a total order on the vertices of each tree in T n

m .
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Definition 6. For every vertex v of in a tree T, we consider the sequence v0, v1, . . . , vk = v
on the path of T from the root v0 to the vertex v, and define pathT(v) := (s1, . . . , sk), where

vi = si-child(vi−1) for all i ∈ [k]. We also define the drift of v as driftT(v) :=
k

∑
i=1

si.

Definition 7. Let T be a tree in T n
m . We define a total order ⪯T on the vertices of T as follows.

Let v, w be distinct vertices of T. Let pathT(v) = (s1, . . . , sk) and pathT(w) = (t1, . . . , tℓ). Then
v≺T w if either

• driftT(v) < driftT(w), or
• driftT(v) = driftT(w) and there exists j ≤ k such that (s1, . . . , sj) = (t1, . . . , tj) and

(j = k or sj+1 > tj+1).

Definition 8. Let A ⊆ An
m be an arrangement. For every tree T ∈ T n

m(A) we define the
polyhedron

ϕA(T) :=
( ⋂

(i,j,s)∈Triplen
m(A)

i ≺T s-child(j)

{xi − xj < s}
)
∩
( ⋂

(i,j,s)∈Triplen
m(A)

i ⪰T s-child(j)

{xi − xj > s}
)

.

The following result was proved in [6, Theorem 8.8].

Theorem 9 ([6]). If an arrangement A ⊆ An
m is transitive, then ΦA is a bijection between the

set T n
m(A) of trees and the set R(A) of regions of A.

3 Main results

In this section we state our main result, which is a bijection between the set of faces of
any “strongly transitive” arrangement and some set of marked trees.

Definition 10. An arrangement A ⊆ An
m is strongly transitive if for all distinct indices

i, j, k ∈ [n] and integers s, t ≥ 0 the following holds:
if {xi − xj = s} /∈ A and {xj − xk = t} /∈ A, then {xi − xk = s + t} /∈ A.

The only difference between transitive and strongly transitive arrangements is that
the conclusion {xi − xk = s + t} /∈ A needs to hold even in the cases (s = 0 and i < j) or
(t = 0 and j < k). In fact, an arrangement A ⊆ An

m is strongly transitive if and only if
π(A) is transitive for every permutation π ∈ Sn.

Example 11. The (extended) Catalan, Shi and semiorder arrangements are strongly tran-
sitive. The Linial arrangement is transitive, but not strongly transitive. Any transitive
arrangement containing the braid arrangement is strongly transitive.

Let us state which arrangements of the form An
S are strongly transitive (the proof is

omitted):
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Lemma 12. Let S ⊆ Z be a set of integers. The following are equivalent:
(i) An

S is strongly transitive for every integer n > 0,
(ii) An

S is strongly transitive for at least one integer n ≥ 3,
(iii) for all integers s, t /∈ S, if st ≥ 0 then s + t /∈ S and if st ≤ 0 then s − t, t − s /∈ S.

We will now define the trees in bijection with the faces of a strongly transitive ar-
rangement.

Definition 13. A marked (m, n)-tree is a pair (T, µ), where T ∈ T n
m is a (m, n)-tree and µ

is a set of cadet-edges of T such that if an edge e ∈ µ is of the form e = {j, 0-cadet(j)} then
j < 0-cadet(j). We refer to the edges in µ as the marked edges.

We denote by T n
m the set of marked (m, n)-trees.

Note that the marked edges of a marked tree in T n
m form a collection of vertex-disjoint

paths. Let (T, µ) ∈ T n
m be a marked (m, n)-tree. For nodes i, j ∈ [n], we write i

µ∼ j if
i = j or i ̸= j and all the edges on the path of T between i and j are marked. This is an
equivalence relation, and we call its equivalence classes the blocks of (T, µ).

Definition 14. Let A ⊆ An
m be an arrangement. A block B ⊆ [n] of a marked tree (T, µ) ∈ T n

m
is called A-connected if the graph G with vertex set B and edge set

E =
{
{i, j} | i, j ∈ B such that {xi − xj = driftT(i)− driftT(j)} ∈ A

}
is connected. We say that the marked tree (T, µ) is A-connected if every block of (T, µ) is
A-connected.

We say that a marked tree (T, µ) ∈ T n
m satisfies the A-cadet condition if every non-marked

cadet-edge e = {i, j} of (T, µ), with i = s-cadet(j), satisfies (s = 0 and i < j) or (there exists
i′

µ∼ i and j′
µ∼ j such that the hyperplane {xi′ − xj′ = driftT(i

′)− driftT(j′)} is in A).
We define T n

m(A) as the set of marked trees in T n
m which are A-connected and satisfy the

A-cadet condition.

Definition 15. Let A ⊆ An
m. We associate to each marked tree (T, µ) in T n

m(A) a polyhedron

ΦA(T, µ) :=
( ⋂

{i,j}∈µ
i=s-child(j)

{xi − xj = s}
)

∩
( ⋂

(i,j,s)∈Triplen
m(A)

i
µ
≁j, i ≺T s-child(j)

{xi − xj < s}
)
∩
( ⋂

(i,j,s)∈Triplen
m(A)

i
µ
≁j, i ⪰T s-child(j)

{xi − xj > s}
)

.

We are now ready to state our main result, which is illustrated in Figure 2.
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Figure 2: The bijection ΦA between the faces of an arrangement A and the set T n
m(A).

Theorem 16. If an arrangement A ⊆ An
m is strongly transitive, then ΦA is a bijection between

the set T n
m(A) of marked trees and the set F (A) of faces of A. The number of marked edges of

(T, µ) is equal to the codimension of the corresponding face ΦA(T, µ).

The special cases of Theorem 16 corresponding to A = An
m (the m-Catalan arrange-

ment) or A = An
[−m+1;m] (the m-Shi arrangement) give bijections which are the same as

that of Levear [10] (up to small differences of presentation). We discuss these special
cases, and some other examples, in the next section.
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4 Applications

In this section we apply Theorem 16 to several families of braid-type arrangements.

4.1 From the Catalan arrangement to the Shi arrangement, and back

Theorem 16 readily implies the following results of Levear [10] about the m-Catalan and
m-Shi arrangements.

Corollary 17 ([10]). Let m, n be positive integers. The faces (of codimension k) of the m-Catalan
arrangement An

m are in bijection with the marked trees in T n
m (having k marked edges).

Corollary 18 ([10]). Let m, n be positive integers. The faces (of codimension k) of the m-Shi
arrangement Shin

m = An
[−m+1;m] are in bijection with the set Sn

m of marked trees (T, µ) in T n
m

(having k marked edges) such that if i = m-child(j) for some nodes i, j ∈ [n] of T, then i < j.

It is clear that An
m and Shin

m are strongly transitive. We can therefore apply Theo-
rem 16, and we only need to check that T n

m(An
m) = T n

m and T n
m(Shin

m) = Sn
m. These

proofs are rather straightforward. We will actually prove a more general result that
interpolates between the case of the Catalan arrangement and the case of the Shi ar-
rangement.

Observe that, for all m, n > 0„ any arrangement A such that An
m−1 ⊆ A ⊆ An

m is
strongly transitive. We now describe a family of arrangements A which interpolates
between An

m−1 and An
m and for which the set T n

m(A) admits a simple description.
Let

Rn := {(i, j) ∈ [n]2 | i ̸= j} and R+
n := {(i, j) ∈ [n]2 | i < j}.

For a subset I ⊆ Rn we define the arrangement

Bn
m,I = An

m−1 ∪
( ⋃

(i,j)∈I

{xi − xj = m}
)

.

Note that An
m−1 = Bn

m,∅, An
m = Bn

m,Rn
, and Shin

m = Bn
m,R+

n
.

We say that I ⊆ Rn is an ideal if the following holds for all (i, j), (i′, j′) ∈ Rn:
if (i, j) is in I and i′ ≤ i and j′ ≥ j, then (i′, j′) is in I.

Note that ∅, Rn and R+
n are ideals.

Theorem 19. Let m, n be positive integers. For any ideal I ⊆ Rn, the faces (of codimension k)
of the arrangement A = Bn

m,I are in bijection, via the bijection ΦA, with the set of marked trees
(T, µ) ∈ T n

m (with k marked edges) such that if i = m-child(j) for some nodes i, j ∈ [n] of T,
then (i, j) is in I.
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Note that Theorem 19 generalizes both Corollary 17 (which corresponds to I = Rn)
and Corollary 18 (which corresponds to I = R+

n ).

Proof. We apply Theorem 16 to the strongly transitive arrangement A = Bn
m,I , and need

to check that T n
m(A) is the set S of marked trees (T, µ) in T n

m such that if i = m-child(j)
for some nodes i, j ∈ [n] of T, then (i, j) is in I. Before starting this proof, let us observe
that for any marked tree (T, µ) ∈ T n

m and any nodes i, j such that i = s-cadet(j) the
hyperplane {xi − xj = driftT(i)− driftT(j)} = {xi − xj = s} is in A unless s = m and
(i, j) /∈ I.

Now we will determine under which conditions a marked tree (T, µ) ∈ T n
m is A-

connected. Let B be a block of (T, µ), and let G be the graph with vertex set B and edge
set

E = {{i, j} | i, j ∈ B such that {xi − xj = driftT(i)− driftT(j)} ∈ A}.

Recall that B is of the form B = {i1, . . . , iℓ}, where for all k ∈ [ℓ− 1], ik+1 = sk-cadet(ik)
for some sk ≤ m. By the above observation, the edge {ik, ik+1} is in E whenever sk < m.
Hence the graph G is connected if and only if for all k ∈ [ℓ − 1] such that ik+1 =
m-cadet(ik) there exist k′ ≤ k and k′′ ≥ k + 1 such that driftT(ik′) = driftT(ik) and
driftT(ik′′) = driftT(ik+1) (so that driftT(ik′′)− driftT(ik′) = m) and (ik′′ , ik′) ∈ I (so that
{ik′′ , ik′} ∈ E). Moreover, driftT(ik′) = driftT(ik) and k′ ≤ k imply ik′ ≤ ik (since (T, µ) ∈
T n

m) and similarly driftT(ik′′) = driftT(ik+1) and k′′ ≥ k + 1 imply ik′′ ≥ ik+1. Hence,
there exists k′ and k′′ satisfying the above conditions if and only if (ik+1, ik) ∈ I (because
I is an ideal). This shows that a marked tree (T, µ) ∈ T n

m is A-connected if and only if
(i, j) is in I for every marked edge {i, j} such that i = m-child(j).

A similar reasoning shows that (T, µ) satisfies the A-cadet condition if and only if
(i, j) is in I for every non-marked edge {i, j} such that i = m-child(j).

4.2 Multi-Catalan arrangements

Let n be a positive integer. Given a n-tuple of integers m = (m1, . . . , mn) ∈ Nn, we define
the m-Catalan arrangement as

Am :=
⋃

1≤i<j≤n
s∈[−mi;mj]

{xi − xj = s}.

Given a marked tree (T, µ) ∈ T n
m, we define the m-reach of a node j ∈ [n] of T as

rm(j) := max(mk + driftT(k)− driftT(j) | k
µ∼ j and k ancestor of j).

It is easy to see that Am is strongly transitive for all m ∈ Nn, and that applying Theo-
rem 16 gives the following bijection.
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Proposition 20. Let n be a positive integer, let m = (m1, . . . , mn) ∈ Nn, and let m = max(mi |
i ∈ [n]). The faces of the m-Catalan arrangement Am are in bijection with the set of marked trees
(T, µ) ∈ T n

m such that for every node j ∈ [n], the vertex s-child(j) is a leaf for all s > rm(j).

4.3 Generating function for symmetric transitive arrangements

In this section we focus on symmetric braid-type arrangements, that is, braid-type ar-
rangements A such that π(A) = A for all π ∈ Sn. It is easy to see that the symmetric
braid-type arrangements are the arrangements of the form An

S for a set S ⊆ Z such that
S = −S. From Lemma 12, one gets that the strongly transitive symmetric arrangements
in dimension n ≥ 3 are precisely the arrangements of the form An

S, where the set S ⊆ Z

satisfies
S = −S and ∀s, t ∈ N \ S, s + t /∈ S. (4.1)

Given a finite set S, we define the face generating function of the arrangements An
S as

FS(x, t) :=
∞

∑
n=0

n

∑
k=0

cn,ktk xn

n!
,

where cn,k is the number of faces of codimension k of An
S. Applying Theorem 16 gives

the following result for any finite set S ⊆ Z satisfying (4.1):

FS(x, t) = ∑
(T,µ)∈T (S)

t|µ|
x|T|

|T|! ,

where T (S) :=
⋃∞

n=0 T
n
m(An

S), |T| is the number of nodes of the tree T, and |µ| is the
number of marked edges. Using this expression one can establish the following result:

Theorem 21. Let S ⊂ Z be a finite set satisfying (4.1). The face generating function FS(x, t)
is characterized by a finite equation, which is computable from S. This equation takes the form
P(FS(x, t), ext, ex, t) = 0 for some (non-zero) polynomial P with coefficients in Q.

We omit the (non-trivial) proof of Theorem 21. Let us write down two cases explic-
itly: the case of m-Catalan arrangements for which a generating function equation was
established by Levear [10], and the case of the semiorder arrangement (which is new).

Proposition 22 ([10]). The generating function G ≡ F[−m;m](x, t) counting the faces of the
m-Catalan arrangements is characterized by the following equation:

G = 1 +
1
t

Ω(ext − 1, F), where Ω(X, Y) =
XYm+1

1 − XY 1−Ym

1−Y
.

Proposition 23. The generating function H ≡ F[−m;m]\{0}(x, t) counting the faces of the m-
extended semiorder arrangements is characterized by the following equation:

H = 1 + (1 − e−x)Hm+1 +
1
t

Ω̃(ext − 1, H), where Ω̃(X, Y) = X2 Ym+2 − Y2m+2

1 − Y − XY + XYm+1 .
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5 Proof of Theorem 16 (sketch)

In this section we sketch the proof Theorem 16. Roughly speaking, the proof consists
in seeing the faces of an arrangement A ⊆ An

m as the regions of the restrictions of A to
each subspace in the intersection lattice, and applying Theorem 9 to these arrangements.

Recall that the intersection lattice of A is

L(A) :=
{ k⋂

i=1

Hi

∣∣∣∣ k ≥ 0, H1, . . . , Hk ∈ A such that
k⋂

i=1

Hi ̸= ∅
}

.

For an affine space L ∈ L(A) we want to identify the restriction AL of A to L with an
arrangement ÃL ⊆ Ad

mn, where d = dim(L).

If L is contained in a hyperplane of the form {xi − xj = s}, we write i L∼ j. This is
an equivalence relation, and we denote by blocks(L) the set of equivalence classes. Let

{B1, . . . , Bd} = blocks(L). For all i ∈ [n] we define δL(i) = max(xi − xj | j L∼ i) for any
point (x1, . . . , xn) in L. Finally, we define the arrangement ÃL ⊆ Rd as follows:

ÃL :=
⋃

k,ℓ∈[d]
k ̸=ℓ

⋃
i∈Bk, j∈Bℓ, s∈Z

{xi−xj=s}∈A

{xk − xℓ = s − δL(i) + δL(j)}.

It is easy to check that the arrangements AL and ÃL are isomorphic, and that ÃL ⊆ Ad
mn,

where d = dim(L). A key observation (whose proof we omit) is the following.

Lemma 24. If A ⊆ An
∞ is strongly transitive, then for any affine space L in L(A), the arrange-

ment ÃL is strongly transitive.

The proof of Theorem 16 consists in establishing the commutative diagram of bijec-
tions represented in Figure 3, where F (A) is the set of faces of A and

T̃ (A) := {(L, T̃) | L∈L(A), T̃∈T dim(L)
mn (ÃL)},

F̃ (A) := {(L, R̃) | L∈L(A), R̃∈R(ÃL)}.

(T, µ) ∈ T n
m(A) F ∈ F (A)

(
L, T̃

)
∈ T̃ (A)

(
L, R̃

)
∈ F̃ (A)

bijection Γ

ΦA

bijection Φ̃A

bijection Θ

Figure 3: Commutative diagram representing the proof of Theorem 16.
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We start by defining Φ̃A : T̃ (A) → F̃ (A) as the map which associates to each pair
(L, T̃) ∈ T̃ (A) the pair (L, ΦÃL

(T)) ∈ F̃ (A). By combining Lemma 24 with Theorem 9

from [6], we deduce that Φ̃A is a bijection between the sets T̃ (A) and F̃ (A). It is also
clear that the sets F̃ (A) and F (A) are in bijection. It remains to describe the bijection Γ
between T n

m(A) and T̃ (A). We first need to encode the subspaces in L(A).

Definition 25. Let A ⊆ An
m, let B ⊆ [n] be a set, and let δ : [n] → N be a map. The

pair (B, δ) is called A-connected if the graph G with vertex set B and edge set E := {{i, j} |
i, j ∈ B, {xi − xj = δ(i) − δ(j)} ∈ A} is connected. We define P(A) as the set of pairs
({B1, . . . , Bd}, δ), where {B1, . . . , Bd} is a partition of [n] and δ : [n] → N is a map such that,
∀k ∈ [d], min(δ(i) | i ∈ Bk) = 0 and (Bk, δ) is A-connected.

Lemma 26. Let A ⊆ An
m. The lattice L(A) is in bijection with P(A). The bijection Λ :

L(A) → P(A) associates to each affine subspace L ∈ L(A) the pair Λ(L) = (blocks(L), δL).

Given a marked tree (T, µ) ∈ T n
m(A), we consider the set partition {B1, . . . , Bd} =

blocks(µ) with the convention min(B1) < min(B2) < · · · < min(Bd). We define a map
δµ : [n] → N by setting δµ(i) = max(driftT(i)− driftT(j) | j ∈ Bk) for all i ∈ Bk. By def-
inition, each block Bk is A-connected (see Definition 14), which is equivalent to the fact
that the pair (Bk, δµ) is A-connected (see Definition 25). Thus, the pair ({B1, . . . , Bd}, δµ)
is in P(A), and corresponds to a subspace L ∈ L(A) via the bijection Λ of Lemma 26.
Now consider the tree T̃ obtained from T by

1. contracting all the marked edges: for all k ∈ [d], the marked path of T correspond-
ing to Bk is replaced by a node of T̃ labeled k,

2. adding leaves as right children of each node of T̃ so as to get a total of mn + 1
children for each node.

We define Γ(T, µ) := (L, T̃). This is illustrated in Figure 4.
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2

1
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11

9

10

(T, µ) ∈ T 11
3

block(µ)={{1, 9, 10}, {2, 7, 11}, {3, 5}, {4, 8}, {6}}
i 1 2 3 4 5 6 7 8 9 10 11

δµ(i) 1 0 0 0 2 0 2 0 0 3 2

. . .

. . .

. . .

. . . . . .

3

5
1 4

2

T̃

44

Figure 4: The bijection Γ.
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In order to conclude the proof of Theorem 16, one needs to check that T̃ is in T d
mn(ÃL)

(there is a technical subtlety there), and that any tree in T d
mn(ÃL) is obtained uniquely

in this manner. Lastly, one must show that the diagram in Figure 3 is commutative.
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