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Abstract. We obtain bivariate asymptotics for the number of (unicellular) combina-
torial maps (a model of discrete surfaces) as both the size and the genus grow. This
work is related to two research topics that have been very active recently: multivariate
asymptotics and large genus geometry. Our method consists in studying a linear recur-
rence for these numbers, and in fact it can be applied to many other linear recurrences.
We discuss briefly the generality of our method and future research directions.
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1 Introduction

This paper deals with multivariate asymptotics and large genus geometry, two recent topics
that received a lot of traction in the past 15 years [1, 2, 5, 8, 18].

Asymptotic enumeration is one of the main branches of combinatorics, and it finds
many applications; see, e.g., [11]. The univariate case (when one parameter tends to
infinity) has been studied extensively and many general methods have been developed
to tackle it, but the multivariate case is notoriously much harder. The main modern ap-
proach to this topic is Analytic Combinatorics in Several Variables (ACSV) [18]. However,
the ACSV theory mostly only applies to rational and algebraic generating functions.
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Figure 1: A unicellular map of genus 1 with 3 edges.

Combinatorial maps can be seen as a model of discrete surfaces or, alternatively,
graphs on surfaces. Like other models of surfaces, there has been a growing interest
recently in understanding their large genus geometry (see, e.g., [5, 8]), and it turns out
that asymptotic enumeration plays a crucial role in this study1, for instance [8] crucially
relies on the asymptotics proven in [1].

In this paper, we compute the asymptotic number of unicellular maps in terms of
two parameters (size and genus) by analyzing a linear bivariate recurrence satisfied by
these numbers. Our method relies on two main ingredients: an asymptotic guess and
check approach, and modelling the recurrence by a random walk. In Section 3 we give an
informal overview of our approach, and in Section 4 we present the main ingredients of
the proof.

Although we are presenting one particular case, our method should apply more
generally, as it only uses the recurrence and not the combinatorics of the model. In
Section 5 we will discuss further applications and research directions. In particular, we
explain how this method should apply to a class of bivariate sequences that are not (yet)
tackled by the ACSV approach, as well as other large genus asymptotics problems.

2 Main result on large genus unicellular maps

A unicellular map with n edges and genus g is the combinatorial data of a 2n-gon whose
sides are identified two by two to form a compact, connected, oriented surface of genus g,
along with an additional distinguished oriented edge called the root; see Figure 1. Note
that unicellular maps of genus 0 are rooted plane trees.

Let E(n, g) be the number of unicellular maps with n edges and genus g. They satisfy
the Harer–Zagier recurrence formula; see [16, page 460]:

(n + 1)E(n, g) = 2(2n − 1)E(n − 1, g) + (n − 1)(2n − 1)(2n − 3)E(n − 2, g − 1), (2.1)

with boundary conditions

E(0, 0) = 1 and E(n, g) = 0 if g < 0 or n < 2g. (2.2)
1This is due to the simple reason that probabilities and expectations are expressed in terms of ratios of

enumerative quantities.
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Figure 2: Plots of λ, f , and J with respect to θ. Note that for θ → 0+ it holds that
λ and f tend to 1/4 and 2 log(2) ≈ 1.39, while for θ → 1/2− they tend to 0 and
log(2)− 1 ≈ −0.3, respectively. The function J tends to +∞ for both these limits.

Theorem 2.1 (Main result on large genus unicellular maps). Given a sequence2 g ≡ gn

such that n−2g
log n → ∞ as n → ∞, the following asymptotics hold:

E(n, g) ∼ 1
2
√

π

√
g(g/e)g

g!
n2g−2en f ( g

n ) J
( g

n

)
, (2.3)

with f and J defined as follows (see Figure 2): For every θ ∈ [0, 1/2], let λ ≡ λ(θ) ∈ [0, 1/4]
be the unique value satisfying

θ =
1
2
−

λ log
(

1+
√

1−4λ
1−

√
1−4λ

)
√

1 − 4λ
.

Then we define

f (θ) = −θ log(1 − 4λ)− (1 − 2θ) log(λ) + 2(log(2)− 1)θ,

J(θ) =

√
2

λ(1 − 2θ − 4λ + 4θλ)
.

Remark 2.2 (Number of vertices). For unicellular maps, Euler’s formula states that the
number of vertices v ≡ vn is given by v = n + 1 − 2g. Therefore, the range of our main
theorem is equivalent to v

log n → ∞.

Remark 2.3 (Genus zero). For g = 0, one needs to take the continuous limit g → 0 in
the right-hand side of (2.3). This gives E(n, 0) ∼ 4n

n3/2
√

π
, which is consistent with the

asymptotics of the Catalan number 1
n+1(

2n
n ) that is the closed-form solution of E(n, 0)

(unicellular maps of genus 0).
2We will use the notation g ≡ gn to denote the omission of the dependency of g on n.
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Theorem 2.1 has already been proved for g ∈ [εn, (1/2− ε)n] [2] and g = O(n1/3) [7],
but both works rely heavily on the combinatorics of the model, whereas in this work, we
only use the Harer–Zagier recurrence formula (2.1) with the initial conditions (2.2), and
we can forget everything about where the numbers E(n, g) come from.

Remark 2.4. In this extended abstract, we focus on the regime n − 2g ≫ log n. In
Section 5.1 we discuss the necessary changes for the regime(s) n − 2g = O(log n).

3 Informal proof ideas: asymptotic guess and check

This section is written in an informal tone. The idea is to give the main ingredients of the
proof, and how to come up with them. In particular, we explain our heuristics for guess-
ing the asymptotic formula. The goal is to provide a sort of recipe that one can apply
to find bivariate asymptotics if given a recurrence similar to (2.1) with initial conditions
but no other information (we discuss the generality of our approach in Section 5.3).

If we were able to guess explicit formulas Ω(n, g) that satisfied the same recur-
rence (2.1) as the numbers E(n, g), such that Ω(0, 0) = E(0, 0), then we would have
E(n, g) = Ω(n, g) for all n and g, and we would have an explicit formula for all num-
bers E(n, g). This is of course not possible as it stands, but we will use an “asymptotic
version” of this approach that we describe now.

Goal: Find explicit numbers Ω(n, g) satisfying

1. Asymptotic initial condition (for n → ∞):

Ω(n, 0) ∼ E(n, 0)

2. Asymptotic recurrence (with a well-chosen definition of “≈”):

(n + 1)Ω(n, g) ≈ 2(2n − 1)Ω(n − 1, g) + (n − 1)(2n − 1)(2n − 3)Ω(n − 2, g − 1)

3.1 Heuristic guessing

We discuss now how we guess a bivariate asymptotic form Ω(n, g) for E(n, g), as our
proof will then revolve around the analysis of the ratios E(n, g)/Ω(n, g). First we use the
recurrence to compute the exact values E(n, g) for n ≤ 1000. Then, using standard, uni-
variate empirical analysis (see [15] and references therein), we derive precise asymptotic
estimates for subsequences, e.g.,

E(3g, g) ∼ c1g2g−2µ
g
1 and E(4g, g) ∼ c2g2g−2µ

g
2 ,
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with constants c1 ≈ 0.042124 and c2 ≈ 0.033183, and growth rates µ1 ≈ 117.923 and
µ2 ≈ 1633.26. Analysing E(n, θn) for different fixed, rational values of θ yields similar
results, which leads us to predict that

E(n, θn) ∼ n2θn−2en f (θ) J (θ) ,

for some functions f and J. The next step is to guess the function f . To do this, we
substitute the approximate expression above for E into (2.1) with g = θn, divide by the
left-hand side, and then take the limit n → ∞. This yields the differential equation

1 = 4e−2θ− f (θ)+θ f ′(θ) + 4e−4θ−2 f (θ)+2θ f ′(θ)− f ′(θ),

which can be exactly solved to give our expression for f (θ). To estimate J(θ) we again
substitute our approximate expression for E into (2.1), but this time we analyse the n−1

term in the resulting equation. Doing so yields the equation

J′(θ)
J(θ)

=
4κλ(θ)− 2κ + 6λ(θ)− 4
4θλ(θ)− 2θ − 4λ(θ) + 1

− 4θλ(θ)

(4θλ(θ)− 2θ − 4λ(θ) + 1)2 + f ′(θ) + 2,

which can be solved up to a constant term. Finally, we multiply the expression by
1

2
√

π

√
g(g/e)g

g! so that it holds for fixed g, which gives our estimate (2.3). One can check
that this is precisely consistent with our asymptotic estimates of E(3g, g) and E(4g, g).

3.2 Modeling by random walks

We will now present our random walk method. Iterating the Harer–Zagier recurrence
formula, we get

E(n, g) =
2(2n − 1)

n + 1
E(n − 1, g) +

(n − 1)(2n − 1)(2n − 3)
n + 1

E(n − 2, g − 1)

= ∑
p∈paths

(n,g)→(0,0)

∏
step∈p

weight(step), (3.1)

where the sum spans over all paths from (n, g) to (0, 0) with steps (−1, 0) and (−2,−1).
Therein, the weight of a path is the product of the weights of its steps, and the space-
dependent weights of the steps are defined as follows:

step (n, g) → (n − 1, g) has weight α =
2(2n − 1)

n + 1
,

step (n, g) → (n − 2, g − 1) has weight β =
(n − 1)(2n − 1)(2n − 3)

n + 1
.
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Unfortunately, it is not immediately clear how to determine the asymptotics from this
weighted walk model either. To facilitate this task, we repeat the analysis above this time
on the ratios E(n,g)

Ω(n,g) , where Ω(n, g) is our explicit asymptotic approximation for E(n, g).

Then the recursion (2.1) for E(n, g) turns into a recursion for E(n,g)
Ω(n,g) , which corresponds

to a new weighted walk model with the same steps but the new weights

α =
2(2n − 1)

n + 1
· Ω(n − 1, g)

Ω(n, g)
and β =

(n − 1)(2n − 1)(2n − 3)
n + 1

· Ω(n − 2, g − 1)
Ω(n, g)

.

The advantage of this new model is that these weights sum to approximately 1, so we
have approximately a classical random walk model. The key observation now is that the
ratio E(n,g)

Ω(n,g) interpreted as in (3.1) is approximately the probability that a walk defined

by this model ends at (0, 0), which is approximately 1. In order to prove E(n,g)
Ω(n,g) ∼ 1, we

just need to be precise about what we mean by “approximately” in each case.

4 Elements of the proof

In this section, we sketch the proof of our main theorem. We write it in a concise
way and omit some details, but all the main parts are given, except for the proofs of
Proposition 4.1 and Properties (4.5), (4.6), and (4.7). These involve a careful analysis of
the asymptotics of Ω(n, g) (especially in the regimes g/n → 0 and g/n → 1/2), which
is rather technical but only involves explicit functions.

4.1 Setup: the numbers Ω(n, g)

For all integers n ≥ 0 and g ≤ (n − 1)/2 we define

Ω(n, g) :=
1

2
√

π

√
g(g/e)g

g!
n2g−2en f ( g

n ) J
( g

n

)
K(n − 2g) with (4.1)

K(x) :=

√
2π xx+1

ex Γ(x + 3/2)

where f and J are the same as in Theorem 2.1 (recall Remark 2.3 for g = 0). Note that
K(x) → 1 as x → ∞. Now, define

Q(n, g) :=
E(n, g)
Ω(n, g)

,

α(n, g) :=
2(2n − 1)

n + 1
· Ω(n − 1, g)

Ω(n, g)
,

β(n, g) :=
(n − 1)(2n − 1)(2n − 3)

n + 1
· Ω(n − 2, g − 1)

Ω(n, g)
.
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Then the Harer–Zagier recursion (2.1) can be rewritten as

Q(n, g) = α(n, g)Q(n − 1, g) + β(n, g)Q(n − 2, g − 1), (4.2)

and Theorem 2.1 is equivalent to showing that, for n → ∞ and n − 2g ≫ log n, we have
Q(n, g) ∼ 1. From the Harer–Zagier recursion (2.1) we directly deduce

E(n, 0) =
1

n + 1

(
2n
n

)
and E(2n + 1, n) ∼ 2

√
2
(

4n
e

)2n
log(n).

Of course, the formula for E(n, 0) was already known (see Remark 2.3). In the words of
Section 3, the asymptotic initial condition is easily checked by combining this expression
for E(n, 0) with (4.1):

Q(n, 0) → 1 as n → ∞. (4.3)

Similarly we have the following useful convergence result that we will need later:

Q(2n + 1, n) ∼ 3π

2
√

2
log(n)−1/2 → 0 as n → ∞. (4.4)

The crucial result is the asymptotic recurrence:

Proposition 4.1. As n → ∞, uniformly in 0 < g < (n − 1)/2,

α(n, g) + β(n, g) = 1 + O
(
(n − g)−1 log−2(n − g)

)
.

The key property is that the error term is summable, and this is why we had to add
the seemingly useless factor K(n − 2g) in the definition of Ω(n, g). Note that Proposi-
tion 4.1 doesn’t hold in the “extreme cases” g = 0, n = 2g, and n = 2g + 1.

4.2 Setup: the random walk

Given n, g we define the random walk (Nk, Gk)k≥0 as follows:

• (N0, G0) = (n, g)

• The walk is stopped as soon as Nk = 2Gk − 1 or Gk = 0. In other words, we stop
once Proposition 4.1 no longer holds. We call τ = τ(n, g) the stopping time.

• At step 0 ≤ k < τ, we have the following transitions3:

(Nk+1, Gk+1) = (Nk − 1, Gk) with probability
α(Nk, Gk)

α(Nk, Gk) + β(Nk, Gk)
,

(Nk+1, Gk+1) = (Nk − 2, Gk − 1) with probability
β(Nk, Gk)

α(Nk, Gk) + β(Nk, Gk)
.

3The transitions have independent sources of randomness for each step.
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Notice that Mk := Nk − Gk > 0 is a deterministic quantity, indeed Mk = M0 − k =
n − g − k. This fact, along with (4.2) and Proposition 4.1 shows that Q(Nk, Gk) does not
change much in expected value. To make this precise, we define the error terms

r+(k) :=
∞

∏
j=k+1

max({α(n, g) + β(n, g) : n − g = j, 0 < g < (n − 1)/2}),

r−(k) :=
∞

∏
j=k+1

min({α(n, g) + β(n, g) : n − g = j, 0 < g < (n − 1)/2}),

which due to Proposition 4.1 satisfy r−(k), r+(k) ∈ (0, ∞) and r−(k), r+(k) → 1 as k → ∞.
Moreover, we have the following

Proposition 4.2 (Conserved quantity). Let Qk := Q(Nk, Gk), then

E(r−(Mτ)Qτ) ≤ Q0 ≤ E(r+(Mτ)Qτ).

4.3 Behaviour of the walk and asymptotics

In this section, we show that, with high probability, the random walk will hit the g = 0
axis, far away from the origin.

Proposition 4.3. For any fixed L > 0, we have, as n → ∞,

P(Gτ = 0 and Nτ > L) = 1 − o(1).

This immediately implies our main result:

Proof of Theorem 2.1 assuming Proposition 4.3. By (4.3) and (4.4), we can bound Q(n, 0) and
Q(2n + 1, n) by a constant C for all n, and therefore Qτ ≤ C deterministically. Hence, by
Proposition 4.3, it holds that

E(r±(Mτ)Qτ) = E(r±(Mτ)Qτ | Gτ = 0 and Nτ > L) + o(1).

Hence, by Proposition 4.2, we have

Q(n, g) = Q0 ≤ E(r+(Mτ)Qτ) ≤ max
N>L

(r+(N)Q(N, 0)) + o(1).

Note that this holds for any L, and by (4.3) we have r+(N)Q(N, 0) → 1 as N → ∞.
Moreover, we have a similar lower bound on Q(n, g) using r−(N)Q(N, 0). Combining
these facts yields Q(n, g) = 1 + o(1), which completes the proof.

It remains to show Proposition 4.3. For that, we introduce another conserved quan-
tity:

s(n, g) :=
Ω(n, g − 1)

Ω(n, g)
with s(n, 0) = 0.
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Lemma 4.4 (Conserved quantity, bis). Let Sk := s(Nk, Gk), then

E(Sτ−1) = O (S0) .

Proof. We immediately have the exact equality

α(n, g)s(n − 1, g) + β(n, g)s(n − 2, g − 1)
s(n, g)

= α(n, g − 1) + β(n, g − 1),

and the proof is similar to that of Proposition 4.2, noting that there is a uniform bound
on the error terms r+ and r−.

Finally, we need the following properties of s(n, g), which follow from the definitions
by some involved calculations:

There exists a constant c > 0 such that s(2g + 2, g) > c for all g ≥ 1; (4.5)
s(n, 1) > 0 for all n ≥ 1; (4.6)
s(n, g) → 0 as n → ∞ with n − 2g ≫ log n. (4.7)

We can finally prove the main result of this section

Proof of Proposition 4.3. By Lemma 4.4 and (4.7), one has, as n → ∞ with n − 2g ≫ log n

P(Nτ = 2Gτ + 1)E(Sτ−1 | Nτ = 2Gτ + 1) = O (S0) = o(1).

But E(Sτ−1 | Nτ = 2Gτ + 1) = E(s(2Gτ + 2, Gτ) | Nτ = 2Gτ + 1) > c > 0 by (4.5), hence

P(Nτ = 2Gτ + 1) = o(1). (4.8)

Now, fix a constant L. By the same argument

P(Nτ ≤ L and Gτ = 0)E(Sτ−1 | Nτ ≤ L and Gτ = 0) = o(1).

But E(Sτ−1 | Nτ ≤ L and Gτ = 0) ≥ min1≤j≤L+1 s(j, 1) > 0 by (4.6), hence

P(Nτ ≤ L and Gτ = 0) = o(1). (4.9)

Equations (4.8) and (4.9) imply the result.

5 Discussion

5.1 Other regimes

In this extended abstract, we presented the regime n − 2g ≫ log n, the other regimes
(i.e., when n − 2g = O(log n)) will be tackled in the full version. The strategy for the
regime n − 2g = o(log n) is similar: a random walk method (with a slightly different
definition of Ω(n, g)), that this time hits the n = 2g axis almost surely. Finally, for the
regime n − 2g = Θ(log n), we can use standard saddle point asymptotic methods (as
done for instance in [13]) using either an explicit expression for the generating series, or
a more general results on linear differential equations (see [11, Theorem VIII.4]).
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5.2 Other works about enumeration and random walks

Several other works4 study links between recurrences, random walks, and enumeration:

• In [10] and later works, the first, second, and last author studied the asymptotic
enumeration of a family of so-called compacted trees using a bivariate recurrence,
also interpreted as space-dependent weighted walks as in this work. However, the
walk there may leave the boundary, and the asymptotic initial condition there was
unknown. Thus, no asymptotic equality but a Θ-result was given there, where a
stretched exponential term appeared. The same method was later applied to solve
the asymptotic enumeration of families of minimal DFAs, Young tableaux [3], and
phylogenetic networks [12], always showing similar behaviour.

• In [1] and two other works, large genus asymptotics of intersection numbers (a ge-
ometric quantity of interest) are obtained by “comparing the coefficients in [some
recursive] relations with the jump probabilities of a certain asymmetric simple ran-
dom walk”;

• In [6], the authors study the typical path of the random walk defined by well-
known linear recurrences, such as Pascal’s triangle, and prove a scaling limit.

As far as we understand, each of these three works (and the present one) studies a
different setting. It is tempting (and rather ambitious) to ask for a general framework for
“asymptotics via random walks”. We conclude by stating how far we think our method
applies, and the next steps we wish to take in this research programme.

5.3 Generality of the method

In this paper, we presented bivariate asymptotics in one concrete case, but our method
should apply to a larger class of recurrences associated to bivariate generating functions
satisfying a linear ODE. This is in contrast with the ACSV approach, which currently
only applies to a restricted class of algebraic generating functions. More precisely, our
approach could work for any numbers E(n, k) with boundary conditions

E(0, 0) = 1 and E(n, k) = 0 if n < 0 or k < 0,

which satisfy a recurrence of the type

A(n)E(n, k) =
C

∑
i=1

D

∑
j=0

Pi,j(n)E(n − i, k − j), (5.1)

4This list is most probably not exhaustive.
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where C and D are nonnegative integers, while A and the Pi,j’s are polynomials. As long
as E(n, θn) behaves like ncθn+d exp(n f (θ))J(θ) for some c, d ∈ R and some functions
f (θ), J(θ), Equation (5.1) gives a differential equation for f (θ) as in Section 3, whose
solution gives an estimate of E(n, k). Then a differential equation for J(θ) could be
obtained using the subdominant term as in our case. Proving the accuracy of such an
estimate with our random walk method then depends primarily on the existence of a
result analogous to Proposition 4.1. In principal this should not be a problem, as such a
result will necessarily hold if the asymptotic estimate is sufficiently precise.

In particular, we are looking into applying our method in other contexts where simi-
lar bivariate recurrences arise: to estimate the probability that, given n random points in
a triangle, k of them lie on the convex hull (Anna Gusakova, private communication), or
to estimate the probability that, in a model of colliding bullets, k out of n survive [4].

5.4 Outlook

Our next goal is to go beyond linear recurrences. In fact several combinatorial/geometric
families of importance (maps, Hurwitz numbers, constellations, etc.) satisfy quadratic
recurrences [9, 14] coming from integrable systems such as the KP hierarchy. We are
working on extending our methods to obtain large genus asymptotics for these families.

In another direction, we have been made aware of a problem inspired by population
genetics which models the probability of extinction of a species by a random walk in 2D
with weighted steps [17]. Our method allows us to conjecture the bivariate asymptotics
for these probabilities, and we are trying to prove this conjecture.

Finally, we are working on a variation of our method that applies to recurrences with
a bouncy wall, where the sum in (5.1) also allows j < 0 as in [10], meaning that the walks
analogous to those defined in Section 4.2 can leave the x-axis. In this case we expect to
be able to determine the asymptotics up to some unknown universal constant.
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