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Abstract. As shown by A. Melnikov, the orbits of a Borel subgroup acting by con-
jugation on upper-triangular matrices with square zero are indexed by involutions in
the symmetric group. The inclusion relation among the orbit closures defines a partial
order on involutions. We observe that the same order on involutive permutations also
arises while describing the inclusion order on B-orbit closures in the direct product of
two Grassmannians. We establish a geometric relation between these two settings.
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1 Introduction

Let nn ⊂ gl(n, C) be the Lie subalgebra of strictly upper-triangular matrices in the Lie
algebra of complex n× n matrices. This subalgebra is equipped with the adjoint action of
the standard (upper-triangular) Borel subgroup B ⊂ GL(n, C); this action has, generally
speaking, infinitely many orbits. However, if we restrict this action to the set Xn ⊂ nn
of matrices with square zero, the adjoint action of B on Xn has finitely many orbits.
A. Melnikov [8] has shown that these orbits are indexed by involutive permutations
In ⊂ Sn. The inclusion of B-orbit closures on Xn defines a partial order on In, which
is different from the Bruhat order. In her further paper [9] Melnikov provides a simple
combinatorial description of this order; another nice combinatorial interpretation was
given by A. Knutson and P. Zinn-Justin in [4].

Quite unexpectedly, the same order appears in a different geometric setting. Consider
the direct product of two Grassmannians Gr(k, n)× Gr(m, n) of k- and m-spaces in Cn.
This variety is equipped with a componentwise action of the direct product of two Borel
subgroups B × B ⊂ GL(n) × GL(n), with its orbits being products of Schubert cells
X◦

λ × X◦
µ in Grassmannians. One can also consider a finer orbit decomposition, provided

by the diagonal Borel subgroup B ⊂ B × B. It is well known (cf., for instance, [5]) that
the latter action also has finitely many orbits. Their explicit combinatorial description

*esmirnov@hse.ru, evgeny.smirnov@gmail.com

esmirnov@hse.ru
evgeny.smirnov@gmail.com


2 Evgeny Smirnov

was obtained in [10]. Moreover, the B-orbits constituting a given (B × B)-orbit X◦
λ × X◦

µ

are indexed by a specific subset of involutive permutations In(λ, µ) ⊂ In, depending
upon λ and µ. Like in the previous case, the inclusion of orbit closures defines a partial
order on each subset of involutions In(λ, µ). It turns out that all these poset structures
are inherited from the poset structure on In defined by Melnikov. Our main result is the
following theorem.

Theorem 1.1. The partial order structure on each In(λ, µ) coming from the inclusion of B-
orbit closures in the direct product of two Grassmannians is obtained by restricting of the adjoint
partial order on In to In(λ, µ).

This note is organized as follows. In Section 2, we recall the results of A. Melnikov
on enumerating the adjoint B-orbits in strictly triangular matrices with square zero by
involutive permutations and describe the partial orbit given by inclusion of orbit clo-
sures; here we actively use the notation introduced by A. Knutson and P. Zinn-Justin. We
also recall some basic facts on Schubert cells in Grassmannians. In Section 3, we give
a combinatorial enumeration of B-orbits in a (B × B)-orbit in the direct product of two
Grassmannians and compare it with the former order. This is a report on our paper [11].

2 Preliminaries

2.1 B-orbits in strictly triangular matrices with square zero

Throughout this paper, the ground field will be the field of complex numbers C. Con-
sider the Lie algebra gl(n, C) of complex n × n matrices, with the adjoint action of the
group GL(n) = GL(n, C) of nondegenerate matrices. Denote by Nn the cone formed by
nilpotent matrices of order not exceeding 2:

Nn = {X ∈ gl(n, C) | X2 = 0}.

This cone is obviously GL(n)-invariant. Moreover, it is well known that this is a spherical
GL(n)-variety: the standard (upper-triangular) Borel subgroup B ⊂ GL(n) acts on Nn
with finitely many orbits. This set of orbits is a ranked poset, with the rank defined as
the dimension of an orbit and the partial order defined by inclusion of orbit closures.

We will be interested not in the whole variety Nn, but rather in its intersection
Xn = Nn ∩ nn with the set of strictly upper-triangular matrices. This situation was
thoroughly studied by A. Melnikov [8, 9]. It turns out that the B-orbits in Xn are indexed
by involutive permutations of {1, . . . , n}; we will denote the set of such permutations by
In = {w ∈ Sn | w2 = Id}.

Theorem 2.1 ([8]). The set of B-orbits in Xn bijectively corresponds to the set of involutive
permutations In. For each orbit O ⊂ Xn, there exists a unique permutation w ∈ In such that
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O = B · w<. Here w< denotes the permutation matrix corresponding to w with its diagonal and
lower-triangular part replaced by zeros: (w<)ij = 1 if w(i) = j and i < j, and (w<)ij = 0
otherwise.

Following the paper [4] by A. Knutson and P. Zinn-Justin, we will denote involutive
permutations by arc diagrams. Namely, we draw nodes indexed by 1, . . . , n on a line
and, if w(i) = j, join nodes i and j by an arc; if w(i) = i, we draw a vertical half-line
from the node i, as shown in Figure 1 below.

1 2 3 4 5 6 7 8

Figure 1: Arc diagram corresponding to w = 73248615 = (17)(23)(58).

Such a presentation is very useful for computing the dimension of an orbit and de-
scribing the inclusion order on orbit closures. This is given by the following theorems.

Theorem 2.2 ([9, Section 2.7]; [4, Theorem 4]). Let w ∈ In. Then the dimension of the
corresponding B-orbit B · w< is equal to

dim B · w< = #arcs · (#arcs + #half-lines)− #crossings.

The maximal dimension of B · w<, equal to ⌊n2/4⌋, is achieved for crossingless arc
diagrams with ⌊n/2⌋ arcs. For n ≥ 3, since the number of such arc diagrams is greater
than one, the variety Xn is reducible (but equidimensional). Its irreducible components
are called orbital varieties.

The inclusion order on B-orbits also admits a nice description in terms of arc dia-
grams. Denote by rij(w), with i < j, the number of pairs (i′, j′) such that i ≤ i′ < j′ ≤ j
and w(i′) = j′. Equivalently, this is the number of whole arcs in the interval [i, j].

Theorem 2.3 ([9, Section 2.10]; [4, Theorem 5]). For two involutions v, w ∈ In, we have
B · v< ⊆ B · w< if and only if rij(v) ≤ rij(w) for each i < j.

This defines a partial order on the set of involutions: we shall say that v ≤ w if
B · v< ⊆ B · w<.

Remark 2.4. For an arbitrary element X ∈ Xn, denote by Xij the submatrix formed by the
rows i, . . . , n and columns 1, . . . , j. Suppose X belongs to the orbit B · w<. Then rij(w) for
i < j equals the rank of Xij. Indeed, this is true for X = w<, and the ranks of all Xij are
constant along the B-orbits (they are invariant under the adjoint action of B). Clearly, for
i ≥ j the submatrices Xij are zero.
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Remark 2.5. This order on In is different from the restriction of the Bruhat order on Sn
to In. In fact, the Bruhat order on In corresponds to the inclusion of coadjoint orbits, as
opposed to the adjoint orbits considered here; for details, see [3].

Figure 2 represents the ranked poset I4, with elements of the same rank (that is, with
B-orbits of the same dimension) listed at the same horizontal level, from 4 (topmost) to 0.

1 2 3 4 1 2 3 4

1 2 3 41 2 3 4 1 2 3 41 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4

1 2 3 4

Figure 2: Inclusion order on I4, represented by arc diagrams.

2.2 B-orbits in Grassmannians

This subsection is devoted to fixing the notation and describing B-orbits in one Grass-
mannian. As before, we let B ⊂ GL(n) be the subgroup of nondegenerate upper-
triangular matrices. We also fix the maximal torus T ⊂ B; it consists of nondegenerate
diagonal matrices.

Denote by Gr(k, n) the Grassmannian of k-dimensional vector subspaces in an n-
dimensional vector space. It is a GL(n)-homogeneous space, with finitely many (namely,
(n

k)) orbits of a Borel subgroup B. These orbits are indexed by the partitions with at most
k parts not exceeding n − k, that is, by weakly decreasing sequences of nonnegative
integers λ = (λ1, . . . , λk), with n − k ≥ λ1 ≥ · · · ≥ λk ≥ 0. The weight of such a partition
is defined as |λ| = λ1 + · · ·+ λk.

We will represent partitions by the Young diagrams consisting of k left-adjusted rows of
boxes of length λ1, . . . , λk, counted from top to bottom (we follow the English convention
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of drawing Young diagrams); that is, the total number of boxes is |λ|. We will not make
a difference between a partition and its Young diagram, also referring to the latter as λ.
The diagram corresponding to partition λ with at most k parts not exceeding n − k is a
subset of the k × (n − k) rectangle. In this case, we will say that λ fits into the rectangle
k × (n − k) and denote this by λ ⊆ k × (n − k).

Example 2.6. Let k = 5 and n = 11. The partition λ = (6, 4, 4, 1) of weight 15 has four
parts, and their length does not exceed n − k = 6. So it fits into the rectangle of size
5 × 6. Its Young diagram is shown in Fig. 3 by grey boxes.

Figure 3: The Young diagram of partition (6, 4, 4, 1).

The B-orbits in the Grassmannian Gr(k, n) are indexed by the Young diagrams fitting
into k × (n − k) rectangle in the following way. Each B-orbit contains a unique T-stable
point. If e1, . . . , en denotes the standard basis of Cn, then the T-stable points correspond
to subspaces spanned by k basis vectors. To a Young diagram λ we assign the following
subspace:

Uλ = ⟨eλk+1, eλk−1+2, . . . , eλ1+k⟩.
The B-orbits, usually called Schubert cells, will be further denoted by X◦

λ = B · Uλ. It is
well known that X◦

λ is isomorphic to an affine space of dimension |λ| and that X◦
λ ⊆ X◦

µ

if and only if λ ⊆ µ; see [7], [2] or any other textbook on this topic for details.

Example 2.7. For k = 5, n = 11, and the partition λ = (6, 4, 4, 1) from Example 2.6, the
T-stable point in the Schubert cell X◦

λ ⊂ Gr(5, 11) corresponds to the subspace Uλ =
⟨e1, e3, e7, e8, e11⟩ ⊂ C11.

3 B-orbits in double Grassmannians

It is well known (see, for example, [5, 6]) that the direct product of two Grassmannians
Gr(k, n)× Gr(m, n) is a spherical variety with respect to the action of the diagonal sub-
group B ⊂ B × B. In geometric terms, this means that the number of triples consisting
of a k-plane, an m-plane, and a full flag in Cn, considered up to GL(n)-action, is finite.
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3.1 Combinatorial description of orbits

Here we recall the combinatorial description of B-orbits acting on the direct product
of two Grassmannians X = Gr(k, n) × Gr(m, n). We assume k, m, and n to be fixed
throughout this section. This description appeared in a slightly different form in our
paper [10]. It also follows from much more general results by P. Magyar, J. Weyman, and
A. Zelevinsky, see [6].

The (B × B)-orbits in X are indexed by pairs of Young diagrams λ, µ, where λ ⊆
k × (n − k) and µ ⊂ m × (n − m) are partitions with at most k (resp. m) parts not
exceeding n − k (resp. n − m). Each of these orbits is the direct product of two Schubert
cells X◦

λ × X◦
µ.

Given two partitions λ ⊆ k × (n − k) and µ ⊆ m × (n − m), we can assign to them
bit strings (sequences of zeroes and ones) s(λ), s(µ) ∈ {0, 1}n of length n as follows.
For λ, let si(λ) = 1 if i occurs among the numbers λk + 1, λk−1 + 2, . . . , λ1 + k, and
0 otherwise. Graphically this can be interpreted as follows: the Young diagram λ is
bounded from below by a lattice path of length n, going from the southwestern corner
to the northeastern one. The number si(λ) is equal to 1 if i-th segment is vertical, and to
0 if it is horizontal. Similarly we define the bit string s(µ).

Our next goal is to define a subset In(λ, µ) of the set of involutive permutations
In ⊂ Sn. Take the componentwise sum s(λ, µ) = s(λ) + s(µ) ∈ {0, 1, 2}n. This is an
n-tuple consisting of zeroes, ones, and twos. Its i-th component will be denoted by
si(λ, µ).

Definition 3.1. An involutive permutation w ∈ In is said to be consistent with the pair
(λ, µ) (or just (λ, µ)-consistent) if for every pair (i, j), 1 ≤ i < j ≤ n, such that w(i) = j,
w(j) = i, we have si(λ, µ) = 0 and sj(λ, µ) = 2. The set of all such permutations is
denoted by In(λ, µ).

Informally, this means that for each transposition (i, j) occurring in w, with i < j, the
i-th segments of the lattice paths defined by both λ and µ are horizontal, while the j-th
segments of both paths are vertical. This means that the involutions in In(λ, µ) have
prescribed sets of possible “left endpoints” and “right endpoints”, not necessarily of the
same cardinality.

Example 3.2. Let k = m = 2, n = 4, and λ = µ = (2, 2). Then the set of involutions
I4(λ, µ) consistent with these partitions has seven elements:

Id, (13), (14), (23), (24), (13)(24), (14)(23).

Example 3.3. For certain pairs λ, µ, the set In(λ, µ) can consist only of the identity
permutation. For example, take k = m = 2, n = 4, and λ = (2, 1), µ = (1, 0). Then
s(λ, µ) = (1, 1, 1, 1). Another example with In(λ, µ) = {Id} is given by λ = (1, 0), µ =
(0, 0). In this case, s(λ, µ) = (2, 1, 1, 0). Since this sequence does not contain 2’s preceded
by 0’s, any permutation consistent with cannot contain a nontrivial transposition.
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Similarly to the previous section, we shall denote involutive permutations by arc
diagrams. Let us place n nodes on a line, numbered 1, . . . , n from left to right. We will
say that i-th node is black if si(λ, µ) = 0, white if si(λ, µ) = 2, and grey if si(λ, µ) = 1.
Given an involutive permutation, we draw an arc in the upper half-plane joining each
pair (i, j) such that w(i) = j. Moreover, let us draw vertical half-lines going up from all
black and white (but not grey) vertices corresponding to fixed points of w. An involutive
permutation represented in such a form is (λ, µ)-consistent if the left end of each arc is
black and the right end is white.

This arc interpretation allows us to define a number d(w) = d(w, λ, µ) for each w ∈
In(λ, µ). Define it as follows:

d(w) = #{crossings in the arc diagram}
+ #{(i, j) | i < j, w(i) = i, w(j) = j, si = 0, sj = 2}.

The second summand is the number of pairs consisting of a black vertex i and a white
vertex j with vertical lines going from them, such that i < j. Informally, these two vertical
lines can be thought of as “crossing at infinity”. Note that d(w) depends not only on w,
but also on λ and µ.

Example 3.4. Let k = 4, m = 5, n = 9. Consider two Young diagrams λ = (5, 4, 2, 1) and
µ = (4, 4, 4, 1, 1). Then we have

s(λ) = (0, 1, 0, 1, 0, 0, 1, 0, 1); s(µ) = (0, 1, 1, 0, 0, 0, 1, 1, 1); s(λ, µ) = (0, 2, 1, 1, 0, 0, 2, 1, 2).

In Figure 4 we give the arc diagram of permutation w = (17)(59) ∈ In(λ, µ). For this
permutation, d(w, λ, µ) = 4. Indeed, there are four crossings and no pairs of black
and white half-lines: note that 2 and 6 do not form such a pair, since the white vertex
precedes the black one.

1 2 3 4 5 6 7 8 9

Figure 4: Arc diagram corresponding to w = 723496185 = (17)(59).

These invariants are essential for describing the inclusion order on B-orbits inside the
(B × B)-orbit X◦

λ × X◦
µ.

Theorem 3.5 ([10]). 1. Orbits of the Borel subgroup B inside the (B × B)-orbit X◦
λ × X◦

µ ⊂
Gr(k, n)× Gr(m, n) bijectively correspond to the elements of In(λ, µ);
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2. Let e1, . . . , en be a basis of Cn that agrees with the choice of B ⊂ GL(n). Then each orbit
Ow

λµ is obtained as the B-orbit of the pair of subspaces (U, W), where:

U =
〈
ej | sj(λ) = 1, w(j) = j

〉
+ ⟨ew(j) + ej | sj(λ) = 1, w(j) ̸= j⟩,

W = ⟨eµ1 , . . . , eµm⟩.

3. the codimension of the orbit Ow
λµ ⊆ X◦

λ × X◦
µ equals d(w, λ, µ).

For instance, the “canonical” representative of the orbit given by λ, µ, and w from
Example 3.4 is as follows:

U = ⟨e2, e4, e1 + e7, e5 + e9⟩, W = ⟨e2, e3, e7, e8, e9⟩.

Our next observation is as follows.

Proposition 3.6. There exists a unique maximal and a unique minimal B-orbit inside X◦
λ × X◦

µ.

Proof. Existence of a maximal (open) orbit Omax
λµ is obvious, since X◦

λ × X◦
µ is irreducible

(it is isomorphic to affine space C|λ|+|µ|). The corresponding arc diagram is obtained as
follows: given a black-white-grey coloring of {1, . . . , n}, join by an arc a black and a white
vertex with possibly only grey vertices between them. Repeat this procedure (ignoring
vertices with arcs) until there are no more black-white pairs left. All the remaining
black and white vertices, white ones coming before black ones, are joined with infinity.
Obviously, such a matching is crossingless.

The minimal orbit Omin
λµ = OId

λµ corresponds to the identity permutation Id ∈ In(λ, µ)

with all the black and white vertices defining vertical half-lines. Its codimension is equal
to the number of pairs consisting of a black and a white vertex, in this order from left to
right. Note that this orbit contains a unique (T × T)-stable point: it is exactly the point
given in Theorem 3.5, part 2.

3.2 Inclusion order on B-orbit closures

In this subsection we give a description of the inclusion order of orbit closures in X◦
λ ×X◦

µ

in terms of ranks.
Namely, for each pair (i, j) consisting of a black and a white vertex (in this order), we

define
rij(w, λ, µ) = #{(i′, j′) | w(i′) = j′, i ≤ i′ < j ≤ j′}.

In other words, rij(w, λ, µ) is the number of arcs situated inside the interval [i, j]. Then
inclusion of B-orbit closures inside a (B × B)-orbit is given by inequalities of ranks.

Theorem 3.7. For any v, w ∈ In(λ, µ), we have Ov
λµ ⊆ Ow

λµ if and only if rij(w, λ, µ) ≥
rij(v, λ, µ) for each i < j with si(λ, µ) = 0 and sj(λ, µ) = 2.
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This theorem looks almost the same as Theorem 2.3. It immediately implies Theo-
rem 1.1.

Example 3.8. Figures 5 and 6 illustrate this theorem in the case n = 4, λ = µ = (2, 2)
and λ = µ = (2, 1), respectively. In these figures we give the poset of arc diagrams
corresponding to the elements of In(λ, µ), while the other elements of In (cf. Figure 2)
are shown in grey.

1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4

1 2 3 4

Figure 5: Inclusion order on I4(λ, µ) for λ = µ = (2, 2).

It is not hard to prove Theorem 3.7 similarly to the proof of Theorem 2.3 given in [4]:
describe covering relations in the poset In(λ, µ) explicitly (this was done in [10]), then
for each covering relation construct an explicit degeneration of the larger orbit to the
smaller one, like in Proposition 1 of [4], and then use semicontinuity of ranks. Then
Theorem 1.1 follows from an a posteriori comparison of Theorem 3.7 with Theorem 2.3.
However, this does not fully explain this “partial order restriction phenomenon”.

Instead, we use a more geometric approach. For this we construct a slice S ⊂
X◦

λ × X◦
µ which intersects all B-orbits transversally and has dimension complementary to

dimOmin
λµ . Then this slice can be embedded into the space of upper-triangular matrices

with square zero. This construction is summarized in the following lemma.

Lemma 3.9. There exists a subvariety (slice) S ⊂ X◦
λ × X◦

µ such that:

1. S is isomorphic to an affine space of dimension dim S = d(Id, λ, µ). That is, dim S equals
the codimension of Omin

λµ ;
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1 2 3 4

1 2 3 41 2 3 4

1 2 3 4

1 2 3 4

Figure 6: Inclusion order on I4(λ, µ) for λ = µ = (2, 1).

2. S intersects each orbit closure Ow
λµ transversally; in particular, S ∩Omin

λµ = {pt};

3. there exists an embedding ı : S ↪→ Xn such that for each w ∈ In(λ, µ) we have

ı(Ow
λµ ∩ S) ⊆ B · w<.

This slice can be constructed explicitly. Instead of giving a proof here in full general-
ity (for this we refer the reader to [11, Section 4]), let us show how does this construction
work in a particular case.

Example 3.10. Consider this construction for λ = (4, 4, 2) and µ = (3, 3, 1, 1). In this
case, s(λ, µ) = (0, 1, 2, 0, 0, 2, 2). Vertices 1, 4, 5 of the arc diagram are black, vertices
3, 6, 7 are white, and vertex 2 is grey. Then S is 7-dimensional, and the corresponding
subspaces look as follows:

U(tij) = ⟨e3 + t13e1, e6 + t16e1 + t46e4, e7 + t17e1 + t47e7⟩, W(tij) = W = ⟨e2, e3, e6, e7⟩.
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The map S ↪→ Xn is as follows:

(U(tij), W(tij)) 7→



0 0 t13 0 0 t16 t17
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 t46 t47
0 0 0 0 0 t56 t57
0 0 0 0 0 0 0
0 0 0 0 0 0 0


.

3.3 Restriction from In to In(λ, µ) does not preserve covering relations

Recall that for a poset (M,≤) a relation a ≤ b is said to be covering if for any c ∈ M such
that a ≤ c ≤ b we have either a = c or c = b (that is, there are no intermediate elements
between a and b). Our final remark is as follows.

Remark 3.11. The embedding of posets In(λ, µ) ↪→ In does not preserve covering rela-
tions.

Here is an example of such a situation. Let n = 4; the poset structure of I4 given by
B-orbits on X4 is shown on Figure 2. Now take λ = µ = (2, 1). The set of involutions
consistent with s(λ, µ) = (0, 2, 0, 2) has five elements; they are shown on Figure 6. In this
order element (12) covers (14), while in the order on I4 there is an intermediate element
(13) between them; this element does not belong to I4(λ, µ).

3.4 Concluding remarks

These results have direct analogues in the type C. Namely, the poset of B-orbits of
square-zero matrices in the symplectic Lie algebra sp2n was studied in [1]; these orbits
are indexed by involutions in the hyperoctahedral group (Weyl group of type C). Com-
binatorially, they are indexed by symmetric arc diagrams on 2n vertices, indexed by
±1, . . . ,±n, where vertices i and j are joined by an arc if and only if the vertices −i and
−j are. Just like in the type A case, certain subsets of this poset (with respect to the
adjoint order on B-orbits) index B-orbits in a B × B-orbit in the direct product of two
Lagrangian Grassmannians LGr(n, 2n)× LGr(n, 2n). The details will appear elsewhere.
It would be interesting to generalize these results to the case of Weyl groups outside
types A and C.
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