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Abstract. The Stanley–Stembridge conjecture was a long-standing problem in algebraic
combinatorics which states that the chromatic symmetric function for any (3 + 1)-free
graph expands positively in terms of elementary symmetric functions. We explain
how to find an inductive and positive formula for the elementary symmetric function
expansion of chromatic quasisymmetric function for any unit interval graph, which in
particular implies the Stanley–Stembridge conjecture.
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1 Introduction

For any graph, Stanley [29] introduced a symmetric function called the chromatic sym-
metric function which refines the chromatic polynomial of the graph. In [29, 30], Stanley–
Stembridge conjectured that it expands positively in terms of elementary symmetric
functions for any (3 + 1)-free graph. This conjecture was a main open problem in this
area and there are many researches including [2, 4, 8, 9, 10, 11, 13, 16, 19, 22, 24, 26, 31,
33] which prove the conjecture for special cases.

The aim of this extended abstract is to give a more detailed introduction to our paper
[17] which proves the Stanley–Stembridge conjecture in general. Since the details of the
proof already appeared in [17], we mainly focus on explaining how to find the proof. We
also explain the contents of [18] on a (q, t)-analogue of chromatic symmetric functions
which motivate our proof.

2 Background

2.1 Unit interval graphs

By a work of Guay-Paquet [14], the Stanley–Stembridge conjecture reduces to the case
of both (3 + 1)-free and (2 + 2)-free graphs, which are known to be obtained by forget-
ting the orientations of unit interval graphs. The set of unit interval graphs corresponds
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bijectively to the set of Dyck paths, which is also an important object of study in alge-
braic combinatorics. In particular, the number of unit interval graphs with n vertices is
equal to the n-th Catalan number. See for example [7] for an appearance of chromatic
quasisymmetric function as a plethystic substitution of unicellular LLT polynomial.

Instead of defining the notions of (a + b)-free graph and unit interval graph, let us
give a parametrization of unit interval graphs in terms of area sequences as in [3]. We
set [n] := {1, 2, . . . , n} and

An := {a : [n] → Z|0 ≤ a(i) < i, a(i + 1) ≤ a(i) + 1)}

which is the set of area sequences for unit interval graphs. For each a ∈ An, we associate
an oriented graph Γa with vertex set [n] and edges

i − a(i) → i, i − a(i) + 1 → i, . . . , i − 1 → i

for all i ∈ [n]. The oriented graph obtained in this way is called unit interval graph.
We note that in [3], the notion of circular unit arc digraph is defined by weakening the
condition 0 ≤ a(i) < i by 0 ≤ a(i) < n and considering the indices modulo n.

For our later purpose, it is convenient to introduce another set En for parametrizing
unit interval graphs. We define

En := {e : [n] → Z|0 ≤ e(i) < i, e(i) ≤ e(i + 1)} .

We have a bijection An ∼= En given by a(i) = i − 1 − e(i) and we denote by Γe the
unit interval graph corresponding to e ∈ En under this bijection. We also note that En
corresponds bijectively to the set of Hessenberg functions

Hn := {h : [n] → [n]|h(i) ≥ i, h(i) ≤ h(i + 1)}

by h(i) = n − e(n + 1 − i).
For two unit interval graphs Γ of n-vertices and Γ′ of n′ vertices, we can consider

their disjoint ordered union Γ ∪ Γ′ whose vertices are labeled by 1, . . . , n for Γ and n +
1, . . . , n + n′ for Γ′. This is again a unit interval graph. We define en ∈ En by en(i) = 0
for any i = 1, . . . , n and eµ = eµ1 ∪ · · · ∪ eµl for a composition µ = (µ1, . . . , µl) of n. The
graph Γen corresponding to en ∈ En is the complete graph of n-vertices.

2.2 Chromatic quasisymmetric functions

Shareshian–Wachs [27, 28] and Ellzey [12] introduced a refinement of the chromatic
symmetric function for any oriented graph called chromatic quasisymmetric function.
Let us recall its definition briefly. Let Γ be an oriented graph. A map κ : Γ → Z>0
from the set of vertices of Γ to the set of positive integers is called a proper coloring if
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κ(u) ̸= κ(v) for any u, v ∈ Γ which are connected by an edge in Γ. For a proper coloring
κ : Γ → Z>0, we denote by asc(κ) the number of edges u → v in Γ such that κ(u) < κ(v).
The chromatic quasisymmetric function XΓ(t) of Γ is defined by

XΓ(t) := ∑
κ

tasc(κ) ∏
v∈Γ

Xc(v),

where the sum runs over the set of all proper colorings of Γ and X1, X2, . . . , are inde-
terminates. It is known that XΓ(t) is a symmetric function in X1, X2, . . . , if Γ is a unit
interval graph [28] or more generally a circular unit arc digraph [3, 12]. By definition,
XΓ(1) is the chromatic symmetric function defined by Stanley [29].

Our main object of study is the elementary symmetric function expansion

XΓe(t) = ∑
λ⊢n

cλ(e; t)eλ(X)

of XΓe(t) for e ∈ En, where λ runs over the set of partitions of n and eλ(X) is the ele-
mentary symmetric function in X1, X2, . . . , corresponding to λ. The Stanley–Stembridge
conjecture [29, 30] states that cλ(e; 1) ≥ 0 for any e ∈ En and λ ⊢ n. Shareshian–Wachs
[27, 28] conjectured that more strongly, we have cλ(e; t) ∈ Z≥0[t]. The main result of [17]
implies that cλ(e; t) ≥ 0 for any e ∈ En, λ ⊢ n, and t ∈ R>0.

2.3 Modular law

In the study of chromatic quasisymmetric functions for unit interval graphs, the work of
Abreu–Nigro [1] is extremely useful. It is written in terms of the Hessenberg functions
Hn, but we state it here in terms of En for later purpose1.

Definition 2.1. We say that a function χ : En → Q(t) satisfies the modular law if we have

(1 + t)χ(e) = tχ(e′) + χ(e′′)

for any triple (e, e′, e′′) in En satisfying one of the following conditions:

(i) There exists 1 < i ≤ n such that e(i − 1) < e(i) < e(i + 1) and e(e(i)) = e(e(i) + 1).
Moreover, we have e′(j) = e′′(j) = e(j) for j ̸= i and e′(i) = e(i) + 1 and e′′(i) =
e(i)− 1.

(ii) There exists i ∈ [n − 1] such that e(i + 1) = e(i) + 1 and e−1(i) = ∅. Moreover,
we have e′(j) = e′′(j) = e(j) for j ̸= i, i + 1 and e′(i) = e′(i + 1) = e(i + 1) and
e′′(i) = e′′(i + 1) = e(i).

1We note that our combination of identifications Hn ∼= En ∼= An leads to another parametrization of
the unit interval graphs that was used in [1], but since they are related by the transpose of the graph, their
chromatic quasisymmetric functions are the same.
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Here, we understand that e(n + 1) = n − 1 if i = n in (i).

One of the main results of [1] is that a function satisfying the modular law is uniquely
characterized by its values at eµ for any composition µ of n. Moreover, they give an
algorithm for the computation of such a function from its values at eµ. We actually used
this algorithm to calculate chromatic quasisymmetric functions on our computers.

Theorem 2.2 (Abreu–Nigro [1]). Let λ = (λ1, . . . , λl) be a partition of n. If a function
χ : En → Q(t) satisfies the modular law and

χ(eµ) =


l

∏
i=1

[λi]t! if λ is a rearrangement of µ,

0 otherwise,

then we have χ(e) = cλ(e; t) for any e ∈ En.

Here, [m]t! means the t-factorial of m ∈ Z defined by

[m]t :=
1 − tm

1 − t
, [m]t! :=

m

∏
i=1

[i]t.

3 (q, t)-chromatic symmetric functions

Next we review the results of [18] mainly for motivational purpose. Unfortunately, the
results of this section turn out not to be logically needed in the proof of the Stanley–
Stembridge conjecture. However, they also offer a quantum multiplication on the ring
of symmetric functions similar to the quantum multiplication in the theory of quantum
cohomology, which we hope to be of independent interest.

3.1 Geometric interpretations

Shareshian–Wachs [27] conjectured that ωXΓ(t) is given by the Frobenius series of the
cohomology of regular semisimple Hessenberg variety of type A associated with the
Hessenberg function corresponding to unit interval graph Γ. Here, ω is the involution
on the ring of symmetric functions as in [23] and the action of the n-th symmetric group
on the cohomology of regular semisimple Hessenberg variety of type A is given by
Tymoczko [32]. This conjecture was proved by Brosnan–Chow [6] and Guay-Paquet [15]
independently.

Recently, Kato [21] found another geometric realization of the chromatic quasisym-
metric function for any unit interval graph Γ. Namely, Kato [20] constructed a smooth
proper variety XΓ with a GLn[[z]]-action and GLn[[z]]-equivariant proper morphism mΓ :
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XΓ → Gr to the affine Grassmannian of GLn. By the decomposition theorem [5], one
can decompose the pushforward of the constant sheaf on XΓ

mΓ∗CXΓ
∼= ⊕λICλ[−i]⊕mΓ

λ,i

into a shifted direct sum of GLn[[z]]-equivariant simple perverse sheaves ICλ on Gr, where
λ runs over the set of partitions of length at most n. By the geometric Satake correspon-
dence [25], H•(ICλ) has a structure of GLn(C)-module whose character is given by the
Schur function sλ. Kato [21] proves that

XΓ(t) = t−dΓ ∑
λ,i

ti/2mΓ
λ,i sλ(X)

for some dΓ ∈ Z≥0 and obtained a new formula for XΓ(1) using the affine Weyl group of
type An−1 and its action on the Laurent polynomial ring C[X±1

1 , . . . , X±1
n ] as a corollary.

3.2 Affine Hecke algebras of type A

It is a natural question to ask whether one can refine Kato’s formula for XΓ(1) to obtain
a formula for XΓ(t) by using the affine Hecke algebras of type A. In fact, one can add
an additional parameter and define a (q, t)-analogue XΓ(q, t) of the chromatic symmetric
function for any unit interval graph Γ in [18]. Let us briefly explain the construction.

Let Hm be the affine Hecke algebra of GLm, i.e., the Q(t)-algebra generated by Ti for
i ∈ Z/mZ and Π±1 satisfying the following relations:

• (Ti − t)(Ti + 1) = 0, for any i ∈ Z/mZ,

• TiTi+1Ti = Ti+1TiTi+1 for any i ∈ Z/mZ if m > 2,

• TiTj = TjTi for any i, j ∈ Z/mZ such that j ̸= i, i ± 1,

• ΠTi = Ti+1Π for any i ∈ Z/mZ.

We consider the polynomial representation of Hm on Q(q, t)[X±1
1 , . . . , X±1

m ] defined by

Ti(F) = tσi(F) + (t − 1)
F − σi(F)

1 − XiX−1
i+1

,

Π(F) = X1F(X2, . . . , Xm, q−1X1),

for any F = F(X1, . . . , Xm) ∈ Q(q, t)[X±1
1 , . . . , X±1

m ] and i = 1, . . . , m − 1, where we set

σi(F) = F(. . . , Xi+1, Xi, . . .). For each a ∈ Z≥0, we define S
(m)
a ∈ Hm by

S
(m)
a :=

{
(1 + T−1

1 + T−1
2 T−1

1 + · · ·+ T−1
m−1−a · · · T−1

1 )Π if 0 ≤ a < m,
0 if a ≥ m.

For example, we have S
(m)
m−1 = Π. It is easy to check that the action of S

(m)
a preserves the

polynomial part Q(q, t)[X1, . . . , Xm] of Q(q, t)[X±1
1 , . . . , X±1

m ].
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3.3 Main results

For a unit interval graph Γ = Γa labeled by a ∈ An, we define

X (m)
Γ (q, t) := tn(m−1)S

(m)
a(1) · · · S

(m)
a(n)(1) ∈ Q(q, t)[X1, . . . , Xm].

The main result of [18] is the following.

Theorem 3.1 ([18]). X (m)
Γ (q, t) is symmetric in X1, . . . , Xm and we have

X (m′)
Γ (q, t)|Xm+1=···=Xm′=0 = X (m)

Γ (q, t)

for any 0 < m < m′. In particular, XΓ(q, t) :=
(
X (m)

Γ (q, t)
)

m∈Z>0
defines a symmetric

function. Moreover, there exists a “quantum multiplication” ⋆ on the ring of symmetric functions
over Q(q, t) which is commutative and associative, and reduces to the usual multiplication at
q = 1 such that

XΓ∪Γ′(q, t) = XΓ(q, t) ⋆XΓ′(q, t). (3.1)

For any e ∈ En, we also have

XΓe(q, t) = ∑
λ⊢n

tn(λ′)cλ(e; t) eλ1 ⋆ eλ2 ⋆ · · · ⋆ eλl (3.2)

where n(λ′) = ∑l
i=1

λi(λi−1)
2 for a partition λ = (λ1, λ2, . . . , λl) as in [23].

We call XΓ(q, t) the (q, t)-chromatic symmetric function for a unit interval graph Γ.
By taking q = 1 in (3.2), we find that XΓ(1, t) and XΓ(t) are related by sending eλ to
tn(λ′)eλ. The quantum multiplication is uniquely determined by (3.1) since the chromatic
quasisymmetric functions for unit interval graphs span the ring of symmetric functions.

We note that XΓ(q, t) does not have any standard positivity properties such as e-
positivity or Schur-positivity in general. However, one can extract some information
about cλ(e; t) by taking another specialization for q.

3.4 Specialization at q = ∞

One can consider the limit q → ∞ for XΓ(q, t). For Γ = Γe with e ∈ En, it is given [18] by

lim
q→∞

XΓe(q, t) = t
n(n−1)

2 −|e|[n]t! en,

where we set |e| = e(1) + · · · + e(n). On the other hand, a Pieri type formula for the
quantum multiplication

e1 ⋆ er = (1 − q−1)[r + 1]ter+1 + q−1e1er
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implies that for any λ = (λ1, . . . , λl) ⊢ n, we have

lim
q→∞

eλ1 ⋆ · · · ⋆ eλl =
[n]t!

∏l
i=1[λi]t!

· en.

By substituting them to (3.2), we obtain

∑
λ⊢n

t|e|−|eλ| cλ(e; t)
∏i[λi]t!

= 1.

Actually, this formula itself can be easily proved by the modular law since the LHS
satisfies the modular law with t replaced by t−1 and takes the value 1 at eµ for any
composition µ of n. This formula and the conjectural positivity of cλ(e; t) suggest that

pλ(e; t) := t|e|−|eλ| cλ(e; t)
∏i[λi]t!

for λ ⊢ n give a probability on the set of partitions of n for any t ∈ R>0. This is
why we prefer to use pλ(e; t) instead of cλ(e; t). It turns out that this small change of
normalization is crucial to reveal their inductive structure on n.

4 Idea of the proof of [17]

We now explain how to prove the Stanley–Stembridge conjecture. This is done by prov-
ing an inductive and positive formula for pλ(e; t). The most nontrivial point is to find
such formula, since it is rather straightforward to check the modular law whose details
are explained in [17]. Hence we mainly focus on how to find the formula here.

4.1 First attempt

We consider the formal sum

Φe := ∑
λ⊢n

pλ(e; t) · λ

in the Q(t)-vector space Vnaive
n spanned by the partitions of n. As a first attempt, we try

to find a linear map Ωnaive
r : Vnaive

n → Vnaive
n+1 for 0 ≤ r ≤ n such that Ωnaive

r (Φe) = Φe′ for
any e ∈ En, where e′ ∈ En+1 is obtained by adding r to the end of e.

By experiments, we find that for example Ωnaive
0 (λ) should be obtained by adding a

new box to the bottom row of λ, where we use French convention for drawing the Young
diagram of λ. We also guess

Ωnaive
r ((n)) =

[r]t
[n]t

· (n, 1) +
tr[n − r]t

[n]t
· (n + 1). (4.1)
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We observe that such a combination of coefficients appears many times in other exam-
ples. However, this naive approach does not work literally even at n = 3, where we
should have Ωnaive

2 ((2, 1)) = (2, 2) in order to obtain the correct Φ(0,0,1,2), but we should
have Ωnaive

2 ((2, 1)) = 1
[2]t

· (2, 1, 1) + t
[2]t

· (3, 1) in order to obtain the correct Φ(0,1,1,2).

4.2 Refinement

The difference between [2, 1] in Φ(0,0,1) and in Φ(0,1,1) above is the order in which the
boxes are added from the empty Young tableau. In order to remember such an order,
we use standard Young tableaux instead of Young diagrams.

We consider the Q(t)-vector space Vn spanned by the standard Young tableaux of
size n and try to construct Ψe ∈ Vn for any e ∈ En such that π(Ψe) = Φe, where
π : Vn → Vnaive

n is the Q(t)-linear map determined by π(T) = λ if T is a standard Young
tableau of shape λ. Moreover, we impose further restrictions that there exist Q(t)-linear
map Ωr : Vn → Vn+1 for 0 ≤ r ≤ n such that we have

(i) Ψe = Ωe(n)Ωe(n−1) · · ·Ωe(1)(∅) for any e ∈ En, and

(ii) Ωr(T) is a linear combination of standard Young tableaux T′ obtained by adding
new box labeled by n + 1 to T on the top of some column.

Surprisingly, these two conditions consistently determine Ωr(T) for many standard
Young tableaux. Moreover, in most cases for small n, the linear combination appearing
in (ii) is very simple and similar to (4.1). The first exception appears at n = 6, which
takes the form

Ω4

(
4 6

1 2 3 5

)
=

[3]t
[2]t[4]t

7

4 6

1 2 3 5

+
t

[2]2t

4 6 7

1 2 3 5
+

t2[3]t
[2]t[4]t

4 6

1 2 3 5 7

for example, where we paint the box by red if its label is greater than r = 4. We note
that similar formulas also hold for the following standard Young tableaux

4 5

1 2 3 6
,

3 6

1 2 4 5
,

3 5

1 2 4 6
.

The remaining task is to find out the rule for the operator Ωr in general.
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4.3 Formula

By inspection, we see that the places of boxes labeled by 5 or 6 (red boxes) in the standard
Young tableaux above are the same. It turns out that this is a more general phenomenon.

Let us define a 0-1-sequence δ(r)(T) = (δi)i∈Z by setting δi = 1 if i ≤ 0 or the top box
of the i-th column of T has label larger than r, and δi = 0 otherwise. Then the formula
for Ωr(T) depends only on the color pattern δ(r)(T). This observation simplifies our
codes for the calculation a lot and enables us to examine further examples, which lead
to our general formula for Ωr(T).

We set W(r)(T) := {i | δi = 0 and δi−1 = 1} and R(r)(T) := {i | δi = 1 and δi−1 = 0}.
For c ∈ W(r)(T), we denote by fc(T) the standard Young tableau obtained by adding
a new box labeled by n + 1 on the top of the c-th column of T. Finally, we define2

Ωr : Vn → Vn+1 by

Ωr(T) := ∑
c∈W(r)(T)

∏i∈R(r)(T)[i − c]t
∏i∈W(r)(T)\{c}[i − c]t

fc(T) (4.2)

for any standard Young tableau T of size n. Now we can state our main result in [17].

Theorem 4.1 ([17]). For any e ∈ En, we have

Φe = π Ωe(n)Ωe(n−1) · · ·Ωe(1)(∅).

Since it is easy to check that all the coefficients of (4.2) are nonnegative, this in par-
ticular proves the Stanley–Stembridge conjecture.

4.4 Sketch of proof

The proof of our main theorem is a simple application of the modular law [1]. We only
need to check the modular law in Definition 2.1 and also check the formula for e = eµ

for any composition µ of n. The case e = eµ is easy since we have R(r)(T) = ∅ and
|W(r)(T)| = 1 in all the steps for the calculation of the RHS.

It remains to check the modular law. Let us denote by τr(T) the standard Young
tableau obtained by swapping r and r + 1 in T if it is well-defined. For the first case in
Definition 2.1, the modular law would follow if one has

([2]tΩr − Ωr+1 − tΩr−1) (R) ∈ Kr,m+1 (4.3)

for any R ∈ Vm, where Kr,m+1 ⊂ Vm+1 is the subspace spanned by T − τr(T) for standard
Young tableau T such that τr(T) is well-defined. Although this is not true in general, the

2The author thanks Mathieu Guay-Paquet for informing us of this simplified expression.
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condition e(e(i)) = e(e(i) + 1) implies that Ωe(i−1) · · ·Ωe(1)(∅) can be written as a sum
of certain linear combination of two standard Young tableau T and τe(i)(T) for which
(4.3) for r = e(i) holds. We need to be more careful whether (4.3) propagates to the n-th
step or not, but in this case it is automatic.

For the second case in Definition 2.1, one can actually show that

([2]tΩr+1Ωr − Ωr+1Ωr+1 − tΩrΩr) (R) ∈ Km+1,m+2 (4.4)

for any R ∈ Vm. The condition e−1(i) = ∅ then guarantees that (4.4) propagates to
the n-th step. This completes the sketch of proof and see [17] for more details of the
calculations for (4.3) and (4.4).

4.5 Future directions

Finally, we briefly comment on possible future directions.
One obvious remaining problem is whether it is possible to prove Shareshian–Wachs

conjecture using our formula or not. This is not straightforward since our modified
formula for cλ(e; t) is still a priori a sum of rational functions on t. For example, the
modified coefficient of Ψ(0,0,0,1,1,2) at

4 6

1 2 3 5
,

5 6

1 2 3 4
,

4

1 2 3 5 6
,

5

1 2 3 4 6

are genuinely rational, but their sums become polynomials. If it is possible to under-
stand why such cancelations of denominators occur, then one might be able to prove
Shareshian–Wachs conjecture as well.

In [18, 17], we restrict our attention to the case of unit interval graphs since it is
enough to prove the Stanley–Stembridge conjecture. It would be very interesting if one
can generalize (q, t)-chromatic symmetric functions or Theorem 4.1 for more general
graphs such as circular unit arc digraphs.
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