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Interpreting the chromatic polynomial coefficients
via hyperplane arrangements
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Abstract. A recent result of Lofano and Paolini expresses the characteristic polynomial
of a real hyperplane arrangement in terms of a projection statistic on the regions of the
arrangement. We use this result to give an alternative proof for Greene and Zaslavsky’s
interpretation for the coefficients of the chromatic polynomial of a graph. We also
show that this projection statistic has a nice combinatorial interpretation in the case
of the braid arrangement, which generalizes to graphical arrangements of natural unit
interval graphs. We use this generalization to give a new proof of the formula for the
chromatic polynomial of a natural unit interval graph.

1 Introduction

In [3], Greene and Zaslavsky gave an interpretation for the coefficients of the chromatic
polynomial of a graph G in terms of source components of acyclic orientations of G
(formally defined in Section 2). Recently, in [5], Lofano and Paolini gave an expression
for the characteristic polynomial of a hyperplane arrangement A as a generating function
of the regions of A, counted according to a projection statistic with respect to a fixed
point v ∈ Rn. The goal of this paper is to see how these two results are related in the
case of graphical arrangements.

Definition 1.1. Let G = ([n], E) be a graph. The graphical arrangement AG is defined as
the collection of the following hyperplanes:

AG := {Hi,j | {i, j} ∈ E, i < j},

where Hi,j = {(x1, . . . , xn) ∈ Rn | xi − xj = 0}.

It is known that for any graph G,

χG(t) = χAG(t), (1.1)

that is, the chromatic polynomial of a graph is equal to the characteristic polynomial
of the corresponding graphical arrangement. Further, we can label each region of the
graphical arrangement with a unique acyclic orientation of G.
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This raises the question of whether there exists a point v ∈ Rn such that for each
region of AG, the projection statistic given in [5] equals the number of source components
of the acyclic orientation of G labeling the region as given in [3]. In Section 4, we find a
set of points in Rn such that this holds (see Theorem 4.4). This shows that the Greene
and Zaslavsky result can be obtained using the Lofano and Paolini statistic.

We get a particularly nice combinatorial interpretation of this projection statistic in
the case of the braid arrangement Bn = AKn (see Theorem 3.2), which generalizes to
natural unit interval graphs (see Theorem 5.2). We use this interpretation to give an
alternative proof of the form of the chromatic polynomial of a natural unit interval
graph (see Theorem 5.3).

Remark 1.2. Zaslavsky’s theorem states that the number of regions of a hyperplane ar-
rangement A is (−1)nχA(−1). Hence, we can expect to find an expression for χA as
a statistic on the regions of A. No such statistic was known until the recent results of
Lofano and Paolini [5] and Kabluchko [4]. Our work shows that this projection statistic
can be viewed as a natural combinatorial statistic in the case of graphical arrangements.

2 Background

We assume a standard background on graphs and hyperplane arrangements as given in
[7]. We use graph to mean an undirected finite graph without loops or multiple edges.
For the rest of this section, let G = ([n], E) be a graph.

Definition 2.1. The chromatic polynomial of G, denoted by χG, is the polynomial which
when evaluated at a non-negative integer q gives the number of proper q-colorings of G.

We now define source components as in [1].

Definition 2.2. Let γ be an acyclic orientation of G. For i ∈ [n], let Ri be the set of
vertices reachable from i by a directed path of γ (with i ∈ Ri). We define S1, S2, . . .
recursively: for k ≥ 1, if

⋃
i<k Si = [n], then Sk = ∅. Otherwise, define Sk = Rm \⋃

i<k Si
where m = min{[n] \ ⋃

i<k Si}. The non-empty subsets Sk thus defined are the source
components of γ.

The following result was proved by Greene and Zaslavsky.

Theorem 2.3. [3] Let G = ([n], E) be a graph, and k be a non-negative integer. Then, the
coefficient of (−1)n−kqk in χG(q) is the number of acyclic orientations of G with exactly k source
components.

The characteristic polynomial of a hyperplane arrangement A, denoted by χA, is
classically defined using the Mobius function of the intersection lattice. For our part, we
use a characterization of the characteristic polynomial given by Lofano and Paolini [5]
and Kabluchko [4].
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Definition 2.4. Let A be a hyperplane arrangement in Rn and let v ∈ Rn be an arbitrary
point. Let R be a region of A. We define the projection from v to R to be the unique
point in R that has the minimum Euclidean distance from v, and denote it by projv(R).
Further, we define the projection dimension of v on R to be the dimension of the unique
face of R that contains projv(R) in its interior, and denote it by pdv(R).

Theorem 2.5. [4, 5] Let A be a real hyperplane arrangement in Rn, and let v ∈ Rn be a generic
point. Let R(A) be the set of regions of A. Then, the characteristic polynomial of A is given by

χA(t) = ∑
R∈R(A)

(−1)n−pdv(R)tpdv(R).

Equivalently, for a non-negative integer k, the coefficient of (−1)n−ktk in χA(t) is the number
of regions R of A such that the projection dimension of v on R is k.

3 The Braid Arrangement

In this section, we show that for the braid arrangement Bn, the projection statistic defined
in Theorem 2.5 can be expressed as a combinatorial statistic on the permutations labeling
the regions of Bn.

It is easy to see that each region of the braid arrangement is uniquely determined
by a total ordering of the coordinates. As a consequence, there is a bijection between
the regions of the braid arrangement Bn and permutations of [n]. When considered in
one line notation, the permutation indicates the relative order of the coordinates. For
example, the permutation σ = σ1σ2 . . . σn is associated to the region consisting of all
points with coordinates xσ1 > xσ2 > . . . > xσn .

Moreover, the flats of the arrangement can be represented by partitions of [n], the
blocks indicating which coordinates are equal. Finally, the faces of the arrangement can
be represented by ordered partitions of [n], the relative order of the blocks indicating
the relative order of the corresponding coordinates. Note that the number of blocks of
the partition is the dimension of the corresponding face. Given a face F of A, we denote
by Π(F) the ordered partition labeling it, and given an ordered partition Π of [n], we
denote by FΠ the face it labels.

Definition 3.1. Let v ∈ Rn with coordinates (v1, . . . , vn) such that v1 > . . . > vn and
vi − vi+1 > n(vi+1 − vn) for all i < n. For instance, vi = (n + 1)−i for all i ∈ [n] defines
such a point.

We now state the main result of this section.

Theorem 3.2. Let v ∈ Rn be as in Definition 3.1, let σ ∈ Sn be a permutation and let Rσ be
the region of the braid arrangement Bn labeled by σ. Then the projection dimension of v on Rσ

equals the number of right-to-left minima of σ, that is, pdv(Rσ) = RLmin(σ).
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The rest of this section is dedicated to the proof of Theorem 3.2.
Let v ∈ Rn be as in Definition 3.1, and R be a region of Bn. There is a unique face of R

that contains projv(R) in its interior. In order to prove the above theorem, we first prove
some lemmas which allow us to characterize this face. We state the following lemma
without proof.

Lemma 3.3. Let v ∈ Rn and let Π = {B1, . . . , Bk} be an unordered set partition of [n]. If
i ∈ Bj = {j1, . . . , js}, then the projection of v on the flat labeled by Π has the ith coordinate given

by
vj1

+...+vjs
s .

Definition 3.4. Let A be a hyperplane arrangement in Rn, and let v ∈ Rn be a point.
Let F be a face of A. We say F is a good face if the projection of v on span(F) lies in the
interior of F.

The following lemma characterizes the good faces of Bn.

Lemma 3.5. Let v ∈ Rn be as in Definition 3.1, and let Π = (B1, . . . , Bk) be an ordered partition
of [n]. Then FΠ is a good face of Bn if and only if min(Bi) < min(Bi+1) for all i < k.

Proof. Let B = {i1, . . . , ik} and B′ = {i′1, . . . , i′ℓ} be two blocks of our partition, and write
their values in increasing order. Then min(B) = i1 and min(B′) = i′1. Without loss of
generality, let i1 < i′1. Let X = span(FΠ), that is, X is the flat labeled by the unordered
partition {B1, . . . , Bk}. Let projv(X) = (p1, . . . , pn).

Then, from Lemma 3.3 and the fact that v satisfies Definition 3.1, we have:

pi1 − pi′1
≥

(k − 1)vn + vi′1−1

k
− vi′1

≥
vi′1−1 − vi′1

− n(vi′1
− vn)

k
> 0

Hence B must appear before B′ in the ordered partition.

Lemma 3.6. Let A be a hyperplane arrangement in Rn, let v ∈ Rn be a point and let R be a
region of A. Then,

projv(R) = projv(F)

where F is a good face of A incident to R.

Proof. Clearly, there is a unique face F of R that contains projv(R) in its interior. Hence,
projv(R) = projv(F), and we need to show that F is a good face.

Let X = span(F). Suppose F is not a good face. Then, projv(X) ̸= projv(F). Let L be
the line joining projv(X) and projv(F). As projv(X) is the orthogonal projection of v onto
X and L lies in X, the distance between v and a point p ∈ L increases as p moves from
projv(X) to projv(F). But then projv(F) must be on the boundary of F as otherwise we
would have points on L in F closer to v, contradicting the fact that projv(F) minimizes
distance. This contradicts the fact that projv(F) is in the interior of F, so F must be a
good face.
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Figure 1: B3 with projection from a point v as in Definition 3.1 onto the regions, with
the regions labeled by permutations (in blue) with right-to-left minima marked by
dots, and dimension of projection/number of right-to-left minima (in green).

Now, we finally have enough information to prove Theorem 3.2.

Proof of Theorem 3.2. Let σ = σ1 . . . σn, and let F be a face of Rσ. Then, the ordered
partition labeling F is of the form ({σ1, . . . , σi1}, {σi1+1, . . . , σi2}, . . . , {σik+1, σn}) where
k ≥ 0, and 0 < i1 < . . . < ik < n.

Now, by Lemma 3.6, projv(Rσ) must lie on a good face of Rσ. Lemma 3.5 further
gives us that these good faces are precisely those labeled by ordered partitions of [n] of
the form Π = (B1, . . . , Bk) such that min(Bi) < min(Bi+1) for all i < k.

This implies that if FΠ is a good face of Rσ, then each block Bi contains at least
one right-to-left minimum. If not, suppose j is the greatest index such that Bj does not
contain a right-to-left minimum. Then, j < k and min(Bj) > min(Bj+1), contradicting
that FΠ is a good face. Hence, the dimension of a good face cannot be greater than
RLmin(σ).

Now, suppose that Fσ is the face of Rσ that v projects into. If the dimension of Fσ is less
than RLmin(σ), there is a block of Π(Fσ) that has more than one right-to-left minimum.
We can refine the partition (by breaking this block into two blocks, each containing at
least one right-to-left minimum) to get a partition corresponding to a larger face F′ which
contains Fσ. This gives us the projection from v onto F′ must be of shorter length (strictly
shorter as F′ is a good face) than the projection onto Fσ, which is a contradiction.

Hence we have pdv(Rσ) = RLmin(σ).
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4 Graphical Arrangements

Let G = ([n], E) be a graph and AG be the corresponding graphical arrangement.

Definition 4.1. Let R ∈ R(AG). We associate to R an acyclic orientation of G, denoted
by γR, by directing the edge {i, j} ∈ E towards i if and only if xi ≥ xj in R.

Lemma 4.2. [6] The mapping γ which associates to each region R ∈ R(AG) the orientation γR
is a bijection between R(AG) and the set of acyclic orientations of G.

Recall that the faces of the braid arrangement can be identified with ordered parti-
tions of [n]. As AG is a sub-arrangement of Bn, each flat of AG corresponds to a partition
of [n] and each face of AG corresponds to a set of ordered partitions of [n]. For a face F,
we consider the representative ordered set partition where the blocks that do not have a
relative order are ordered by increasing minimum elements, and denote it by Π(F).

Note that for an acyclic orientation γ of G, the source components (S1, . . . , Sk) of γ

form an ordered partiton of [n]. We denote this ordered partition by Π(γ).

Definition 4.3. Let v ∈ Rn with coordinates (v1, . . . , vn) such that vi > (6n2 + 1)vi+1 and
vn > 0. For instance, vi = (6n2 + 2)−i for all i ∈ [n] defines such a point.

Note that such a point v ∈ Rn will also satisfy the condition vi − vi+1 > n(vi+1 − vn)
for all i < n. Hence, any results that hold for a point v as in Definition 3.1 will also hold
for a point v as in Definition 4.3.

The main result of this section is the following:

Theorem 4.4. Let G = ([n], E) be a graph and let v be as in Definition 4.3. Let R be a region of
the graphical arrangement AG, and let Π(γR) = (B1, . . . , Bk).

Then, pdv(R) = k, that is, the projection dimension of v on R equals the number of source
components of γR. In fact, the face of R that projv(R) lies in the interior of is FΠ(γR).

In the case of the braid arrangement, the above theorem along with the following
lemma which we state without proof give us Theorem 3.2.

Lemma 4.5. The number of right-to-left minima of a permutation σ ∈ Sn is equal to the number
of source components of γRσ , where Rσ is the region of Bn labeled by σ.

Further, Theorem 4.4 along with Theorem 2.5 and Equation (1.1) give us an alternative
proof of Greene and Zaslavsky’s result about the interpretation of the coefficients of the
characteristic polynomial (Theorem 2.3).

The rest of this section is devoted to the proof of Theorem 4.4.

Lemma 4.6. Let G = ([n], E) be a graph, let R be a region of AG, and let γR be the acyclic
orientation of G labeling R. Let Π(γR) = (B1, . . . , Bk). Then FΠ(γR) is a good face of R and R
does not have a good face of dimension greater than k.
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Proof. Let Π be an ordered partition of [n]. Then span(FΠ) is a flat of AG if and only
if for every block B of Π, the induced subgraph G[B] is connected. This is because two
coordinates xi and xj can be equated if and only if we have a set of hyperplanes xi = xk1 ,
xk1 = xk2 , . . . , xkt = xj, which corresponds to a path between i and j in G.

Further, FΠ is a face of a region R if and only if any weak inequality in FΠ holds
in R. Hence, it is clear that FΠ(γR) is a face of R. Also, for bi = min Bi, we have
b1 < b2 < . . . < bk, and hence FΠ(γR) is a good face of R by Lemma 3.5.

Now, let F′ be a good face of R, and suppose Π(F′) = (D1, . . . , Dℓ).

Claim: For all j ∈ {0} ∪ [k],
j⋃

i=1
Bi ⊆

j⋃
i=1

Di.

We prove this using induction on j ∈ [k]. The base case for j = 0 is trivial.

Now, suppose we have
j−1⋃
i=1

Bi ⊆
j−1⋃
i=1

Di. Then two cases arise:

Case 1: bj ∈
j−1⋃
i=1

Di.

Let m ∈ [n] be bj-reachable. Then, xm > xbj for all x ∈ R. Now, if m ∈ Dt for some
t ≥ j, we get xbj > xm for all x ∈ R, which is a contradiction.

Hence, m ∈
j−1⋃
i=1

Di, which gives us Bj ⊆
j−1⋃
i=1

Di ⊆
j⋃

i=1
Di.

Case 2: bj /∈
j−1⋃
i=1

Di.

Then bj ∈ Dj as if not, bj ∈ Dt for some t > j, which will give us min Dj > min Dt,
contradicting the fact that F′ is a good face by Lemma 3.5. Further, as bj ∈ Dj, we have

Bj ⊆
j⋃

i=1
Di using the same argument as above.

Hence our claim is true by induction on j.

As
k⋃

i=1
Bi = [n], we have [n] ⊆

k⋃
i=1

Di. So, ℓ ≤ k.

Thus R does not have a good face of dimension greater than k.

Lemma 4.7. Let v be as in Definition 4.3. Let R be a region of AG, and let Π(γR) =
(B1, . . . , Bk). Let pB be the projection of v onto FΠ(γR). Let Π′ = (D1, . . . , Dℓ) ̸= (B1, . . . , Bk),
be such that FΠ′ is a good face of R with ℓ ≤ k, and pD be the projection of v onto FΠ′ .

Then, ||p − pB|| < ||p − pD||.

Proof. From Lemma 3.3, pB = (p1, . . . , pn), where ∀i ∈ Bj, pi = ∑
m∈Bj

vm

|Bj|
and pD =

(q1, . . . , qn), where ∀i ∈ Dj, qi = ∑
m∈Dj

vm

|Dj|
.

Now, from the proof Lemma 4.6, B1 = D1 or B1 ⊊ D1, and if Bi = Di for all i < j,
Bj = Dj or Bj ⊊ Dj. As (D1, . . . , Dℓ) ̸= (B1, . . . , Bk) we have Dj ⊋ Bj for some j.



8 Neha Goregaokar

Let j be the first index where Dj ⊋ Bj, let |Dj| = d, |Bj| = b, and let min(Bj) = bj.
Then, as v satisfies Definition 4.3, Bi = Di for all i < j, and d > b, we get

||v − pD||2 − ||v − pB||2 ≥
(

1
b
− 1

d
− 1

n2

)
v2

bj
> 0.

Theorem 4.4 is now a direct consequence of Lemmas 4.6 and 4.7.

5 Natural Unit Interval Graphs

In this section, we consider a special type of graphs known as natural unit interval
graphs.

Definition 5.1. A graph G = ([n], E) is a natural unit interval graph if for all {i, j} ∈ E,
with i < j, we have for all i < k < j, {i, k} ∈ E and {k, j} ∈ E.

We now consider the graphical arrangement AG of a natural unit interval graph G.
We know that every region of the braid arrangement is indexed by a permutation. As
a region of a graphical arrangement is a union of adjacent regions of the braid arrange-
ment, each region R of our graphical arrangement AG is uniquely associated to a set of
permutations. Let us denote this set by SR.

We now state the main results of this section:

Theorem 5.2. Let G = ([n], E) be a natural unit interval graph, and let R be a region of AG.
Let σ ∈ Sn be the lexicographic minimum of SR. Let v be as in Definition 4.3. Then,

pdv(R) = RLmin(σ).

Theorem 5.3. Let G = ([n], E) be a natural unit interval graph and cj = |{i < j | {i, j} ∈ E}|
for all j ∈ [n]. Then,

χAG(q) =
n

∏
j=1

(q − cj).

The rest of this section is dedicated to the proof of Theorems 5.2 and 5.3. Note that
Theorem 5.3 is known for the chromatic polynomial of a natural unit interval graph (see,
for instance, [2]).

Definition 5.4. Let G = ([n], E) be a natural unit interval graph. A permutation σ =
σ1 . . . σn ∈ Sn is said to be a G-local minimum if for all i ∈ [n − 1] such that σi > σi+1, we
have {σi, σi+1} ∈ E.

We now characterize G-local minima. To do this, we first define G-descents.
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Definition 5.5. Let G = ([n], E) be a natural unit interval graph and σ = σ1 . . . σn ∈ Sn.
For i ∈ [n − 1] we say we have a G-descent at i (or that σiσi+i is a G-descent) if σi > σi+1
and {σi, σi+1} ∈ E.

From the definitions of G-local minima and G-descents, it is clear that for a natural
unit interval graph G, a permutation σ ∈ Sn is a G-local minimum if and only if every
descent of σ is a G-descent. We further have:

Lemma 5.6. Let G = ([n], E) be a natural unit interval graph. Let R be a region of AG and let
SR be the set of permutations associated to R. Then the unique G-local minimum permutation in
SR is the lexicographic minimum of SR.

Proof. Let σ = σ1 . . . σn be a G-local minimum in SR and τ = τ1 . . . τn be the lexicographic
minimum of SR. It is clear that τ is a G-local minimum as if there was a descent τi > τi+1
of τ such that {τi, τi+1} /∈ E, we could swap τi and τi+1 and get a permutation in SR that
is less than τ in the lexicographic order.

We assume for contradiction that σ ̸= τ. Suppose they first differ at the ith position,
that is, σ1 . . . σi−1 = τ1 . . . τi−1 and σi ̸= τi. As τ is the lexicographic minimum, τi < σi.
Further, as they are permutations, τi = σk for some k > i.

Now, as both σ and τ correspond to the same region of AG, we can obtain one from
the other by a sequence of swapping adjacent elements in the one line notation, where
the pairs of swapped elements are of the form {a, b} with {a, b} /∈ E.

We have σ = τ1 . . . τi−1σi . . . σk−1τiσk+1 . . . σn. To obtain τ from σ, we would have to
swap τi with σt for all i ≤ t ≤ k − 1. Hence, for all i ≤ t ≤ k − 1, xτi = xσt is not a
hyperplane of AG, that is, {τi, σt} /∈ E.
Claim: For i ≤ t ≤ k − 1, we have σt < τi.

We prove this claim inductively.
Suppose σk−1 > τi. Then, σk−1τi is a descent which is not a G-descent, contradicting

the fact that σ is a G-local minimum.
Now, suppose for r < t ≤ k − 1, we have σt < τi.
Then, if σr > τi, we have σr > σr+1. As σ is a G-local minimum, we have {σr, σr+1} ∈

E. Further, as G is a natural unit interval graph, we get that {τi, σr} ∈ E, which is a
contradiction. Hence, σr < τi.

Hence our claim is proved.
But then we have σi < τi which is a contradiction. Hence, σ = τ, that is, a G-local

minimum in SR is the lexicographic minimum of SR and hence is unique.

As the lexicographic minimum is unique for each region R of AG where G is a
natural unit interval graph, we can choose the representative of the region R to be the
lexicographic minimum of SR. In particular, these lexicographic minima will be precisely
the permutations where all descents are G-descents.
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Lemma 5.7. Let v be as in Definition 4.3, and let G = ([n], E) be a natural unit interval graph.
Let R be a region of AG. Then projv(R) ∈ Rσ where σ is the lexicographic minimum of SR, and
Rσ is the region of the braid arrangement Bn labeled by σ.

Proof. Let σ′ ∈ SR be such that projv(R) ∈ Rσ′ , where Rσ′ is the region of the braid
arrangement Bn labeled by σ′. Suppose σ′ is not the lexicographic minimum of SR. Then,
from Lemma 5.6, we have that σ′ is not a G-local minimum. Hence for σ′ = σ′

1 . . . σ′
n, we

have for some i ∈ [n], σ′
i > σ′

i+1 and {σ′
i , σ′

i+1} /∈ E. Then, σ′′ = σ′
1 . . . σ′

i+1σ′
i . . . σ′

n ∈ SR.
Now, as a consequence of Theorem 3.2 and Lemma 4.7, we have that the face F′ of

Rσ′ that v projects into is labeled by the ordered partition obtained by partitioning σ′ at
the right-to-left minima. Let us denote this partition by Π(F′).

In Π(F′), σ′
i and σ′

i+1 will be in the same block (as σ′
i cannot be a right-to-left mini-

mum). As swapping σ′
i and σ′

i+1 does not affect the partition, F′ is a common face of Rσ′

and Rσ′′ . Hence projv(R) ∈ Rσ′′ , the region of the braid arrangement Bn labeled by σ′′.
Continuing like this, we get that projv(R) ∈ Rσ where σ is the G-local minimum of

SR and hence the lexicographic minimum of SR by Lemma 5.6, and Rσ is the region of
the braid arrangement Bn labeled by σ.

Lemma 5.8. Let G = ([n], E) be a natural unit interval graph, and let R be a region of AG.
Let σ ∈ Sn be the lexicographic minimum of SR. Let Π be the ordered partition obtained by
partitioning σ at the right-to-left minima. Then, FΠ is not contained in the interior of another
face of AG.

Proof. To show that FΠ is not contained in the interior of another face of AG, it is enough
to show that span(FΠ) is a flat of AG. To show this, we show that for any block B of Π,
the induced subgraph G[B] is connected.

Suppose the induced subgraph G[B] is not connected. Let i be the smallest vertex in
B. As we get Π by partitioning at the right-to-left minima, i will appear after any other
element of B in the one line notation of σ. Let j be the greatest vertex of the component
with i, and k be a vertex in a different component of the induced subgraph.

Now, as i and j are in the same component, we have a path from i to j, say ik1k2 . . . kt j.
Suppose we have i < k < j. Then, ks < k < ks+1 for some s (take k0 = i and kt+1 = j).
But, as {ks, ks+1} ∈ E, and G is a natural unit interval graph, {ks, k} ∈ E, that is, k is in
the same component as ks and hence the same component as i, a contradiction.

Hence k > j, that is, any other component of the induced subgraph has all vertices
greater than j and hence greater than any vertex in the component containing i. We can
order the components of G[B] independently in the one line notation of σ and still have
a permutation in SR. The permutation obtained by ordering these components such that
the component with i appears before any other component of G[B] will be less than σ in
the lexicographic order. This contradicts the fact that σ is the lexicographic minimum of
SR. Hence G[B] is connected.



Chromatic polynomial via hyperplane arrangements 11

Hence, by Lemmas 5.7 and 5.8, for a region R ∈ R(AG) and v as in Definition 4.3,
pdv(R) = dim(FΠ), where Π is the ordered partition of [n] obtained by partitioning the
lexicographic minimum σ of SR at its right-to-left minima. As dim(FΠ) is clearly the
number of right-to-left minima of σ, Theorem 5.2 follows.

We can now obtain the characteristic polynomial of the graphical arrangement of a
natural unit interval graph.

Proof of Theorem 5.3. From Theorem 5.2, we have for a region R of the graphical arrange-
ment AG, pdv(R) = RLmin(σ) where σ is the lexicographic minimum of SR. We have
also shown that these lexicographic minima are precisely the permutations where all
descents are G-descents.

Hence, from Theorem 2.5 we get that

χAG(−q) = (−1)n ∑
σ∈Sn

all descents of σ are G-descents

qRLmin(σ).

So, it is enough to show that

∑
σ∈Sn

all descents of σ are G-descents

qRLmin(σ) =
n

∏
j=1

(q + cj).

We prove this using induction on n. The base case is trivial.
Suppose that the statement holds for a natural unit interval graph on n − 1 vertices.
Let G = ([n], E) be a natural unit interval graph and let G′ = G[n − 1]. Then G′ is

also a natural unit interval graph.
Note that if we have a permutation of [n] such that all descents are G-descents, re-

moving n gives us a permutation of [n − 1] such that all descents are G-descents. This
is because for σ = σ1 . . . σn, with σi = n (i < n), nσi+1 is a descent and hence a G-
descent. If σi+1 < σi−1, as {σi+1, n} ∈ E and G is a natural unit interval graph, we have
{σi+1, σi−1} ∈ E, and hence the only new descent formed on removing n is a G-descent.
If σi+1 > σi−1, no new descent is formed on removing n and hence all descents are
G-descents.

Hence, we can uniquely obtain all permutations of [n] such that all descents are G-
descents by inserting n into a permutation of [n− 1] such that all descents are G-descents.
There are two ways to do this:

We can insert n before any element it is adjacent to so that the descent thus formed
is a G-descent. We have cn ways of doing this. In this case, the number of right-to-left
minima of the permutation will remain the same as n does not become a right-to-left
minima and the ordering of the other elements is unchanged. The contribution of this

to the characteristic polynomial will be cn
n−1
∏
j=1

(q + cj).
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We can also insert n at the end of the permutation. This will not form any new
descents, hence all descents will be G-descents. However, the number of right-to-left
minima will increase by one as n is also a right-to-left minima. The contribution of this

to the characteristic polynomial will be q
n−1
∏
j=1

(q + cj).

Hence, we get that ∑
σ∈Sn

all descents of σ are G-descents

qRLmin(σ) =
n
∏
j=1

(q + cj).

Hence, χAG(−q) = (−1)n
n
∏
j=1

(q + cj).
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