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Abstract. Cluster algebras are celebrated for their intriguing positivity properties.
Combining two distinct approaches to positivity, we give a directly computable, man-
ifestly positive, and elementary (yet highly nontrivial) formula describing generalized
cluster scattering diagrams in rank 2. This formula enumerates new combinatorial
objects called tight gradings on maximal Dyck paths, inspired by the greedy basis
construction for cluster algebras. Using the positivity of rank 2 generalized cluster
scattering diagrams, we prove the Laurent positivity of generalized cluster algebras of
all ranks, resolving a conjecture of Chekhov–Shapiro from 2014.
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1 Introduction

Scattering diagrams (or wall-crossing structures) emerged from efforts to construct mirror
manifolds [13, 12] growing out of the Strominger–Yau–Zaslow conjecture [21] in mirror
symmetry. Since then, this structure has also been utilized to encode enumerative geo-
metric invariants and categorical invariants that count stable objects. These two themes
have notably overlapped in the cluster algebras discovered by Fomin and Zelevinsky [7]
and subsequent studies, where the techniques of scattering diagrams are fundamental
in solving problems in algebraic combinatorics [9].

Cluster algebras, originally devised as a combinatorial framework to address total
positivity and (dual) canonical bases in Lie theory, have themselves given rise to a wide
range of intriguing algebraic and combinatorial questions. Among these, one of the most
notable is the positivity phenomenon, conjectured by Fomin and Zelevinsky [7, Section 3].
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After remaining unsolved for over a decade, this positivity was first proven by Lee and
Schiffler [16] in the generality for all skew-symmetric cluster algebras using an explicit
rank-2 formula that sums over compatible pairs on Dyck paths. This breakthrough led
to the construction of the greedy basis by Lee, Li and Zelevinsky [14].

In their seminal work [9], Gross, Hacking, Keel, and Kontsevich introduced ideas
and tools from log Calabi–Yau mirror symmetry, including scattering diagrams, broken
lines, and theta functions, into the study of cluster algebras. Due to the positivity of
the scattering diagram developed in [9], the theta functions, which contain all cluster
monomials, satisfy Laurent positivity. For the same reason, their multiplicative structure
constants are also positive, a property referred to as strong positivity. We combine and
extend the methods of Lee–Schiffler [15, 16] and Gross–Hacking–Keel–Kontsevich [9] to
derive new positivity results for generalized cluster algebras [4].

In this extended abstract, a scattering diagram in a real vector space is defined as a
collection of codimension-one rational cones, referred to as walls, each associated with a
formal power series, called a wall-function. We first focus on rank-2 generalized cluster
scattering diagrams in R2, defined as the consistent completion of an initial scattering
diagram with two coordinate axes having wall-functions respectively polynomials P1
and P2. The wall-function f(a,b)(P1, P2) on the ray R≤0(a, b) for any positive coprime
integers (a, b) is notoriously difficult to compute, even when P1 and P2 are binomials
of low degrees. Although there are Coxeter-type symmetries and cluster-type discrete
structures governing the appearance of some rays [10], little is known about the wall-
functions in a 2-dimensional sector known as the "Badlands", when deg P1 · deg P2 > 4.

In Section 4, we present a directly computable, manifestly positive, elementary, yet
highly nontrivial formula describing all wall-functions f(a,b)(P1, P2). We show that each
coefficient of the wall-functions enumerates a new class of combinatorial objects that we
call tight gradings on a maximal Dyck path. The maximal Dyck path P(m, n) is the lattice
path from (0, 0) to (m, n) that is closest to the main diagonal, without crossing strictly
above it. A grading on P(m, n) is an assignment of a nonnegative integer value to each
edge of P(m, n). A grading is tight if it satisfies a certain combinatorial compatibility
condition (see Section 2 for precise details).

Figure 1: A tight grading.

Pictorially, tight gradings can be represented as "tilings" by
rectangles on rotations of the maximal Dyck path, as in the
image to the right. The size of the first rectangle extending
from each edge corresponds to its value in the grading. The
relatively small space between the (light) blue and (dark) red
rectangles encodes the tightness condition, and the fact that
the rectangles are disjoint encodes the compatibility condition.

Theorem 1.1. In a generalized cluster scattering diagram of rank 2,
each coefficient of the wall-function f(a,b)(P1, P2) is equal to the sum
of weights of the corresponding tight gradings on some maximal Dyck path.
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In [11], the coefficients in log f(a,b) are proven to be interpreted by relative Gromov–
Witten invariants on toric surfaces. Therefore the above theorem yields a combinatorial
formula for computing these Gromov–Witten invariants in terms of tight gradings.

In Section 2, we define tight gradings. Section 3 contains preliminaries on rank-2
scattering diagrams, focusing on the generalized cluster case. We present our explicit
formula for wall-function coefficients in terms of tight gradings in Section 4. We then
discuss applications of this formula in Section 5, including showing that the Badlands
wall-functions are all non-trivial and proving the Laurent positivity of generalized clus-
ter algebras of all ranks. Further details can be found in our preprints [3] and [2].

2 Tight gradings

In this section, we introduce combinatorial objects called tight gradings that are central
to our main results. Tight gradings form a subset of the compatible gradings defined by
Rupel [19] and inspired by the compatible pairs of Lee–Li–Zelevinsky [14] (see Section 2).

Fix m, n ∈ N = Z≥0. Consider a rectangle with vertices (0, 0), (0, n), (m, 0), and
(m, n) with a main diagonal from (0, 0) to (m, n).

Definition 2.1. A Dyck path P is a lattice path in (Z × R) ∪ (R × Z) ⊂ R2 starting
at (0, 0) and ending at (m, n), proceeding by only unit north and east steps and never
passing strictly above the main diagonal. We also view P as the set of its unit north and
east steps, where we refer to each step as an edge.

Given a set C of edges in P , we denote the set of horizontal edges (east steps) by CE
and the set of vertical edges (north steps) by CN. We let |C| denote the number of edges
in C. For edges e and f in P , let

−→
e f denote the subpath proceeding east from e to f

(including both e and f ), continuing cyclically around P if e is to the north or east of f .

The Dyck paths from (0, 0) to (m, n) form a partially ordered set by comparing the
heights at all vertices. The maximal Dyck path P(m, n) is the maximal element under this
partial order. When m and n are relatively prime, the maximal Dyck path P(m, n) corre-
sponds to the lower Christoffel word of slope n/m. We label the horizontal edges from
left to right by u1, u2, . . . , um and the vertical edges from bottom to top by v1, v2, . . . , vn.

Example 2.2. In Figure 2, the maximal Dyck path P(6, 4) is shown in the top left and
P(7, 4) is shown in the top right.

Motivated by Lee–Schiffler [15], Lee, Li, and Zelevinsky [14] introduced combinato-
rial objects called compatible pairs to construct the greedy basis for rank-2 cluster algebras,
consisting of indecomposable positive elements including the cluster monomials. Rupel
[19, 20] extended this construction to the setting of generalized rank-2 cluster algebras by
defining compatible gradings.
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A function from the set of edges on P(m, n) to N is called a grading. For any grading
ω and for any set of edges S ⊂ P , let ω(S) := ∑

e∈S
ω(e).

Definition 2.3. A grading ω : P −→ N is called compatible if for every pair of u ∈ PE
and v ∈ PN with ω(u)ω(v) > 0, there exists an edge e along the subpath −→uv so that at
least one of the following holds:

e ∈ PN \ {v} and |−→ueN| = ω
(−→ueE

)
;

e ∈ PE \ {u} and |−→ev E| = ω
(−→ev N

)
.

(2.1)

Example 2.4. For each i ∈ {1, 2, 3}, let ωi : P(i + 5, 4) −→ N be the grading given
by ωi(u1) = ωi(u2) = 2, ωi(v3) = ωi(v4) = 3, and ωi(e) = 0 for every edge e in
P(i + 5, 4) \ {u1, u2, v3, v4} (see Figure 2 for i = 1, 2). Then ω1 is not compatible, but ω2
and ω3 are compatible. The main difference between ω1 and ω2 is that the edge e = u2
in P(7, 4) satisfies the second condition in (2.1) for u = u1 and v = v4, as both sides of
the equation equal 6.

2 2

3

3

2 2

3

3

Figure 2: In the top images, we depict gradings ω1 and ω2 on the Dyck paths P(6, 4)
and P(7, 4) from Example 2.4. Below, we depict the corresponding rectangular tilings.
The grading ω1 has overlapping rectangles and hence is not compatible, while the
grading ω2 is.

In their study of compatible pairs, Lee, Li, and Zelevinsky [14] introduced the notion
of the "shadow" of a set of edges, which Rupel [20] extended to the setting of gradings.

Definition 2.5. Fix a maximal P and a grading ω : P → N. For each edge e in P , we
define its shadow, denoted by sh(e), as follows.

• If e is horizontal, then its shadow is −→ev N, where v ∈ PN is chosen such that −→ev has
minimal length with |−→ev N| = ω(−→ev E). If no such v exists, let sh(e) = PN.
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• If e is vertical, then its shadow is −→ueE, where u ∈ PE is chosen such that −→ue has
minimal length with |−→ueE| = ω(−→ueN). If no such u exists, let sh(e) = PE.

For S ⊂ P , let the shadow of S be sh(S) =
⋃
e∈S

sh(e).

Example 2.6. Consider ω2 as in Example 2.4. Then sh(v3) = {u4, u5, u6} and sh(v4) =
{u2, u3, . . . , u7} = sh(PN).

Partially motivated by [1], we discovered the following definition.

Definition 2.7. Let ω be a grading on P = P(m, n) with p = ω(PN) and q = ω(PE).
The grading ω is a tight grading if ω is a compatible grading satisfying p ≤ m, q ≤ n,

|pn − qm| = gcd(p, q) ,

and at least one of
SE ⊆ sh(PN) or SN ⊆ sh(PE) ,

where S is the set of edges e with ω(e) > 0.

We can represent compatible gradings as rectangular tilings as follows. First, rotate
(i.e. cyclically shift) the maximal Dyck path so that the shadow of each horizontal (resp.
vertical) edge does not extend beyond the left (resp. top) boundary of the rotated path.
Such a rotation always exists for tight gradings. Then draw blue rectangles above each
horizontal edge e with total height equal to the size of the shadow of e, partitioned into
the vertical grading values contributing to the shadow. Similarly, we draw red rectangles
to the left of each edge in PN. The grading is compatible only if the resulting rectangles
are non-overlapping. The condition on the shadows can be easily read off by seeing
if every blue rectangle has a red rectangle above, or if every red rectangle has a blue
rectangle to the left.

Example 2.8. (1) The grading ω2 as in Example 2.4 is not tight despite SN ⊆ sh(PE),
because (m, n) = (7, 4) does not satisfy β1n − β2m = ± gcd(β1, β2) for (β1, β2) = (6, 4).
(2) Let (β1, β2) = (2, 1) and (m, n) = (3, 1). Consider P(3, 1). Suppose that
ω(u1) = 1, ω(u2) = ω(u3) = 0, and ω(v1) = 2. Then ω is tight.

(3) Let (β1, β2) = (4, 2) and (m, n) = (5, 2). Consider P(5, 2). Suppose that
ω(u1) = ω(u2) = ω(v1) = 1, ω(v2) = 3, and ω(u3) = ω(u4) = ω(u5) = 0. Then ω is
tight.

(4) Let (β1, β2) = (6, 3) and (m, n) = (7, 3). Consider P(7, 3). Suppose that
ω(v2) = ω(v3) = 3, ω(u1) = ω(u2) = ω(u3) = 1, and ω(v1) = ω(u4) = ω(u5) =
ω(u6) = ω(u7) = 0. Then ω is tight.
(5) Let (β1, β2) = (12, 8) and (m, n) = (14, 9). There are total 14 tight gradings such that
ω(h) = 2 for exactly four horizontal edges h, ω(v) = 3 for exactly four vertical edges v,
and ω(e) = 0 for all other edges on P(14, 9).
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Figure 3: The 14 tight gradings on P(14, 9) with (β1, β2) = (12, 8). These correspond to
a coefficient of the central wall-function, whose sequence of coefficients is the Catalan
numbers, in a certain cluster scattering diagram (see Example 3.6).

Remark 2.9. The word "tight" is inspired by the tight space between blue and red rectan-
gles.

3 Rank 2 scattering diagrams

Fix a rank-2 lattice M ∼= Z2 and choose a strictly convex rational cone σ in MR := M⊗R.
We take the monoid P = σ ∩ M and denote P+ := P \{0}. Set k̂[P] to be the monoid
algebra k[P] completed at the maximal monomial ideal m generated by {xm | m ∈ P+}.

Definition 3.1. A wall is a pair (d, fd) consisting of a support d ⊆ MR and a wall-function
fd ∈ k̂[P], where

• d is either a ray R≤0w or a line Rw for some w ∈ P+;

• fd = fd(xw) = 1 + ∑
k≥1

ckxkw for ck ∈ k.
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Associated to a wall (d, fd) and a direction v ∈ MR transversal to d is an algebra
automorphism pv,d ∈ Aut(k̂[P]) defined by pv,d(xm) = xm f n(m)

d for m ∈ P, where n ∈
Hom(M, Z) is primitive and orthogonal to d in the direction n(v) < 0.

Definition 3.2. A scattering diagram D is a collection of walls such that the set

Dk := {(d, fd) ∈ D | fd ̸≡ 1 mod mk}

is finite for each k ≥ 0.

A path γ : [0, 1] → MR is called regular (with respect to D) if it is a smooth immersion
with endpoints away from the support of any wall and only crosses walls transversally.
For each k ≥ 1, let 0 < t1 < · · · < ts < 1 be the longest sequence such that γ(ti) ∈ di for
some wall (di, fdi) ∈ Dk. Consider the product p(k)γ,D = pγ̇(ts),ds ◦ · · · ◦ pγ̇(t1),d1

. We define

the path-ordered product of γ to be pγ,D = lim
k→∞

p
(k)
γ,D ∈ Aut(k̂[P]).

Definition 3.3. A scattering diagram D is called consistent if the path-ordered product
pγ,D equals the identity for any regular simple loop γ.

Theorem 3.4 ([13]). Given any initial scattering diagram Din of only lines, there is a unique
minimal consistent scattering diagram Scat(Din) containing Din such that Scat(Din) \Din con-
sists of distinct rays with non-trivial wall-functions.

While the use of scattering diagrams originated in the study of mirror symmetry, they
have since found remarkable applications in cluster algebras by the celebrated work of
Gross, Hacking, Keel, and Kontsevich [9]. We exhibit a collection of consistent scattering
diagrams devised for (generalized) cluster algebras in rank 2. Let M = Z2, e1 = (1, 0),
e2 = (0, 1). Choose σ to be the first quadrant of MR = R2. Denote x = xe1 and y = xe2 .
The initial scattering diagram will be two lines

Din = {(Re1, P1(x)), (Re2, P2(y))} (3.1)

where Pi(xei) ∈ k[xei ] with constant term 1. Denote D(P1, P2) = Scat(Din). There are
infinitely many rays in D(P1, P2) \Din of the form (R≤0(a, b), f(a,b)) for coprime (a, b) ∈
Z2

>0 unless deg P1 · deg P2 < 4, when there are finitely many.
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Figure 4: From left to right, we depict the scattering diagrams D(1 + p1,1x + p1,2x2 +

p1,3x3, 1 + p2,1y), D(2,2), and D(3,2).

Example 3.5. We depict in the left of Figure 4 the case deg P1 = 3 and deg P2 = 1. The
remaining finite cases can be obtained by specializing certain coefficients to zero. In the
scattering diagram on the left of Figure 4, the wall-functions on the added rays are

f(3,1) = 1 + p1,3p2,1x3y,

f(2,1) = 1 + p1,2p2,1x2y + p1,1p1,3p2
2,1x4y2 + p2

1,3p3
2,1x6y3 (see Example 3.5 f(2,1)),

f(3,2) = 1 + p1,3p2
2,1x3y2,

f(1,1) = 1 + p1,1p2,1xy + p1,2p2
2,1x2y2 + p1,3p3

2,1x3y3.

When P1(x) = 1+ xℓ1 and P2(y) = 1+ yℓ2 , the resulting scattering diagram D(ℓ1,ℓ2) =
D(P1, P2) [9] is famously responsible for the rank-2 cluster algebra A(ℓ1, ℓ2) [7]. When
ℓ1ℓ2 < 4, its structure is directly derived from Example 3.5 by specializing coefficients.
When ℓ1ℓ2 ≥ 4, there is a discrete set of rays outside the closed cone spanned by(

−2ℓ1,−ℓ1ℓ2 −
√
ℓ2

1ℓ
2
2 − 4ℓ1ℓ2

)
and

(
−ℓ1ℓ2 −

√
ℓ2

1ℓ
2
2 − 4ℓ1ℓ2,−2ℓ2

)
.

These rays are in bijection with the cluster variables {xn | n ∈ Z, n ̸= 0, 1, 2, 3} ⊂
A(ℓ1, ℓ2), where their directions are opposite to the d-vectors of cluster variables. The
cone itself, known as the Badlands, has a much richer yet more elusive structure. It is
known that D(ℓ1,ℓ2) has a ray at every rational slope within the Badlands; see [10, Section
4.7] and [8]. However, the wall-functions there were generally not understood.

Example 3.6. The scattering diagram D(2,2), depicted in the center of Figure 4, has only
one non-cluster ray, depicted in red. The scattering diagram D(3,2) is depicted in the right
of Figure 4, with the Badlands shown in red. The wall-function on the ray R≤0(3, 2) is
1+ x3y2 + 2x6y4 + 5x9y6 + 14x12y8 + 42x15y10 + · · · , where the coefficients are the Catalan
numbers. The calculation of the coefficient 14 comes from Example 2.8(5).
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We can even let the initial wall-functions in (3.1) be power series

Pi(xei) = 1 + pi,1xei + · · ·+ pi,jxjei + · · · ∈ kJxK, i = 1, 2.

In D(P1, P2), the functions on the added rays R≤0(a, b) with coprime (a, b) ∈ N2 are of
the form

f(a,b)(P1, P2) = 1 + ∑
k≥1

λ(ka, kb)xkaykb. (3.2)

In Section 4, we will give a combinatorial formula for every λ(ka, kb) in terms of
tight gradings. Since the polynomial case can be obtain from the power series case by
letting all but finitely many pi,j be zero, it will become clear that the formula given in
Theorem 4.3 also applies to the polynomial case by considering certain subsets of tight
gradings.

4 Combinatorial formula of wall-function coefficients

Definition 4.1. The weight of a grading ω : P(m, n) −→ N is defined as

wt(ω) =
m

∏
i=1

p2,ω(ui)

n

∏
j=1

p1,ω(vj)
.

Example 4.2. If ω is as in Example 2.8(2), then wt(ω) = p1,2p2,1. If ω is as in Exam-
ple 2.8(3), then wt(ω) = p1,1p1,3p2

2,1. If ω is as in Example 2.8(4), then wt(ω) = p2
1,3p3

2,1.

Our main theorem explicitly computes the elements f(a,b) in terms of tight gradings
introduced in Section 2.

Theorem 4.3. Fix coprime positive integers (a, b). For each k ≥ 1, choose integers (mk, nk)
such that |ank − bmk| = 1, ka ≤ mk, and kb ≤ nk. Then

f(a,b) = 1 + ∑
k≥1

∑
ω

wt(ω)xkaykb, (4.1)

where the second sum is over all tight gradings ω on the Dyck path P(mk, nk) of total horizontal
weight kb and total vertical weight ka.

Example 4.4. Let deg P1 = 3, deg P2 = 1, and (a, b) = (2, 1). Let (mk, nk) = (ka + 1, kb)
for all k ≥ 1. Then the gradings as in Example 2.8(2)(3)(4) are the only tight gradings
of the form ω : P = P(mk, nk) −→ N with ω(PE) = kb and ω(PN) = ka with nonzero
weight. Thus, Example 4.2 implies

f(2,1)(P1, P2) = 1 + p1,2p2,1x2y + p1,1p1,3p2
2,1x4y2 + p2

1,3p3
2,1x6y3.
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Remark 4.5. When deg Pi = ℓi for i = 1, 2, Reineke and Weist [18] showed that the
coefficients of f(a,b)(P1, P2) can be expressed in terms of Euler characteristics of certain
moduli spaces of framed stable representations of the complete bipartite quiver with
ℓ1 sources and ℓ2 sinks. Therefore our tight grading formula Theorem 4.3 provides a
manifestly-positive way to compute these Euler characteristics.

5 Applications of the tight grading formula

5.1 Every wall-function coefficient in the Badlands is non-trivial

As a direct application of our formula, we can prove that for D(P1, P2) with positive
coefficients and ℓ1ℓ2 ≥ 4, every wall-function coefficient of every wall in the Badlands
is strictly positive. Together with the known description of cluster rays, we obtain a full
description of when λ(ak, bk) is non-vanishing.

When ℓ1 = ℓ2, Gross and Pandharipande [10] showed that every rational ray in the
Badlands has non-trivial wall-function using a result regarding the existence of stable
quiver representations due to Reineke [10, Proposition 4.15]. This was extended to the
skew-symmetrizable setting by Gränitz and Luo [8]. Davison and Mandel [6, Example
7.10] showed further that every coefficient is non-zero in the skew-symmetric setting.

Our approach requires only elementary combinatorics and extends naturally to the
generalized cluster setting with positive initial wall-functions.

Theorem 5.1. Suppose P1 and P2 have positive coefficients. In the scattering diagram D(P1, P2),
for any coprime (a, b) ∈ Z2

>0 with R≤0(a, b) in the Badlands and any k ≥ 1, there exists a
maximal Dyck path P at least one tight grading ω : P −→ N with ω(PE) = kb, ω(PN) = ka,
and non-zero weight with respect to P1 and P2.

Therefore, every coefficient λ(ka, kb) is strictly positive for every wall within the Badlands.

5.2 Positivity of generalized cluster algebras

Built on the rank-2 positivity demonstrated by our tight grading formula, we develop the
positivity of higher-rank scattering diagrams towards applications in generalized cluster
algebras. These algebras, axiomatized by Chekhov and Shapiro [4], accommodate poly-
nomial mutation rules, in contrast to binomial exchange relations introduced by Fomin
and Zelevinsky [7]. Following [9], the generalized cluster scattering diagrams [17, 5] are
constructed to study these algebras.

Extending the positivity in rank 2 from Theorem 4.3 and using a change of lattice trick
and a perturbation trick adapted from [11, 9], we obtain the following positivity result in
all ranks. A coefficient is said to be positive if it is a polynomial in the coefficients of the
initial exchange polynomials with positive integer coefficients.
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Theorem 5.2 ([2, Theorem 9.9]). There exists a representative for (the equivalence class of) a
generalized cluster scattering diagram of any rank such that the coefficients of all wall-functions
are positive.

The strategy of the proof of Theorem 5.2 is to construct a sequence of finite scattering
diagrams Dk so that the limit of (Dk)k≥1 is equivalent to D. The theorem is proven by
showing inductively that each Dk admits positivity where our rank-2 positivity Theo-
rem 4.3 is crucial for the induction.

The positivity of theta function coefficients follows directly from that of the scattering
diagram, as in the ordinary cluster case [9]. Since the cluster variables of a generalized
cluster algebra are theta functions for the corresponding scattering diagrams [17, 5], we
thus obtain the Laurent positivity of generalized cluster algebras.

Corollary 5.3 ([4, Conjecture 5.1]). In a generalized cluster algebra of any rank, the Laurent
expansion of any generalized cluster variable (in an initial cluster) has positive coefficients.

The structure constants of the theta functions (see [9, Section 6] and [5, Section 5])
also directly inherit positivity from the positivity of the generalized cluster scattering
diagrams.

Corollary 5.4. The theta functions defined in a generalized cluster scattering diagram of any
rank have strong positivity, that is, their multiplicative structure constants are positive.
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