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Abstract. The quantum Bruhat graph is a weighted directed graph on a finite Weyl
group first defined by Brenti–Fomin–Postnikov. It encodes quantum Monk’s rule and
can be utilized to study the 3-point Gromov–Witten invariants of the flag variety.
In this paper, we provide a combinatorial formula for the minimal weights between
any pair of permutations on the quantum Bruhat graph, and consequently obtain
an Ehresmann-like characterization for the tilted Bruhat order. We define the tilted
Richardson variety Tu,v, with a stratification that gives a geometric meaning to inter-
vals in the tilted Bruhat order. We prove some fundamental geometric properties of
this new family of varieties, including their dimensions, closure relations, irreducibil-
ity, and a Deodhar-like decomposition. We demonstrate their equivalence to the two-
point curve neighborhoods of Schubert varieties Xu and Xv in the minimal degree, and
relate their cohomology classes to quantum products of Schubert classes.
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1 Introduction

Hilbert’s fifteenth problem, Schubert calculus, concerns the full flag variety

Fln = {0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Cn | dim Vi = i for i = 1, . . . , n − 1}

and its Schubert decomposition Fln =
⊔

w∈Sn X◦
w. The cohomology ring H∗(Fln) has a

linear basis given by the Schubert varieties {[Xw]}w∈Sn . The corresponding structure con-
stants cv

u,w’s, also referred to as the generalized Littlewood–Richardson numbers, are known
to be nonnegative integers from transversal intersection. It has been a long standing
open problem to find a combinatorial interpretation of these numbers. The study of flag
varieties, Schubert varieties and the structure constants is central in algebraic geometry
and algebraic combinatorics.
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The small quantum cohomology ring QH∗(Fln) is a deformation of the cohomol-
ogy ring. The structure constants of QH∗(Fln) with respect to the Schubert basis are
known to be the 3-point genus-0 Gromov–Witten invariants. They extend the generalized
Littlewood–Richardson numbers in the “quantum" direction.

The problem of multiplying Schubert classes in QH∗(Fln) can be naturally encoded
via the quantum Bruhat graph, first defined by Brenti–Fomin–Postnikov [1] and utilized
by Postnikov [13]. The quantum Bruhat graph can be seen as a graphical representation
of the quantum Monk’s rule and enjoys very rich algebraic and combinatorial properties.
In particular, the minimal degree qd that appears in the quantum product [Xu] ⋆ [Xv] is
the weight of any shortest directed path from u to v [13]. The quantum Bruhat graph
directly gives rise to the tilted Bruhat order [1]. These are our main combinatorial objects
of interest for this paper.

Our first set of main results are about the weights in the quantum Bruhat graph.
Specifically, we provide:

1. An explicit combinatorial formula for the minimal weight between any pair of
permutations u to v (Theorem 2.6).

2. An Ehresmann-like characterizaiton for the tilted Bruhat order (Theorem 2.12).

We remark that Theorem 2.6 was also obtained via a combination of Postnikov’s
toric Schur polynomials [12] on the quantum cohomology ring of the Grassmannian,
and a geometric result by Buch–Chung–Li–Mihalcea [4] (see also [7]). Our proof is
independent and purely combinatorial.

While weights on the quantum Bruhat graph encode important information in the
quantum cohomology of the flag variety, we present a novel geometric interpretation of
intervals in the tilted Bruhat order with a more classical flavor. For any pair of permu-
tations u, v ∈ Sn, we define the tilted Richardson variety Tu,v and the open tilted Richardson
variety T ◦

u,v (Definition 3.2), which reduces to the well-known (open) Richardson variety
if u ≤ v in the Bruhat order.

The tilted Richardson varieties are our central geometric objects of study. Our second
set of results concern geometric properties of tilted Richardson varieties (Theorem 3.7).
We prove:

1. a stratification Tu,v =
⊔
[x,y]⊆[u,v] T ◦

x,y that relates the tilted Bruhat order;

2. dim Tu,v = dim T ◦
u,v = the length of any shortest paths from u to v in the quantum

Bruhat graph;

3. the closure relation T ◦
u,v = Tu,v;

4. irreducibility of T ◦
u,v and Tu,v.
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Deodhar [6] introduced his decomposition of open Richardson varieties as a tool for
understanding Kazhdan–Lusztig polynomials [10]. As a key ingredient in proving irre-
ducibility of the tilted Richardson varieties, we introduce a decomposition of T ◦

u,v, gen-
eralizing Deodhar’s decomposition. The decomposition also allows us to compute the
Fq-point count of open tilted Richardson varieties, a generalization of R-polynomials.
More specifically, we give:

1. A decomposition of the (open) tilted Richardson varieties into simple pieces of the
form (C∗)a × Cb, extending Deodhar’s decomposition (Theorem 4.5);

2. A formula for the Fq-point counts of open tilted Richardson varieties using Hecke
algebras (Theorem 4.7).

In [2], Buch–Chaput–Mihalcea–Perrin introduced the two-point curve neighborhoods
Γd(Xu, Xv) in their study of the quantum cohomology ring QH∗(Fln) (see also [3]). They
encode information about the Gromov–Witten invariants of degree d, but little in the
way of explicit descriptions of the curve neighborhoods was known [11, 5]. We present
the first concrete combinatorial description in the minimal degree case by establishing a
connection with tilted Richardson varieties. We show that:

1. The tilted Richardson variety Tu,v is equal to the minimal degree two-point curve
neighborhood Γdmin(Xu, Xv) (Theorem 5.1);

2. The cohomology classes [Tu,v] = [Γdmin(Xu, Xv)] ∈ H∗(Fln) are equal to the minimal
quantum degree component in the quantum product [Xu] ⋆ [Xv] (Theorem 5.2).

2 Minimal weights in the quantum Bruhat graphs

Let Sn be the symmetric group on n elements, generated by the simple transpositions
{s1, . . . , sn−1}. We typically write a permutation w using its one-line notation w1w2 · · ·wn.
For w ∈ Sn, let ℓ(w) be the Coxeter length of w, which is the smallest ℓ such that w =
sα1 · · · sαℓ is a product of ℓ simple transpositions. Let tij = (i j) be a transposition in Sn.

Definition 2.1 ([1]). The quantum Bruhat graph Γn is a weighted directed graph on Sn
with the following two types of edges:{

w → wtij of weight 1 if ℓ(wtij) = ℓ(w) + 1,
w → wtij of weight qiqi+1 · · · qj−1 if ℓ(wtij) = ℓ(w) + 1 − 2(j − i),

where 1 ≤ i < j ≤ n. Write wt(w → wtij) ∈ Z[q1, . . . , qn−1] for the weight.

The quantum Bruhat graph for n = 3 is shown in Figure 1.
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Figure 1: Quantum Bruhat graph Γ3 (unlabeled edges have weight 1)

Definition 2.2. For a directed path P : w(0) → w(1) → · · · → w(k) in Γn, we say that P
has length k, with weight

wt(P) :=
k

∏
i=1

wt(w(i−1) → w(i)).

For u, v ∈ Sn, let ℓ(u, v) be the length of a shortest path from u to v.

Postnikov [13] established nice properties regarding weights of shortest paths. Write
qd for qd1

1 · · · qdn−1
n−1 .

Lemma 2.3 ([13]). For any u, v ∈ Sn, all shortest paths from u to v have the same weight qdu,v .
Moreover, the weight of any path from u to v is divisible by qdu,v .

Remark 2.4. The weight qdu,v is the unique minimum quantum degree that appears in
the quantum product of two Schubert classes σu ⋆ σw0v in the quantum cohomology ring
QH∗(Fln) [13]. We further discuss this connection to QH∗(Fln) in Section 5.

Our first theorem provides an explicit formula that computes the minimal weight
qdu,v for any pair of permutation u, v ∈ Sn.

Definition 2.5. For A, B ⊂ [n] with |A| = |B|, we construct a lattice path P(A, B) starting
at (0, 0) and ending at (n, 0) with n steps as follows. For each i = 1, . . . , n, the ith step is

• an upstep (1, 1) if i ∈ A and i /∈ B,

• a downstep (1,−1) if i /∈ A and i ∈ B,

• a horizontal step (1, 0) if i ∈ A ∩ B or i /∈ A ∪ B.

Define its depth, denoted as depth(A, B), to be the largest number y ≥ 0 such that
P(A, B) passes through (x,−y) for some x.
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Theorem 2.6. Let u, v ∈ Sn. All shortest paths from u to v in the quantum Bruhat graph Γn

have weight qdu,v = qd1
1 · · · qdn−1

n−1 where dk = depth(u[k], v[k]). Here, w[k] := {w1, . . . , wk}.

Example 2.7. Consider u = 7364152 and v = 2513746 in S7. To figure out d4(u, v),
we need to construct a lattice path P4(u[4], v[4]) with upsteps u[4] = {3, 4, 6, 7} and
downsteps v[4] = {1, 2, 3, 5}, as shown in Figure 2 with depth(u[4], v[4]) = 2. In the end,
we arrive at qdu,v = q1q2q2

3q2
4q5q6.

•
•

• •
•

•
•

•
depth = 2

1

2
3

4 5 6

7

Figure 2: The lattice path P(u[4], v[4])

Definition 2.8 ([1]). For u ∈ Sn, define the tilted Bruhat order Du to be the graded
partial order on Sn such that w ≤u v if

ℓ(u, w) + ℓ(w, v) = ℓ(u, v). (2.1)

Equivalently, w ≤u v if there is a shortest path in the quantum Bruhat graph from u to v
that passes through w. For w ≤u v, define the tilted Bruhat interval to be

[w, v]u = {x ∈ Sn : w ≤u x ≤u v}.

The tilted Bruhat order D132 is shown in Figure 3.

•
132

•123 •231 •312

•213 •321

Figure 3: The tilted Bruhat order D132

Remark 2.9. It follows from (2.1) that [w, v]u = [w, v]u′ as long as w ≤u v and w ≤u′ v.
Since w ≤w v, we omit the subscript and write [w, v] instead of [w, v]u from now on.

Remark 2.10. When u = id, the tilted Bruhat order Du is the strong Bruhat order.

Our second theorem provides a combinatorial criterion for the tilted Bruhat order.
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Definition 2.11. For r ∈ [n], let ≤r be the shifted linear order on [n] given by r <r · · · <r

n <r 1 <r · · · <r r − 1. Define the shifted Gale order ≤r on ([n]k ) as

{a1 <r · · · <r ak} ≤r {b1 <r · · · <r bk} ⇐⇒ ai ≤r bi for all i ∈ [k].

For a sequence a = (a1, a2, . . . , an) ∈ [n]n, define the a-shifted order ≤a on Sn as

u ≤a v ⇐⇒ u[k] ≤ak v[k] for all k ∈ [n].

Theorem 2.12. For u, v, w ∈ Sn, the following are equivalent:

1. w ≤u v;

2. w ∈ [u, v];

3. for any sequence a = (a1, . . . , an) such that u ≤a v, we have u ≤a w ≤a v;

4. there exists a sequence a = (a1, . . . , an) such that u ≤a w ≤a v.

Example 2.13. Let u = 132, w = 123, v = 213. From Figure 3, we can see w ≤u v. Let
a = (1, 3, 1), we have u ≤a w ≤a v since

{1} ≤1 {1} ≤1 {2} {3, 1} ≤3 {1, 2} ≤3 {1, 2} [3] ≤1 [3] ≤1 [3].

Alternatively, u ≤a′ w ≤a′ v also for a′ = (3, 3, 2) since

{1} ≤3 {1} ≤3 {2} {3, 1} ≤3 {1, 2} ≤3 {1, 2} [3] ≤2 [3] ≤2 [3].

3 Tilted Richardson varieties

Let G = GLn(C) and B, B− ⊂ G be the Borel and opposite Borel subgroup of G consisting
of invertible upper and lower triangular matrices respectively. Let T = B ∩ B− be the
maximal torus of diagonal matrices in G.

The complete flag variety is defined to be Fln = G/B. Fixing a basis of Cn, we can
identify a point gB ∈ G/B with a flag F• = 0 = F0 ⊊ F1 ⊊ F2 ⊊ · · · ⊊ Fn−1 ⊊ Fn =
Cn where Fk ∈ Gr(k, n) is the span of the first k column vectors of any n × n matrix
representative MF ∈ gB.

Definition 3.1. For a, b ∈ [n], define the cyclic interval [a, b)c := {a, . . . , b − 1} if a ≤ b
and [a, b)c := {a, . . . , n} ∪ {1, . . . , b − 1} if a > b.

Motivated by our characterization of tilted Bruhat order (Theorem 2.12), we define
the (open) tilted Richardson varieties:
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Definition 3.2. For S any subset of [n], let ProjS : Cn ↠ C|S| be the projection onto the
coordinates with indices in S. For u, v ∈ Sn and a sequence a where u ≤a v, define the
tilted Richardson variety by:

Tu,v,a =

{
F• ∈ Fln :

dim(Proj[ai,j)c
(Fi)) ≤ #{u[i] ∩ [ai, j)c},

dim(Proj[j,ai)c
(Fi)) ≤ #{v[i] ∩ [j, ai)c}

∀i, j ∈ [n]

}
, (3.1)

and the open tilted Richardson variety T ◦
u,v,a by replacing all “≤" with “=" in (3.1).

Example 3.3. Let u = 4231, v = 3142 and a = (4, 2, 2, 3). Then u ≤a v. In Figure 4, the
⋆ and • represent u and v respectively, and the red horizontal line segment in column k
represents the cutoff of [n] under ≤ak for each k ∈ [4].

For F• ∈ Tu,v,a, there are 8 rank conditions imposed on F2 as in (3.1). These conditions
can be interpreted as rank conditions on submatrices of MF in the first two columns
with (cyclically) consecutive rows starting or ending at the red line. For example, the
condition dim(Proj{1,2,3}(F2)) ≤ 2 = #{v[2] ∩ {1, 2, 3}} is interpreted as the rank of the
shaded submatrix of MF in Figure 4(A) being at most 2, the number of • in said region.
The condition dim(Proj{2,3}(F2)) ≤ 1 = #{u[2] ∩ {2, 3}} is the rank of shaded submatrix
in Figure 4(B) being at most 1, the number of ⋆ in said region.

4
3
2
1

1 2 3 4
⋆

⋆

⋆

⋆

•

•

•

•

(A) dim(Proj{3,4,1}(F2)) ≤ 2

4
3
2
1

1 2 3 4
⋆

⋆

⋆

⋆

•

•

•

•

(B) dim(Proj{2,3}(F2)) ≤ 1

Figure 4: Rank conditions on Tu,v,a for u = 4231, v = 3142, and a = (4, 2, 2, 3)

It follows immediately from Theorem 2.12 that the set of T-fixed points on Tu,v,a is

{ew := wB/B ∈ Tu,v,a} = [u, v]. (3.2)

In particular, ew ∈ Tu,v,a is independent of the choice of a. In fact,

Proposition 3.4. Tu,v,a and T ◦
u,v,a are both independent of a as long as u ≤a v.

As a result, we omit the index a and write T ◦
u,v and Tu,v for the (open) tilted Richard-

son varieties.

Remark 3.5. If u ≤ v in strong Bruhat order, namely u ≤a v where a = (1, . . . , 1), then
T ◦

u,v and Tu,v are the (open) Richardson variety R◦
u,v and Ru,v respectively.
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Remark 3.6. In [9], we give three other equivalent definitions of the (open) tilted Richard-
son varieties using cyclically rotated Grassmannian Richardson varieties, vanishing loci
of multi-Plücker coordinates, and intersections of tilted Schubert cells.

We prove the following geometric properties of the tilted Richardson varieties, anal-
ogous to those of the classical Richardson varieties.

Theorem 3.7. For u, v ∈ Sn,

(1) (stratification) Tu,v =
⊔
[x,y]⊆[u,v] T ◦

x,y;

(2) (dimension) dim(T ◦
u,v) = dim(Tu,v) = ℓ(u, v);

(3) (closure relation) Tu,v = T ◦
u,v;

(4) (irreducibility) Tu,v and T ◦
u,v are irreducible.

4 Tilted Deodhar decomposition

In [10], Kazhdan–Lusztig introduced the Kazhdan–Lusztig R-polynomial Ru,v(q) for u ≤
v. They are used to give a recursive formula for the Kazhdan–Lusztig polynomials. The
polynomial Ru,v(q) is determined by Fq-point counts on the open Richardson varieties

Ru,v(q) = #R◦
u,v(Fq).

For any pair of permutations u, v ∈ Sn, we define a generalization called tilted R-
polynomial Rtilt

u,v(q), which gives the Fq-point counts on open tilted Richardson varieties

Rtilt
u,v(q) = #T ◦

u,v(Fq).

To understand Ru,v(q), Deodhar [6] introduced a decomposition of R◦
u,v into simple

pieces Dα that are isomorphic to Ca × (C∗)b. This gives an explicit formula for Ru,v(q):

R◦
u,v =

⊔
α

Ca × (C∗)b =⇒ Ru,v(q) = ∑
α

qa(q − 1)b.

In this section, we extend Deodhar’s decomposition to tilted Richardson varieties

T ◦
u,v =

⊔
u≺v

Du,v, (4.1)

This decomposition allows us to prove irreducibility of tilted Richardson varieties, and
give an explicit formula for the tilted R-polynomials (Corollary 4.6).

We now define the tilted reduced expression v and the distinguished subexpression u
indexing the pieces in (4.1). Let a = (a1, a2, . . . , an) ∈ [n]n be a sequence. Define

Ja = {j1 > j2 > · · · > jt} := {j ∈ [n] : aj ̸= aj+1}, (an+1 = 1).
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Definition 4.1. An a-tilted reduced expression v for v ∈ Sn is a sequence of black or
blue (overlined) simple transpositions, whose product is v and of the form

v = sα1sα2 · · · sαN1
sαN1+1 · · · sαN2

sαN2+1 · · · sαN3
sαN3+1 · · · sαN4

· · · sαN2t+1 · · · sαN

satisfying the following properties:

1. v is the concatenation of 2t + 1 subexpressions, alternatively colored black and
blue, such that each subexpression is a reduced expression for some permutation;

2. for all k ∈ [t], αi < jk if i > N2k−1;

3. let v(d) = ∏d
i=1 sαi . Then the first jk entries of v(N2k−1)

are increasing under the
shifted order <ajk+1 , and the first jk entries of v(N2k)

are increasing under the shifted
order <ajk

, for all k ∈ [t].

Definition 4.2. Given an a-tilted reduced expression v = sα1sα2 · · · sαN , a distinguished
subexpression for u ∈ Sn is a sequence u = u1 . . . uN whose product is u and each factor
ui ∈ {1, sαi , sαi , s̃αi} satisfies the following rules:

ui =


1 or sαi if sαi is black in v and ℓ(u(i−1)sαi , v(i)) = ℓ(u(i−1), v(i−1)),
s̃αi if sαi is black in v and ℓ(u(i−1)sαi , v(i)) > ℓ(u(i−1), v(i−1)),
sαi if sαi is blue in v.

Here we set u(i) to be the product of the leftmost i factors of u. We write u ≺ v if u is a
distinguished subexpression of v.

Example 4.3. If v = 246513 and a = (5, 5, 5, 1, 1, 1), the set Ja = {3}, and an example of an
a-tilted reduced expression for v is v = s3s4s5s1s2s3s4s3s2s1s1s2. There are 4 distinguished
subexpressions for u = 512346:

u = 111111s4s3s2s111 u = 111s111s4s3s2s11s̃2

u = s31111s̃3s4s3s2s111 u = s311s11s̃3s4s3s2s11s̃2

Unfortunately, we don’t know whether u ≤a v will ensure the existence of a dis-
tinguished subexpression for u in v. This motivates the following Lemma/Definition,
which gives a sufficient condition.

Lemma/Definition 4.4. For any u, v ∈ Sn, there exists a such that u ≤a v, and u[k] ≤ak+1

v[k] for all k ∈ [n]. We say such a is flat. In this case, any a-tilted reduced expression v
has a distinguished subexpression for u.

For each j ∈ [n − 1], define yj(p), xj(m) and ṡj ∈ GLn to be

yj(p) = ϕj

(
1 0
p 1

)
, ṡj(p) = ϕj

(
0 −1
1 0

)
, xj(m) = ϕj

(
1 m
0 1

)
,

where ϕj
(

a b
c d

)
replaces the 2 × 2 block of the identity matrix in the j and (j + 1)-th

row/column by
(

a b
c d

)
. The following is our main theorem of this section.
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Theorem 4.5. Let u ≤a v where a is flat. Let v be an a-tilted reduced expression for v. Then

T ◦
u,v =

⊔
u≺v

Du,v, where each Du,v ∼= (C∗)#1’s in u × C#s̃αi ’s in u.

Each tilted Deodhar cell Du,v for u = u1 · · · uN ≺ v is parametrized by

Du,v :=

gB = g1g2 · · · gNB

∣∣∣∣∣∣∣
gi = yαi(pi), if ui = 1
gi = ṡαi , if ui = sαi or sαi

gi = xαi(mi)ṡ−1
αi

, if ui = s̃αi

 /B.

Here pi ∈ C∗ and mi ∈ C are parameters.

Corollary 4.6. There is a unique tilted Deodhar cell Du,v of maximal dimension ℓ(u, v), hence
T ◦

u,v is irreducible. The Fq-point counts of T ◦
u,v is

Rtilt
u,v(q) = #T ◦

u,v(Fq) = ∑
u≺v

(q − 1)#1’s in u × q#s̃αi ’s in u.

We give an alternate formula for Rtilt
u,v(q) using Hecke algebra, generalizing classical

results for Ru,v(q) (see [8, Section 2.3]). The Hecke algebra H of Sn is a C[q±1]-algebra
generated by the set {Ti}i∈[n−1] satisfying the braid relations and the Hecke relation:

(Ti + q)(Ti − 1) = 0 for i ∈ [n − 1].

For w ∈ Sn, let Tw := Tα1 Tα2 . . . Tαℓ(w)
for any reduced expression w = sα1 · · · sαℓ(w)

. The
set {Tw : w ∈ Sn} forms a C[q±1]-basis of H. The trace map ϵ : H → C[q±1] is the
C[q±1]-linear map defined by

ϵ(Tw) =

{
1 if w = id
0 otherwise

.

For an expression w = sα1sα2 · · · sαN , denote Tw := Tα1 Tα2 · · · TαN .

Theorem 4.7. Fix u ≤a v where a is flat. Let u, v be a-tilted reduced expressions for u, v
respectively. We have

Rtilt
u,v(q) = qℓ(u,v)ϵ(T−1

v Tu).

5 Curve neighborhoods and the cohomology classes [Tu,v]

For w ∈ Sn, define the Schubert variety Xw = BwB/B and the opposite Schubert variety
Xw = B−wB/B. Let ρi ∈ H2(Fln) be the homology class of Xsi . For an effective degree
d = ∑n−1

i=1 diρi ∈ H2(Fln), the Kontsevich moduli space Md = M0,3(Fln, d) parametrizes the
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set of degree d, genus zero stable curves in Fln with 3 marked points. We will represent
d by the vector (d1, . . . , dn−1). The space Md is naturally equipped with evaluation maps
evi : Md → Fln sending a curve to its i-th marked point for i = 1, 2, 3.

The quantum cohomology ring QH∗(Fln) ∼= H∗(Fln)⊗Z Z[q1, . . . , qn−1] is a free Z[q]-
module generated by the Schubert classes {σw := [Xw] : w ∈ Sn}, where the products
are given by

σu ⋆ σv = ∑
w∈Sn, d∈Nn−1

⟨σu, σv, σw0w⟩d qdσw. (5.1)

Here ⟨σu, σv, σw0w⟩d are the Gromov–Witten invariants of the flag variety defined as

⟨σu, σv, σw0w⟩d =
∫
Md

ev∗1(σu) · ev∗2(σv) · ev∗3(σw0w).

Informally, these invariants count the equivalence classes of degree d rational curves
passing through the given Schubert varieties in general positions.

Fulton–Woodward [7] initiated the study of minimal quantum degrees d appearing
in (5.1). Postnikov [13] showed that du,w0v is the unique such minimal degree. Our
Theorem 2.6 gives an explicit combinatorial description for this degree.

In their study of the quantum K-theory of homogeneous spaces G/P, Buch–Chaput–
Mihalcea–Perrin [3] introduced the Gromov–Witten variety Md(Xu, Xv) := ev−1

1 (Xu) ∩
ev−1

2 (Xv) and the curve neighborhood Γd(Xu, Xv) := ev3(Md(Xu, Xv)). These varieties
encode information about the Gromov–Witten invariants [2].

The main theorems of this section relate tilted Richardson varieties with curve neigh-
borhoods and quantum Schubert calculus.

Theorem 5.1. For any u, v ∈ Sn, Γdu,v(Xu, Xv) = Tu,v.

Theorem 5.2. The cohomology class [Tu,v] = [Γdu,v(Xu, Xv)] ∈ H∗(Fln) is equal to

[qdu,v ]σu ⋆ σw0v = ∑
w∈Sn

⟨σu, σw0v, σw0w⟩du,v σw. (5.2)

Proof Sketch. For Theorem 5.1, we first show that the two varieties share the same set of
T-fixed points {ew : w ∈ [u, v]}, using (3.2) and results in [7]. We then prove Tu,v is the
largest T-invariant subvariety of Fln with T-fixed points [u, v], hence Tu,v ⊇ Γdu,v(Xu, Xv).
Finally, the theorem follows from the fact that both varieties have the same dimension
and Tu,v is irreducible (Theorem 3.7 and [7]).

For Theorem 5.2, by the projection formula,

[Tu,v] = [Γdu,v(Xu, Xv)] =
1
c
[qdu,v ]σu ⋆ σw0v for some c ∈ Z>0.

Postnikov [13] gave a polynomial representative of (5.2) using path Schubert polynomials
Su,v(x, q). We show that the leading monomial of Su,v(x, q) has coefficient 1, implying
c = 1.
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