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Orbits in the affine flag variety of type A
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Abstract. It is a classical result that the set K\G/B is finite, where G is a reductive
algebraic group over an algebraically closed field with characteristic not equal to two,
B is a Borel subgroup of G, and K = Gθ is the fixed point subgroup of an involution of
G. In this work, we investigate the affine counterpart of the aforementioned set, where
G is the general linear group over formal Laurent series, B is an Iwahori subgroup
of G, and K is either the orthogonal group, the symplectic group or product group
over formal Laurent series. We construct explicit bijections between the double cosets
K\G/B and certain twisted affine involutions or affine (p, q)-clans, which are affine
involutions with plus or minus signs assigned to the fixed-points. This is the first
combinatorial description of K-orbits in the affine flag variety of type A.
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1 Introduction

1.1 Classical background

Let G be a connected reductive algebraic group over the field of complex numbers C,
and let B ⊂ G be a Borel subgroup of G. Then it is a classical result that the set B\G/B
is finite, with a distinct set of double coset representatives forming the Weyl group W [1,
Chapter 27]. Thus, the Bruhat decomposition can be written as

G =
⊔

w∈W
BwB.

Now let θ be a holomorphic involution of G. Let K = Gθ = {g ∈ G : θ(g) = g} be
the corresponding fixed point subgroup. Then it is again a classical result that the set
K\G/B is finite [14]. The set K\G/B is treated either as a set of K-orbits in the flag variety
G/B, or as B-orbits in the symmetric variety K\G [22], or simply as (B×K)-double cosets.

The classification of K\G/B when G is any classical linear group of any Lie type is
well known [15]. Denote Z>0 = {1, 2, 3, . . . } and fix n ∈ Z>0. We focus here on the
case when G = GL(n, C). Denote 1n to be the n-by-n identity matrix. Then there are

*makhtong@ust.hk.

mailto:makhtong@ust.hk


2 K.H. Tong

only three types of involutions θ up to conjugacy [19, Chapter 5, Section 1.5], namely
θ(g) = (gT)−1, θ(g) = (−JgT J)−1 with n is even and J =

(
0 1n/2

−1n/2 0

)
, and

θ(g) =
(

1p 0
0 −1q

)
g
(

1p 0
0 −1q

)
with n = p + q for nonnegative integers p and q. The corresponding fixed point sub-
groups K = Gθ are the orthogonal group O(n, C), the symplectic group Sp(n, C), and
the product group

GL(p, C)× GL(q, C) =
{(

k1 0
0 k2

)
: k1 ∈ GL(p, C), k2 ∈ GL(q, C)

}
respectively. The K-orbits of the flag variety G/B in these three cases are in bijection
with sets of (signed) involutions in the symmetric group Sn [15]. More precisely, the K-
orbits are in bijection with involutions in Sn for K = O(n, C), fixed-point-free involutions
in Sn for K = Sp(n, C) [22], and certain signed involutions called (p, q)-clans for K =
GL(p, C)× GL(q, C) [29].

The earliest record of studying K-orbits in the flag variety is probably due to Gelfand
and Graev [8]. They showed that one can construct new irreducible (unitary) represen-
tations or discrete series representations of non-compact real forms of G from spaces of
functions on these K-orbits [9].

In the 1980s, Matsuki and Ōshima [15] gave a concrete combinatorial description of
K\G/B for complex classical Lie groups G in terms of clans, but without giving a detailed
proof. Richardson and Springer [22] and Yamamoto [29] later gave detailed proofs for
the three cases of K with G = GL(n, C). Yamamoto [29] also considered some of the
cases in type B, C, D. A useful overview of the K-orbit classifications in these cases are
provided in the Ph.D. thesis of Wyser [27].

These studies of K-orbits lead to applications in the representation theory of real
groups and other topics. Richardson and Springer considered the weak order of the
closure of such orbits [20, 21, 22]. Fulton related these results to Schubert calculus [5, 6,
7], and Graham [10] and Wyser [27] related Fulton’s work to certain torus-equivariant
cohomologies of the flag variety.

In recent years, Can, Joyce, and Wyser [3] studied the maximal chains in the weak
order poset for the three types of K-orbits when G = GL(n, C) and specifically described
a formula for Schubert classes. Woo, Wyser [25] and Burks, Pawlowski [2] studied the
pattern avoidance and reduced words of clans and relate them to the closure of the K-
orbits in the flag variety. More applications can be found in [4, 16, 17, 28, 26], among
many others.

1.2 Affine analogs

This extended abstract is about affine generalizations of the K-orbits above in the follow-
ing sense.
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One can consider affine analogs of the B-orbits and K-orbits of the flag varieties,
and consider their applications in cohomology of the affine flag variety [11]. Let K be
a quadratically closed field, i.e. a field of characteristic not equal to 2 in which every
element has a square root. Let K((t)) be the field of formal Laurent series in t consisting
of all the formal sums ∑∞

i≥N aiti, in which N ∈ Z and ai ∈ K for i ≥ N. Let K[[t]] be the
ring of formal power series consisting of all the formal sums ∑∞

i≥0 aiti, in which ai ∈ K.
We redefine G = GL(n, K((t))) to be the group of invertible n-by-n matrices over

K((t)) and redefine B to be the subgroup consisting of all upper triangular modulo t
matrices in GL(n, K[[t]]), that is, invertible matrices with entries in K[[t]] that become
upper triangular if we set t = 0 for these matrices. Then G is the (algebraic) loop group
of GL(n, K) and B is an Iwahori subgroup. In this setting, the affine Bruhat decomposition is
written as

G =
⊔

w∈W̃

BwB,

where W̃ is the affine Weyl group of G, which is isomorphic to a semidirect product of the
symmetric group Sn of permutations of n elements and Zn of n-tuples of integers. The
set of cosets G/B is often called the affine flag variety, and has been studied in [11, 12,
18], for example.

Most constructions related to orbits in flag varieties have affine analogs [11, 12, 18].
However, the subject of K-orbits in the affine flag variety is mostly unexplored in the
literature, with the important exception of the Ph.D. thesis of Mann [13]. Mann’s work
gives a type-independent classification of the K-orbits in G/B in terms of certain conju-
gacy classes of triples (H, B, µ). However, this general classification is non-constructive
and its computation is complicated even for matrix groups with small dimensions. By
contrast, the results in this article provide explicit combinatorial descriptions of K-orbits
in the affine flag variety of type A. It is not straightforward to obtain our results as
special cases of Mann’s theorem.

The results of this extended abstract concern the K-orbits in the affine flag variety
G/B, where G = GL(n, K((t))) is the (algebraic) loop group of GL(n, K) and B is the Iwa-
hori subgroup as in the setting of affine Bruhat decomposition. In type A, the loop group
analogs of K are given by O(n, K((t))), Sp(n, K((t))) and GL(p, K((t))) × GL(q, K((t))).
We also consider the SO(n, K((t)))-orbits in the affine flag variety of SL(n, K((t))). The
following section describe our main theorems in these four cases.

Remark 1.1. In this work, by orbits in affine flag variety we mean K-orbits in G/B.
However, it is sometimes more convenient to consider the B-orbits in K\G or the (K, B)-
double cosets in G, which are the orbits for the obvious action of K × B on G. It is clear
that there are canonical bijections between these three kinds of orbits.
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2 Main results

We present the following results regarding different orbits in the affine flag variety and
omit the proofs. The complete version can be accessed in [23] and [24].

2.1 Orbits of the orthogonal group

Continue to let G = GL(n, K((t))). In this subsection we state our first main theorem
classifying the orbits of

K = O(n, K((t))) = {g ∈ G : gTg = 1n}

in the affine flag variety G/B. Here the involution θ on G is defined as θ(g) = (gT)−1

and K = Gθ.
Recall that a monomial matrix is a matrix with only one non-zero entry in each row

and column. We define an affine permutation matrix to be an n-by-n monomial matrix
with integral powers of t as non-zero entries. Below we define two subsets of the set of
affine permutation matrices.

Definition 2.1. Define SymAPMn to be the set of all symmetric n-by-n affine permutation
matrices. Define eSymAPMn to be the set of elements in SymAPMn for which the sum of
the powers of t is even.

The main theorem for the case K = O(n, K((t))) is the following:

Theorem 2.2. In the case where K = O(n, K((t))) and G = GL(n, K((t))), for each double
coset O ∈ K\G/B, there exists a unique w ∈ eSymAPMn such that gTg = w for some
g ∈ O. Moreover, for each w ∈ eSymAPMn, the set of matrices g satisfying gTg = w is
non-empty and its elements lie in the same double coset.

This theorem is non-constructive but for each w ∈ eSymAPMn, we provide an explicit
formula for a matrix gw ∈ G such that gT

wgw = w. See [23, Definition 3.8].
In terms of this notation, the above theorem implies the following corollary.

Corollary 2.3. The map w 7→ KgwB is a bijection between eSymAPMn and K\G/B.

Example 2.4. Suppose n = 3. Then matrices in eSymAPM3 are in one of the following
forms:

w1 =

ta 0 0
0 tb 0
0 0 tc

 , w2 =

0 ta 0
ta 0 0
0 0 tb

 ,

tb 0 0
0 0 ta

0 ta 0

 ,

0 0 ta

0 tb 0
ta 0 0

 .
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In all of the above forms, the exponents a, b, c are integers. The sum a + b + c is even for
the first form and the integer b is even in the remaining forms. For example if a, b are
odd and c is even in w1, then

gw1 =

 t
a−1

2 −(t − 1)
1
2 t

b−1
2 0

t
a−1

2 (t − 1)
1
2 t

b−1
2 0

0 0 t
c
2

 and gw2 =

 i −ita/2 0
1 ta/2 0
0 0 t

b
2

 .

Remark 2.5. Define ∗ to be the automorphism on affine permutation matrices by substi-
tuting t−1 in the places with t. Then the set SymAPMn consists of all affine permutations
matrices w with the property w∗ = w−1, and therefore we can call these affine permuta-
tion matrices as extended affine twisted involutions. Similarly, the set eSymAPMn consists of
all affine permutation matrices in SymAPMn for which the sum of the powers of t is an
even integer. Therefore we can also refer to elements in eSymAPMn as even extended affine
twisted involutions.

2.2 Orbits of the special orthogonal group

For any commutative ring R, denote SL(n, R) to be the special linear group over R. In this
subsection we let G be the group SL(n, K((t))) and B be the Iwahori subgroup consists
of upper triangular matrices modulo t in SL(n, K[[t]]).

Now we state a theorem classifying the orbits of

K = SO(n, K((t))) = {g ∈ SL(n, K((t))) : gTg = 1n}

in the affine flag variety G/B. Here K = Gθ for θ(g) = (gT)−1.
Below, we give the definition of the indexing set for this case.

Definition 2.6. Define iSymAPMn ⊂ SL(n, K((t))) to be the set of symmetric monomial
matrices such that

(i) if there are any non-zero entries on the diagonal, these diagonal entries are of the
form ta, and the non-diagonal non-zero entries are of the form i =

√
−1 times ta,

where a ∈ Z.

(ii) if there are no non-zero entries on the diagonal, then the non-zero entries in the first
row and first column are of the form ±ita, while the remaining non-zero entries
are of the form ita, where a ∈ Z.

The following is the main theorem in this subsection:

Theorem 2.7. In the case where K = SO(n, K((t))) and G = SL(n, K((t))), for each
double coset O ∈ K\G/B, there exists a unique w ∈ iSymAPMn such that gTg = w for
some g ∈ O. Moreover, for each w ∈ iSymAPMn, the set of matrices g satisfying gTg = w
is non-empty and its elements lie in the same double coset.
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For each w ∈ iSymAPMn, we define explicitly gw ∈ SL(n, K((t))) as a double coset
representative satisfying gT

wgw = w by [23, Definition 3.12, Lemma 3.13], which follows
similar procedures as in Example 2.4. The above theorem implies the following corollary.

Corollary 2.8. The map w 7→ KgwB is a bijection between iSymAPMn and K\G/B.

Example 2.9. Suppose n = 4. Then matrices in iSymAPM4 are in one of the following
forms:

w1 =

(
ta 0 0 0
0 tb 0 0
0 0 tc 0
0 0 0 td

)
,

(
0 ita 0 0

ita 0 0 0
0 0 0 itb

0 0 itb 0

)
,

(
0 9ita 0 0

9ita 0 0 0
0 0 0 itb

0 0 itb 0

)
,

(
0 0 ita 0
0 0 0 itb

ita 0 0 0
0 itb 0 0

)
,(

0 0 9ita 0
0 0 0 itb

9ita 0 0 0
0 itb 0 0

)
,

(
0 0 0 ita

0 0 itb 0
0 itb 0 0

ita 0 0 0

)
,

(
0 0 0 9ita

0 0 itb 0
0 itb 0 0

9ita 0 0 0

)
,

(
0 ita 0 0

ita 0 0 0
0 0 tb 0
0 0 0 tc

)
,(

0 0 ita 0
0 tb 0 0

ita 0 0 0
0 0 0 tc

)
,

(
0 0 0 ita

0 tb 0 0
0 0 tc 0

ita 0 0 0

)
,

(
tb 0 0 0
0 0 ita 0
0 ita 0 0
0 0 0 tc

)
,

(
tb 0 0 0
0 0 0 ita

0 0 tc 0
0 ita 0 0

)
,

(
tb 0 0 0
0 tc 0 0
0 0 0 ita

0 0 ita 0

)
.

In all of the above forms, the exponents in t’s are integers and add up to zero. Suppose
a, b are odd, and c, d are even in w1. Then

gw1 =


t

a−1
2 −(t − 1)

1
2 t

b−1
2 0 0

t
a−1

2 (t − 1)
1
2 t

b−1
2 0 0

0 0 t
c
2 0

0 0 0 t
d
2

 .

Denote the first two matrices in the second row as w2 and w3 respectively. Then it holds
that

gw2 =


ta/2 i 0 0
ita/2 1 0 0

0 0 tb/2 i
0 0 itb/2 1

 and gw3 =


i −ta/2 0 0
1 −ita/2 0 0
0 0 tb/2 i
0 0 itb/2 1

 .

Remark 2.10. The matrices in iSymAPMn can be indexed by affine twisted involutions,
which are symmetric affine permutation matrices with sum of powers of t equal to 0.
For more details, refer to [23, Definition 3.10, 3.11].

2.3 Orbits of the symplectic group

In this subsection let G = GL(2n, K((t))). We state our main theorem classifying the
orbits of

K = Sp(2n, K((t))) = {g ∈ GL(2n, K((t))) : gT Jg = J}

in the affine flag variety G/B, where J =
(

0 1n
−1n 0

)
. Here K = Gθ for θ(g) = (−JgT J)−1.

Below we define another subset of G consisting skew-symmetric matrices.
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Definition 2.11. The set SkewAPM2n consists of all skew-symmetric 2n-by-2n monomial
matrices whose non-zero entries above the diagonal are integral powers of t.

The main theorem for the case K = Sp(2n, K((t))) is the following:

Theorem 2.12. In the case where K = Sp(2n, K((t))) and G = GL(2n, K((t))), for each
double coset O ∈ K\G/B, there exists a unique w ∈ SkewAPM2n such that gT Jg = w
for some g ∈ O. Moreover, for each w ∈ SkewAPM2n, the set of matrices g satisfying
gT Jg = w is non-empty and its elements lie in the double coset.

For each w ∈ SkewAPM2n, we give an explicit formula for a matrix gw ∈ GL(2n, K((t)))
such that gT

w Jgw = w. See [23, Definition 4.4] for the precise definition of gw. The above
theorem implies the following corollary.

Corollary 2.13. The map w 7→ KgwB is a bijection between SkewAPM2n and K\G/B.

Example 2.14. Suppose n = 2. Then matrices in SkewAPM4 are in one of the following
forms:

w1 =


0 ta 0 0

−ta 0 0 0
0 0 0 tb

0 0 −tb 0

 ,


0 0 ta 0
0 0 0 tb

−ta 0 0 0
0 −tb 0 0

 ,


0 0 0 ta

0 0 tb 0
0 −tb 0 0

−ta 0 0 0

 .

Here a and b are integers. It holds that

gw1 =


ta 0 0 0
0 1 0 0
0 0 tb 0
0 0 0 1

 .

Remark 2.15. The matrices in SkewAPM2n can obviously be indexed by the set of fixed-
point-free extended affine twisted involutions, consisting of symmetric affine permutation
matrices with no non-zero diagonal entries. Refer to [23, Definition 4.3] for more details.

2.4 Orbits of the product group

Matsuki and Oshima [15] introduced the notion of clans and classified the set K\G/B as
clans under various conditions for G being any classical linear group of any Lie type,
albeit without providing proofs. Yamamoto [29] gave details of the proofs of GL(p, C)×
GL(q, C)-orbits in the flag variety Fln and parametrized the orbits as (p, q)-clans. Below,
we recall the outline of Yamamoto’s work.

A (p, q)-clan is a n-tuple (c1, c2, . . . cn) such that each ci is either +, − or a natural
number, such that every natural number, if appears, appears exactly twice, and the
number of + signs minus the number of − signs must be p − q.
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Two such n-tuples c = (c1, c2, . . . cn) and d = (d1, d2, . . . dn) are equivalent if the
following holds:

(i) For all i ∈ [1, n], ci = + if and only if di = +, and ci = − if and only if di = −.

(ii) For all i, j ∈ [1, n] with i ̸= j, ci = cj ∈ N if and only if di = dj ∈ N.

We do not distinguish between (p, q)-clans that are equivalent in the above sense. As a
remark, a (p, q)-clan contains the same data as an involution in the permutation group
Sn with fixed-points labeled by + or −.

The (p, q)-clans can be represented by arc diagrams, which contains n-points lying in
a row labelled as 1, 2, . . . , n, with an arc joining points i and j if ci = cj ∈ N, and plus or
minus signs labelled on the points k if ck = + or − respectively. The following are the
arc diagrams for the (4, 3)-clans (1, 2,+,+,−, 2, 1) and (+, 1, 2, 1, 3, 3, 2) respectively:

◦ ◦ ◦ ◦ ◦ ◦ ◦++ − ◦ ◦ ◦ ◦ ◦ ◦ ◦+ .

In [29, Proposition 2.2.6], Yamamoto gave an explicit inductive algorithm to produce a
(p, q)-clan c(x) = (c1, c2, . . . , cn) from a flag x = (V0, V1, . . . , Vn), The algorithm involves
some dimensional K-invariants in x. More details are given in [29, Section 2.2]. Nonethe-
less we follow similar ideas for the affine version in this work. Yamamoto proved that
the algorithm [29, Theorem 2.2.8] is a bijection between the K-orbits on the set Fln and
(p, q)-clans, which was first discovered by Matsuki and Oshima [15].

In this work we study the affine analog of GL(p, C)× GL(q, C)-orbits in the flag va-
riety in the following sense. Recall G = GL(n, K((t))) as the group of invertible n-by-n
matrices over K((t)) and redefine B to be the subgroup consisting of all upper triangular
modulo t matrices in GL(n, K[[t]]). The set of cosets G/B is the affine flag variety.

We study the GL(p, K((t)))×GL(q, K((t)))-orbits in the affine flag variety by using an
analogue of Yamamoto’s work in the classical case. An affine (p, q)-clan is a Z-indexed
sequence c = (. . . , c1, c2, c3, . . . ) with n = p + q such that

(i) each ci is either +, − or an integer.

(ii) for k ∈ Z, ci+kn = ci + kn if ci is an integer and ci+n = ci if ci is + or −,

(iii) #{i ∈ [n] : ci = +} − #{i ∈ [n] : ci = −} = p − q, and every integer, if appears,
appears exactly twice in the sequence.

Two such Z-indexed sequences c = (. . . , c1, c2, c3, . . . ) and d = (. . . , d1, d2, d3, . . . ) are
equivalent if the following holds:

(i) For all i ∈ Z, ci = + if and only if di = +, and ci = − if and only if di = −.



Orbits in the affine flag variety 9

(ii) For all i, j ∈ Z with i ̸= j, ci = cj ∈ Z if and only if di = dj ∈ Z.

We do not distinguish between affine (p, q)-clans that are equivalent in the above sense.

Example 2.16. The affine (1, 1)-clans are (+,−), (−,+) and (1, 1 + 2k) for k ∈ Z. The
affine (2, 1)-clans are (+,+,−), (+,−,+), (−,+,+), (1, 1 + 3k,+), (+, 1, 1 + 3k) and
(1,+, 1 + 3k) for k ∈ Z.

A useful graphical method of representing the affine (p, q)-clans is through the wind-
ing diagrams of affine (p, q)-clans:

1 2
3

456
7
8

+

−

1 2
3

456
7
8

−

+

Here the numbers 1, 2, . . . n are arranged in order around a circle. A curve is travelling k
times clockwise connecting i < j if cj = ci − kn, and travelling k − 1 times anticlockwise
connecting i < j if cj = ci + kn. The examples above are the affine (4, 4)-clans with
(c1, c2, c3, c4, c5, c6, c7, c8) = (1, 2,+, 3,−, 2, 2 − 8, 1 + 8) and (1, 2,−, 3,+, 2, 2 + 8, 1 − 8)
respectively. Therefore, we can treat affine (p, q)-clans as affine involutions with + or −
signs assigned to the fixed points.

For every affine (p, q)-clan c = (. . . , c1, c2, . . . , cn, . . . ), the following defines an affine
(p, q)-clan matrix in GL(n, K((t))). Define inductively the (n + 1 − i)-th column vi of a
matrix gc in GL(n, K((t))) as follows: Suppose we have already obtained v1, v2, . . . , vi−1.
Denote Λi−1 = spanK[[t]]{v1, v2, . . . , vi−1}.

(a) If ci = +, then set vi = es ∈ V+, where s is the largest index between 1 and p such
that es /∈ π+(Λi−1).

(b) If ci = −, then set vi = et ∈ V+, where t is the largest index between p + 1 and n
such that et /∈ π−(Λi−1).

(c) If ci ≡ cj mod n for some i < j ≤ n and ci < cj, set vi = es + t−met, where s and t
are as in (a) and (b), and m = (cj − ci)/n.

(d) If ci ≡ cj mod n for some i < j ≤ n and ci ≥ cj, set vi = et, where t is as in (b).

(e) If ci ≡ cj mod n for some 1 ≤ j < i and ci ≤ cj, set vi = es + t−met, where s and t
are the same as defined for vj, and m = (cj − ci)/n.
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(f) If ci ≡ cj mod n for some 1 ≤ j < i and ci > cj, set vi = et, where t is the same as
defined for vj.

Finally set gc = (vn, vn−1, . . . , v2, v1) ∈ GL(n, K((t))).
The main theorem is the following.

Theorem 2.17. Suppose G = GL(n, K((t))), B the Iwahori subgroup of G, and K =
GL(p, K((t))) × GL(q, K((t))). The affine (p, q)-clan matrices are distinct double coset
representatives of the double cosets in K\G/B.

Example 2.18. Suppose n = 3, p = 2 and q = 1, and a ∈ Z≤0, b ∈ Z<0. Then the
following affine (2, 1)-clan matrices are distinct double coset representatives in K\G/B:1 0 0

0 1 0
0 0 1

 ,

1 0 0
0 0 1
0 1 0

 ,

0 1 0
0 0 1
1 0 0

 ,

1 0 0
0 1 0
0 ta 1

 ,

1 0 0
0 0 1
0 1 tb

 ,

1 0 0
0 0 1
ta 1 0

 ,

0 1 0
0 0 1
1 tb 0

 ,

1 0 0
0 1 0
ta 0 1

 ,

0 1 0
0 0 1
1 0 tb

 .

The affine (2, 1)-clan matrices in the first row above correspond to the affine (2, 1)-clans
(−,+,+), (+,−,+) and (+,+,−) while the matrices in the second row correspond to
(1, 1 + 3a,+), (1, 1 − 3b,+), (+, 1, 1 + 3a), (+, 1, 1 − 3b), (1,+, 1 + 3a) and (1,+, 1 − 3b)
respectively.
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