
Séminaire Lotharingien de Combinatoire 93B (2025) Proceedings of the 37th Conference on Formal Power
Article #38, 12 pp. Series and Algebraic Combinatorics (Sapporo)
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Abstract. Thrall’s problem asks for the irreducible decompositions of the Lie modules
Lλ, which decompose the tensor algebra as a general linear group module. In this
extended abstract of [2], we describe a super generalization of Thrall’s problem and
develop new super tableau combinatorics in order to extend known results to this
new setting. As a sample of our results, we obtain a combinatorial interpretation of a
q, t-hook formula of Macdonald.
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1 Introduction

The free Lie algebra L(V) was famously studied by Thrall [19], who used it to ob-
tain a certain decomposition of the tensor algebra as a general linear group module.
Thrall’s problem is to determine the irreducible decompositions of the resulting compo-
nents, called Lie modules, and it has remained open in general since Thrall originally
posed it in 1942. We describe a generalization of Thrall’s problem involving the free Lie
superalgebra, and extend the only known case of Thrall’s problem to the super setting. To
do this, we employ a new combinatorial statistic smaj on super tableaux, which we use to
derive new supersymmetric function identities. Below, we give a short history of Thrall’s
problem and describe some of the work surrounding it, before outlining our results.

1.1 Thrall’s problem

Some familiarity with GL-representation theory and symmetric functions will be as-
sumed. See e.g. [8] and [17, Chapter 7], respectively, for missing definitions.

Given a complex vector space V = CN, its tensor algebra T(V) =
⊕

n≥0 V⊗n contains
the free Lie algebra L(V), which is the Lie subalgebra of T(V) generated by V. The free
Lie algebra inherits a grading from T(V) via Ln(V) := L(V) ∩ V⊗n which is compatible
with the GL(CN)-action on T(V), endowing L(V) =

⊕
n≥1 Ln(V) with the structure of a
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graded GL(CN)-module. Thrall [19] determined the following GL(CN)-decomposition
of T(V) coming from the free Lie algebra:

T(V) ∼=
⊕

λ

Lλ(V), (1.1)

where the sum ranges over all integer partitions λ. The GL(CN)-modules Lλ(V) are
called higher Lie modules, and are defined by:

Lλ(V) := Sm1(L1(V))⊗ Sm2(L2(V))⊗ · · · ,

where λ = (1m12m2 · · · ). Here S(W) denotes the symmetric algebra of a vector space W.
Thrall’s problem is to determine the irreducible GL(CN)-decomposition of the higher

Lie modules Lλ(V). Thrall’s problem remains open in general, but has received sig-
nificant attention in the literature ([1, 4, 7, 9, 10, 12, 13, 16, 18]) since its inception in
1942.

On the level of characters, this problem can be stated as follows.

Problem 1.1 (Thrall’s problem). Determine the coefficients aµ ∈ Z≥0 in the Schur expan-
sion of Ch(Lλ(V)):

Ch(Lλ(V)) = ∑
µ

aµsµ(x1, . . . , xN).

Here Ch(Lλ(V)) denotes the GL(CN)-character of Lλ(V) and sµ(x1, . . . , xN) denotes
the Schur polynomial indexed by µ. When passing to characters, we will often implicitly
let N → ∞ so that we can instead work with the Schur functions sλ(x) := sλ(x1, x2, . . .).
In doing so, we will omit reference to the underlying vector space and write L(V) = L
(resp. Ln,Lλ) when there is no possibility for confusion.

1.2 The one-row case

The one-row case of Thrall’s problem, which concerns the GL(CN)-module structure of
the graded pieces L(n) = Ln of the free Lie algebra, is of particular importance. An
expression for Ch(Ln) in terms of power-sum symmetric functions pd(x), d ≥ 1 was first
found by Brandt:

Theorem 1.2 ([7]). For any n ≥ 1,

Ch(Ln) =
1
n ∑

d|n
µ(d)pd(x)

n
d ,

where µ(−) denotes the Möbius function.

The power-sum expansion of Ch(Ln) suggests that the Schur–Weyl dual of Ln is an
Sn-representation induced from the cyclic group Cn. This was proved by Klyachko:
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Theorem 1.3 ([12]). For any n ≥ 1, the Schur–Weyl dual of Ln is (χ1) ↑Sn
Cn

, where χ1 is the
representation of Cn = ⟨σ⟩ given by χ1(σ) = exp(2πi/n). That is,

Ch(Ln) = FrobCh((χ1) ↑Sn
Cn
),

where FrobCh(−) denotes the Frobenius characteristic.

Building on Klyachko’s work, Kráskiewicz–Weyman found the Schur expansion of
Ch(Ln), proving the one-row case of Thrall’s problem.

Theorem 1.4 ([13]). For any n ≥ 1, we have

Ch(Ln) = ∑
µ⊢n

aµ,1sµ(x),

where aµ,1 = |{T ∈ SYT(µ) : maj(T) ≡n 1}|.
Here SYT(µ) denotes the set of standard tableaux of shape µ, maj denotes the major

index, and ≡n means congruence modulo n.

1.3 A super generalization

In Theorem 2.2, we extend Thrall’s problem to the supersymmetric setting by finding
a GL(CN)⊕ GL(CM)-decomposition of the tensor superalgebra of a super vector space
V = CN ⊕ CM coming from the free Lie superalgebra L̃(V) =

⊕
n,m L̃n,m(V). In turn,

we generalize the three above results in the one-row case:

1. in Theorem 2.4 we find the power-sum expansion of Ch(L̃n,m),

2. in Theorem 2.5 we determine the Schur–Weyl dual of L̃n,m as an induced represen-
tation, and

3. in Theorem 3.1 we determine the irreducible decomposition of L̃n,m.

These results extend Theorem 1.2, Theorem 1.3, and Theorem 1.4, respectively.
Our proof of Theorem 3.1 involves a new major index statistic smaj on objects called

super tableaux. In Proposition 3.9 and Theorem 3.12, we find interesting super analogs
of known symmetric function identities using smaj. In particular, we relate this new
statistic to a q, t-hook formula of Macdonald, as was announced in [6]:

Theorem 1.5. For any λ ⊢ n,

∑
T ∈SYT±(λ)

qsmaj(T )tneg(T ) = [n]q! ∏
(r,c)∈λ

qr−1 + tqc−1

[h(r, c)]q
(1.2)

where [n]q := 1 + q + · · ·+ qn−1 and [n]q! := [1]q[2]q · · · [n]q.

Here h(r, c) denotes the hook length of the cell at position (r, c), and SYT±(λ) denotes
the set of standard super tableaux of shape λ (see Section 3.1 for the definitions of smaj
and SYT±(λ)).
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2 Super Thrall’s problem

We begin by generalizing Thrall’s problem to the setting of free Lie superalgebras. First,
we go over some preliminaries on Lie superalgebras in Section 2.1, and then obtain a de-
composition of the tensor superalgebra involving the free Lie superalgebra in Section 2.2.
We then describe extensions of Theorem 1.2 and Theorem 1.3 in Section 2.3.

2.1 Lie superalgebras

A Z/2-graded vector space V = V0 ⊕ V1 is called a super vector space. A superalgebra
Ã = Ã0 ⊕ Ã1 is a super vector space equipped with multiplication satisfying Ãi Ãj ⊆
Ãi+j, where the indices are taken modulo 2. A Lie superalgebra g̃ = g̃0 ⊕ g̃1 is a super
vector space equipped with a bilinear operation [−,−] satisfying

S1. [x, y] = −(−1)|x||y|[y, x],

S2. (−1)|x||z|[x, [y, z]] + (−1)|z||y|[z, [x, y]] + (−1)|y||x|[y, [z, x]] = 0,

S3. [g̃i, g̃j] ⊆ g̃i+j,

where |x| = i means that x ∈ g̃i.
The tensor algebra T(V) =

⊕
n≥0(V0 ⊕ V1)

⊗n of a super vector space V admits a
bigrading T(V) =

⊕
n,m≥0 Tn,m(V), where Tn,m(V) is spanned by tensors with n terms

from V0 and m terms from V1. This bigrading in turn determines a Z/2-grading on T(V),
and the natural concatenation product on T(V) = T(V)0 ⊕ T(V)1 endows T(V) with the
structure of a superalgebra, so we will write T̃(V) to denote T(V) with its superalgebra
structure.

2.2 A tensor superalgebra decomposition

We now construct a tensor superalgebra decomposition, closely following the set-up
outlined in Section 1.1. Let V = V0 ⊕ V1 = CN ⊕ CM be a super vector space. The tensor
superalgebra T̃(V) is naturally a GL(CN)⊕ GL(CM)-module.

The free Lie superalgebra L̃(V) is the sub-Lie superalgebra of the tensor superalgebra
T̃(V) generated by V, with respect to the super commutator [x, y] := x⊗ y− (−1)|x||y|y⊗ x.
The free Lie superalgebra inherits a bigrading from T̃(V) via

L̃n,m(V) := L̃(V) ∩ T̃n,m(V),

which is compatible with the GL(CN)⊕ GL(CM)-action on T̃(V), so that L̃(V) is a bi-
graded GL(CN)⊕ GL(CM)-module.

The bigraded components L̃n,m(V) of L̃(V) may now be used to define certain mod-
ules which will turn out to form a decomposition of T̃(V).
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Definition 2.1 (Super higher Lie modules). For a vector space W and j ∈ Z≥0, let

Γj(W) =

{
S(W) if j is even∧
(W) if j is odd.

Given a super vector space V and a Z≥0-valued matrix A = (ai,j)i,j≥0 with finite support
and a0,0 = 0, the super Lie module L̃A(V) is:

L̃A(V) =
⊗
i,j≥0

Γ
ai,j
j (L̃i,j(V)). (2.1)

Note that for m odd, the exterior power Γa
m(W) =

∧a(W) is zero unless a ≤ dim W.

Theorem 2.2 (Super Thrall decomposition). Let V = V0 ⊕ V1 = CN ⊕ CM. Then

T̃(V) =
⊕

A
L̃A(V)

as GL(CN) ⊕ GL(CM)-modules, where the sum is over Z≥0-valued matrices A = (ai,j)i,j≥0
with finite support and a0,0 = 0.

Proof. (Sketch.) The universal enveloping superalgebra Ũ(L̃(V)) is canonically isomor-
phic to the tensor superalgebra T̃(V). On the other hand, a super version of the Poincaré–
Birkhoff–Witt theorem proves that Ũ(g̃) ∼= S(g̃0) ⊗

∧
(g̃1) here. Thus combining these

two results yields the following decomposition of T̃(V):

T̃(V) ∼= S

( ⊕
n,m≥0

L̃n,2m(V)

)
⊗
∧( ⊕

n,m≥0
L̃n,2m+1(V)

)
∼=
⊗
i,j≥0

Γj

(
L̃i,j(V)

)
∼=

⊕
A=(ai,j≥0)

⊗
i,j≥0

Γ
ai,j
j

(
L̃i,j(V)

)
=

⊕
A=(ai,j≥0)

L̃A(V).

Thus the free Lie superalgebra yields a GL(CN)⊕ GL(CM)-decomposition of T̃(V).
Now, restrict to the case N = M so that L̃(V) is a GL(CN)-module under the diagonal
inclusion GL(CN) ↪→ GL(CN) ⊕ GL(CN). It is then natural to ask for the irreducible
GL(CN)-decomposition of L̃A(V) as we did in the classical case.

Problem 2.3 (Super Thrall’s problem). For A = (ai,j ≥ 0)i,j, determine the coefficients
aλ ∈ Z≥0 in the Schur expansion of L̃A(V):

Ch(L̃A(V)) = ∑
λ

aλsλ(x1, . . . , xN).

As before, we will let N → ∞ and simply write L̃(V) = L̃ (resp. L̃n,m, L̃A) when
working with characters.
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2.3 Bigraded components of the free Lie superalgebra

We now restrict our attention to the bigraded components L̃n,m of the free Lie super-
algebra. We first find an expression for Ch(L̃n,m) in the power-sum basis, generalizing
Theorem 1.2.

Theorem 2.4. The character of L̃n,m is given by

Ch(L̃n,m) =
1

n + m ∑
d|gcd(n,m)

(−1)m+m
d µ(d)

(n+m
d
m
d

)
pd(x)

n+m
d . (2.2)

Proof. (Sketch.) Petrogradsky [15] found the Hilbert series Hilb(L̃; q, t) of the free Lie
superalgebra, from which the graded character of L̃ is readily obtained. The result then
follows by extracting the coefficient of qntm.

We also generalize Theorem 1.3 by constructing a Sn+m-module whose Frobenius
characteristic agrees with Ch(L̃n,m), which identifies the Schur–Weyl dual of L̃n,m. To
describe this representation, we need a bit of notation.

Let Cn+m denote the cyclic group generated by the long cycle πn+m = (1 2 · · · n +
m) ∈ Sn+m, and let χ1, . . . , χn+m denote its irreducible representations. The group Cn+m

acts on the set ([n+m]
m ) of m-subsets of [n + m] by cyclic rotation, which determines a

Cn+m-representation χcyc : Cn+m → GL(C(n+m
m )) whose trace is given by

tr(χcyc(πk
n+m)) =

∣∣∣∣{S ∈
(
[n + m]

m

)
: πk

n+m · S = S
}∣∣∣∣ .

The following theorem then follows from a straightforward character computation.

Theorem 2.5. We have

Ch(L̃n,m) =

{
FrobCh((χcyc ⊗ χ1) ↑Sn+m

Cn+m
) if m is odd

FrobCh((χcyc ⊗ χm/2+1) ↑Sn+m
Cn+m

) if m is even.
(2.3)

3 Irreducible decomposition of L̃n,m

In this section we describe the following generalization of Kráskiewicz–Weyman’s result,
which determines the irreducible GL(CN)-decomposition of the super Lie modules L̃n,m:

Theorem 3.1. For n + m > 0, we have

Ch(L̃n,m) = ∑
λ⊢n+m

aλsλ(x),

where
aλ := |{T ∈ SYT±(λ) : smaj(T ) ≡n+m 1, neg(T ) = m}|. (3.1)



Super Thrall 7

Here SYT±(λ) denotes the set of super tableaux of shape λ, and smaj is a new major
index statistic which we define on the set of super tableaux.

We define this new major index statistic in Section 3.1, and in Section 3.2 we show
that the principal specializations of the super quasisymmetric function Q̃n,D(x; y) and
the super Schur function s̃λ(x; y) may be written as certain smaj-generating functions.
The latter generating function corresponds to a q, t-hook formula of Macdonald, which
is a crucial component in our proof of Theorem 3.1. We outline the proof in Section 3.3.

3.1 Super major index

We begin by defining super tableaux. Let A = A+ ⊔ A−, where A+ = {1, 2, . . .} and
A− = {1, 2, . . .}. Endow A with the total order A = {1 < 1 < 2 < 2 < · · · }. We call the
elements of A+ positive and the elements of A− negative. We then have the following.

Definition 3.2. A standard super tableau of shape λ ⊢ n is a map T : λ → A that is strictly
increasing along the rows and columns of λ, and contains exactly one of i or i for each
i = 1, 2, . . . , n. Let SYT±(λ) denote the set of standard super tableaux of shape λ, so that
|SYT±(λ)| = 2n|SYT(λ)|. For T ∈ SYT±(λ), we let Neg(T ) := {i ∈ A+ : i ∈ T } and
neg(T ) := |Neg(T )|.

Example 3.3. The standard super tableau

T =

1 3 4 6

2 5

7

∈ SYT±(4, 2, 1)

has Neg(T ) = {2, 3, 7} and neg(T ) = 3.

Recall that the descent set Des(T) of a standard tableau T ∈ SYT(λ) is the set of entries
i such that i + 1 appears in a lower row of T than i. We now define a generalization of
the descent set for standard super tableaux.

Definition 3.4. For λ ⊢ n and T ∈ SYT±(λ), let T+ ∈ SYT(λ) denote the image of T
under the natural projection A → A+. For i = 1, . . . , n − 1, we say that i is a super descent
of T if either

i ∈ Des(T+) and i + 1 ̸∈ Neg(T ), or i ̸∈ Des(T+) and i ∈ Neg(T ).

Define
sDes(T ) = {i : i is a super descent of T } ⊆ [n − 1].



8 Sam Armon and Joshua P. Swanson

Example 3.5. If

T =

1 3 4 6

2 5

7

∈ SYT±(4, 2, 1) then T+ =

1 3 4 6

2 5

7

∈ SYT(4, 2, 1),

so Des(T+) = {1, 4, 6} and Neg(T ) = {2, 3, 7}. Therefore sDes(T ) = {2, 3, 4}.

Armed with the notion of super descents, we now define our new major index statis-
tic on super tableaux.

Definition 3.6. For D ⊆ [n − 1] and S ⊆ [n], define the relative major index and the relative
comajor index respectively by

smaj(D, S) := ∑
1≤i≤n−1,
i∈D,i+1 ̸∈S
or i ̸∈D,i∈S

i, scomaj(D, S) := ∑
1≤i≤n−1,
i∈D,i+1 ̸∈S
or i ̸∈D,i∈S

(n − i).

For T ∈ SYT±(λ), we define the relative (co)major index by

smaj(T ) := ∑
i∈sDes(T )

i, scomaj(T ) := ∑
i∈sDes(T )

(n − i).

Example 3.7. The super tableau in Example 3.5 has smaj(T ) = 2 + 3 + 4 = 9.

Note that if T ∈ SYT±(λ) contains no negative entries, then sDes(T ), smaj(T ), and
scomaj(T ) agree with the classical notions of descent set, major index, and comajor
index, respectively.

3.2 Specializations

In the classical case, the principal specializations of fundamental quasisymmmetric func-
tions and Schur functions both admit elegant formulae in terms of the usual (co)major
index statistic. Both of these functions admit supersymmetric analogs, and we prove that
their principal specializations may be written in terms of our new major index statistic.

Definition 3.8 ([11], Equation (23)). For n ≥ 2 and D ⊆ [n − 1], the super quasisymmetric
function Q̃n,D(x; y) is given by

Q̃n,D(x; y) = ∑
a1≤a2≤···≤an,

ai=ai+1∈A+⇒i ̸∈D,
ai=ai+1∈A−⇒i∈D

za1za2 · · · zan ,

where a1 ≤ · · · ≤ an is a weakly increasing sequence in A, and za = xa for a ∈ A+, zb =
yb for b ∈ A−.
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The fundamental quasisymmetric function Qn,D(x) = Q̃n,D(x; 0) has the following
well-known principal specialization:

Qn,D(1, q, q2, . . .) =
1

(q; q)n
qcomaj(D), (3.2)

where comaj(D) = scomaj(D, ∅) denotes the usual comajor index statistic, and (a; q)n =
(1 − a)(1 − aq) · · · (1 − aqn−1) denotes the q-Pochhammer symbol. This can be general-
ized as follows.

Proposition 3.9. For any n ≥ 2 and D ⊆ [n − 1], the specialization of Q̃n,D given by setting
xi = qi−1, yi = tqi−1 is

Q̃n,D(1, q, q2, . . . ; t, tq, tq2, . . .) =
1

(q; q)n
∑

S⊆[n]
qscomaj(D,S)t|S|.

The proof closely follows the proof of (3.2) found in [17, Lemma 7.19.10].

Definition 3.10 ([11], Proposition 2.4.2). The super Schur function s̃λ(x; y) is given in terms
of super quasisymmetric functions by

s̃λ(x; y) = ∑
T∈SYT(λ)

Q̃|λ|,Des(T)(x; y).

Macdonald found a formula for the principal specialization of a super Schur function:

Theorem 3.11 ([14, page 27, Example 5 and page 45, Example 3]). The specialization of
s̃λ(x; y) given by setting xi = qi−1, yi = tqi−1 is given by

s̃λ(1, q, q2, . . . ; t, tq, tq2, ...) = ∏
(r,c)∈λ

qr−1 + tqc−1

1 − qh(r,c)
,

where h(r, c) denotes the hook length of the cell (r, c).

In the classical case, the principal specialization of the Schur function sλ(x) is given
by

sλ(1, q, q2, . . .) = ∏
(r,c)∈λ

qr−1

1 − qh(r,c)
=

1
(q; q)n

∑
T∈SYT(λ)

qmaj(T),

where maj(T) denotes the usual major index statistic. The first equality is a consequence
of Stanley’s hook-content formula, and the second follows by writing sλ in terms of
quasisymmetric functions.

Theorem 3.11 lifts the first equality to the super setting, and we lift the second equal-
ity using our new major index statistic.
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Theorem 3.12. For λ ⊢ n, we have

s̃λ(1, q, q2, . . . ; t, tq, tq2, . . .) =
1

(q; q)n
∑

T ∈SYT±(λ)

qscomaj(T)tneg(T)

=
1

(q; q)n
∑

T ∈SYT±(λ)

qsmaj(T)tneg(T).

Proof. (Sketch.) The first equality follows from Proposition 3.9 by writing s̃λ in terms of
super quasisymmetric functions. The second equality hinges on the following symmetry
of the principal specialization of s̃λ, which follows from Theorem 3.11:

s̃λ(1, q, q2, . . . ; t, tq, tq2, . . .) = tn s̃λ′(1, q, q2, . . . ; t−1, t−1q, t−1q2, . . .).

Theorem 1.5 follows by combining Theorem 3.11 and Theorem 3.12.

3.3 Proof of Theorem 3.1

We conclude by briefly outlining the proof of Theorem 3.1. It suffices to show that
Ch(L̃n,m) can be obtained from

φ(x; q, t) := ∑
λ⊢n

sλ(x) ∑
T ∈SYT±(λ)

qsmaj(T )tneg(T )

by extracting the coefficients of q1+ℓ(n+m)tm for all ℓ ∈ Z. By Theorem 3.12, we have

φ(x; q, t) = (q; q)n ∑
λ⊢n

sλ(x)s̃λ(1, q, q2, . . . ; t, tq, tq2, . . .),

and we then obtain a power-sum expansion of φ(x; q, t) using a super version of the
Cauchy identity from [3, Corollary 10(a)]. We then extract the coefficients of q(1+ℓ(n+m)tm

and show that the resulting expression agrees with the formula for Ch(L̃n,m) found in
Theorem 2.4.

4 Future directions

A corollary of Stanley’s q-hook formula is that the coefficients of the generating function

f λ(q) := ∑
T∈SYT(λ)

qmaj(T)
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are symmetric, in the sense that f λ(q) = qdeg( f λ(q)) f λ(q−1). However, to the authors’
knowledge, there is no explicit combinatorial proof of this symmetry. A further conse-
quence of the q-hook formula is that there exist unique tableaux Tmin, Tmax ∈ SYT(λ)
with minimal and maximal major index, respectively. These tableaux were identified ex-
plicitly by Billey–Konvalinka–Swanson in [5] by greedily tiling λ with horizontal (resp.
vertical) strips.

Example 4.1. For λ = (5, 3, 1),

Tmin =

1 3 4 8 9

2 6 7

5

, Tmax =

1 2 3 5 7

4 6 8

9

.

Our proof of Theorem 3.1 involves the following q, t-generalization of f λ(q):

f λ(q, t) := ∑
T ∈SYT±(λ)

qsmaj(T )tneg(T ).

Theorem 3.11 proves that for any m ≥ 0, the coefficients of [tm] f λ(q, t) are symmetric in
the above sense. We leave the following generalization of Billey–Konvalinka–Swanson’s
result as an open problem.

Problem 4.2. For fixed λ and m ≥ 0, identify the super tableaux (not necessarily unique)
of shape λ containing exactly m negative entries with minimal and maximal smaj. Fur-
thermore, give a bijective proof of the symmetry of [tm] f λ(q, t).

Note that when t = 0 or t = |λ|, these tableaux are necessarily unique. When t = 0
they are given precisely by Tmin, Tmax ∈ SYT(λ). When t = |λ|, the super tableau Tmin
with minimal smaj is given by making all of the entries in Tmax negative, while Tmax is
given by making all of the entries in Tmin negative.
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