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Double boxes and double dimers
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Abstract. We give a combinatorial proof of a result in rank 2 Donaldson–Thomas
theory, which states that the generating function for certain plane-partition-like objects,
called double-box configurations, is equal to a product of MacMahon’s generating
function for (boxed) plane partitions. In our proof, we first give the correspondence
between double-box configurations and double-dimer configurations on the hexagon
lattice with a particular tripartite node pairing. Using this correspondence, we apply
graphical condensation and double-dimer condensation to prove the result.
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1 Introduction

In this extended abstract, we enumerate certain plane-partition-like objects called double-
box configurations. These objects were introduced by Gholampour, Kool and Young [2] for
the purpose of computing the rank 2 Donaldson–Thomas (DT) invariants of a Calabi–
Yau threefold. We define double-box configurations in Definition 2, as well as their
generating function, Za,b,c

DBC(q), in Equation 2.2, and we give a combinatorial proof of the
following geometrically motivated theorem:

Theorem 1. Let a, b, c ∈ N, then

Za,b,c
DBC(q) = M(q)2Ma,b,c(q) (1.1)

where Za,b,c
DBC(q) denotes the generating function for double-box configurations, and

M(q) =
∞

∏
i=1

1
(1 − qi)i

is MacMahon’s generating function for plane partitions, and
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Ma,b,c(q) =
a

∏
s=1

b

∏
t=1

c

∏
r=1

1 − qs+t+r−1

1 − qs+t+r−2

is MacMahon’s generating function for boxed a × b × c plane partitions.

Note that this formula already has a geometric proof [1]. In this paper, we outline
our combinatorial proof of this formula, which surprisingly uses the tripartite double-
dimer model of Kenyon and Wilson [5]. We follow the general strategy of [4], where the
tripartite double-dimer model also appears (though for apparently completely different
reasons). Our proof consists of two main components. First, we give a correspondence
between double-box configurations and tripartite double-dimer configurations on the
hexagon lattice; this correspondence is many-to-one, yet still weight preserving. Next,
we use a quadratic recurrence called condensation to prove our main result. We show
that to the left hand side of Equation 1.1, Za,b,c

DBC(q), we may apply a result by Jenne [3],
which states that under certain conditions the generating function for tripartite double-
dimer configurations satisfies a recurrence relation related to the Desnanot–Jacobi iden-
tity from linear algebra. Then, using Kuo condensation [6] (also related to the Desnanot–
Jacobi identity), we show that M(q)2Ma,b,c(q) satisfies the same recurrence relation. Fi-
nally, we show that both sides of Equation 1.1 satisfy the same initial conditions.

The full version of this abstract will appear in a longer paper; proofs and some details
have been omitted here due to space constraints.

2 Definitions

A plane partition is a two-dimensional array of nonnegative integers πi,j for i, j ≥ 0, with
πi,j+1 ≥ πi,j and πi+1,j ≥ πi,j for all i, j, with finitely many πi,j being nonzero. We
can visualize a plane partition π as a stack of boxes in the corner of a room, with the
number of boxes in each stack given by the entries of π. A dimer configuration (also called
a perfect matching) on a graph G = (V, E) is a collection of edges E′ ⊆ E such that every
vertex in V is covered exactly once. There is a bijection between plane partitions and
dimer configurations on the hexagon graph, sometimes referred to as the folklore bijection
(see Figure 1). The stacks of boxes representing a plane partition π can be viewed as a
lozenge tiling of a hexagonal region of triangles, corresponding to the visible faces of the
boxes and the tiles on the walls and floor of the room. Note that the triangular lattice is
dual to the hexagon lattice. Moreover, each lozenge is made of two equilateral triangles
that share an edge. If we join the centers of these two triangles with the corresponding
dual edge, and do this for all tiles in the tiling, we get a perfect matching on the hexagon
graph.
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Figure 1: Folklore bijection between plane partitions (left-most) and dimer configura-
tions on the hexagon graph (right-most)

Overlaying two perfect matchings of a graph G = (V, E) gives a double-dimer configu-
ration, which consists of doubled edges and loops. If in addition we have defined a set
of nodes N ⊂ V, that is, a special set of vertices, then the double-dimer configuration
on G = (V, E) with node set N is a multiset of edges of E such that each vertex in
V \ N is covered exactly twice, and each node in N is covered exactly once. In this case,
the double-dimer configuration consists of doubled edges, loops, and paths between the
nodes in N (see Figure 2).

Figure 2: Double-dimer configuration with nodes on the hexagon graph (right-most)
from two single-dimer configurations, one on the hexagon graph (left-most) and one
on the hexagon graph minus the defined nodes (middle)

2.1 Double-box configurations

In this section we define the double-box configurations [2], and provide some examples.
Throughout this section we let a, b, c ∈ N be fixed. We identify the point (i, j, k) ∈ Z3
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with the unit cube

[i, i + 1]× [j, j + 1]× [k, k + 1] ∈ R3.

We refer to this unit cube as the box (i, j, k). We consider plane partitions as stacks of
unit cubes (i.e. boxes) placed in R3. A plane partition π is said to be based at (l, m, n)
in R3 if the bottommost box in the stack of boxes corresponding to the entry in the first
row and column of π is the box (l, m, n). In other words, the back corner of the room
where the boxes are stacked is placed at (l, m, n).

Consider triples of plane partitions η = (η1, η2, η3) such that η1 is based at (0, b, c),
η2 is based at (a, 0, c), and η3 is based at (a, b, 0) in R3 (see Figure 3). We say that a box
(i, j, k) is in the intersection space if i ≥ a, j ≥ b, and k ≥ c. We denote all the boxes in the
intersection space by ηint.

Figure 3: Basepoints of plane partitions η1, η2, η3 in R3

We define different types of boxes based on the number of plane partitions they are
contained in as:

Definition 1. We say that a box (i, j, k) ∈ η = (η1, η2, η3) is:

• a type III box if (i, j, k) ∈ η1, η2, η3 (triple intersection boxes)

• a type II box if (i, j, k) ∈ ηm, ηn and (i, j, k) /∈ ηl for {m, n, l} = {1, 2, 3} (double inter-
section boxes)
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• a type I box if (i, j, k) ∈ ηm and (i, j, k) /∈ ηn, ηl for {m, n, l} = {1, 2, 3} (boxes in only
one of the plane partitions)

Let ηin denote the set of type III boxes, and let ηout denote the set of type II boxes.
Note that ηin ∪ ηout is a plane partition based at (a, b, c), with ηin ∪ ηout ⊆ ηint. We want
to consider triples of plane partitions η = (η1, η2, η3) such that the following Criterion is
satisfied:

Criterion 1. ηint = ηin ∪ ηout,

that is,

ηint = (η1 ∩ η2) ∪ (η1 ∩ η3) ∪ (η2 ∩ η3). (2.1)

We define an equivalence relation on triples of plane partitions satisfying Criterion 1
as follows. If η = (η1, η2, η3) and η̃ = (η̃1, η̃2, η̃3), we say that η ∼ η̃ if they have the same
multiset of boxes. That is, η ∼ η̃ if:

• ηin = η̃in (type III boxes the same)

• ηout = η̃out (type II boxes the same, regardless of which two partitions they came
from)

• η1 agrees with η̃1 on [0, a)× [b, ∞)× [c, ∞)

• η2 agrees with η̃2 on [a, ∞)× [0, b)× [c, ∞)

• η3 agrees with η̃3 on [a, ∞)× [b, ∞)× [0, c)

The last three conditions ensure that all type I boxes, that is, those not in the intersection
space by Criterion 1, are the same. We are now ready to define double-box configurations
as:

Definition 2. Given (a, b, c) ∈ N3, an equivalence class of triples of plane partitions η =
(η1, η2, η3) satisfying Criterion 1 under the equivalence relation ∼ is called a double-box config-
uration. Note that we often denote such an equivalence class by η, rather than [η].

We denote the set of all double-box configurations by DBCa,b,c. For each η ∈ DBCa,b,c,
we define the following:

Definition 3. The weight of a double-box configuration η = (η1, η2, η3) is defined as

|η| = |η1|+ |η2|+ |η3| − |ηint|

= #{type I boxes}+ #{type II boxes}+ 2 · #{type III boxes}.

Note that this quantity is well-defined on equivalence classes.
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Next, we consider elements within the equivalence class of a double-box configura-
tion [η]. To do this, we first make the following definition:

Definition 4. A box (i, j, k) ∈ ηout is said to be moveable if there exists η̂ ̸= η̃ ∈ [η] and two
indices m ̸= n ∈ {1, 2, 3} such that (i, j, k) /∈ η̂m and (i, j, k) /∈ η̃n.

Triples of plane partitions within an equivalence class (i.e. a double-box configuration),
may differ by which two plane partitions a moveable box is contained in. We consider
several examples to illustrate this.

Example 1. Let (a, b, c) = (1, 1, 1). Consider η = (η1, η2, η3) and η̃ = (η̃1, η̃2, η̃3) as defined
in Figure 4.

Figure 4: Example of η ̸= η̃ with [η] = [η̃].

There is one type II box in this double-box configuration at (1, 1, 1). In η, this box is contained in
η1 and η3, and in η̃ this box is contained in η̃2 and η̃3. Since η and η̃ contain the same multiset
of boxes, we have that [η] = [η̃], and so the type II box at (1, 1, 1) is a moveable box.
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Example 2. Let (a, b, c) = (1, 1, 1), and consider η = (η1, η2, η3) as defined in Figure 5.

Figure 5: Example of a double-box configuration.

In this example, there is one type III box at (1, 1, 1), and two type II boxes, one at (2, 1, 1)
contained in η1 and η2, and one at (1, 1, 2) contained in η2 and η3. Both of these type II boxes
are not moveable. The box at (1, 1, 2) cannot be contained in η1 because (0, 1, 2) /∈ η1, and the
box at (2, 1, 1) cannot be contained in η3 because (2, 1, 0) /∈ η3.

To define the generating function for double-box configurations, we first make the
following definition:

Definition 5. The contribution of a double-box configuration η is defined as

χ(η) = 2m

where m is the number of connected components of moveable boxes in η. Two boxes are in the
same connected component if they share a face.

Finally, we define the generating function for double-box configurations as

Za,b,c
DBC(q) = ∑

η∈DBCa,b,c

χ(η)q|η|, (2.2)

where |η| is defined in Definition 3, and χ(η) is defined in Definition 5.

2.2 Tripartite double-dimer configurations

In this section we will define the tripartite node pairing of the double-dimer configu-
rations on the hexagon graph. Let H(n) be the hexagon graph of size n × n × n. That
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is, project the points {0, . . . , n}3 ⊂ N3 onto the plane P : {x + y + z = 0} to obtain the
vertices of a hexagon-shaped piece of the triangular lattice; H(n) is the planar dual of
this graph, without an external vertex. Choose coordinates (x, y) for P such that a third
of the edges are parallel to the x axis - "horizontal" - and the others have slope ±

√
3/2.

For convenience, we will use standard "compass coordinates" to describe directions on
this picture - so "North" is the positive y direction, "West" is negative x, and so on (see
Figure 6).

Next, let A be the southwest corner of H(n) (that is, the intersection of the lines L1
and L2 in Figure 6), let B be the southeast corner (intersection of L3 and L4), and let C
be the north corner of H(n) (intersection of L5 and L6). We define the following sets of
nodes, i.e. special vertices, on the boundary of H(n)

R = {a nodes on L1 closest to A} ∪ {c nodes on L2 closest to A}

G = {c nodes on L3 closest to B} ∪ {b nodes on L4 closest to B}

B = {b nodes on L5 closest to C} ∪ {a nodes on L6 closest to C}
Note that |R| = a + c, |G| = b + c, and |B| = a + b, satisfy the triangle inequality, and

so there is a unique planar tripartite pairing of the nodes, we call this pairing σa,b,c. The
planar tripartite pairing σa,b,c matches the a red nodes on L1 with the a blue nodes on L6,
the b blue nodes on L5 with the b green nodes on L4, and the c red nodes on L2 with the
c green nodes on L3, so that each node is paired with another node of a different color
(see Figure 6).

Let DDCn(σa,b,c) be the set of all double-dimer configurations on H(n) with node
set N = R ∪ G ∪ B and tripartite pairing σa,b,c. We define the generating function for
elements in DDCn(σa,b,c) as

Zn;a,b,c
DDC (q) =

1
w(π0)

∑
π∈DDCn(σa,b,c)

2ℓ(π)w(π) (2.3)

where ℓ(π) is the number of closed loops of π, and the configuration π0 ∈ DDCn(σa,b,c)
has minimal weight. The weight of a double-dimer configuration π is given by

w(π) = ∏
e∈π

w(e)

where w : E → Q[q] for an indeterminate q is a weighting on the edge set of H(n) such
that the generating function for plane partitions is the same as the one for single-dimer
configurations on H(n) up to a constant. With this weighting, the normalized weight of
a tripartite double-dimer configuration equals the weight of the corresponding double-
box configuration (this correspondence is discussed in Section 3). We also show that
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Figure 6: Tripartite node pairing σa,b,c with a = 2, b = 3, and c = 1. The red, green,
and blue nodes on the outside face of the hexagon graph are connected such that no
two nodes of the same color are endpoints of the same path.

there is a relation between the moveable boxes in a double-box configuration η and the
closed loops in the corresponding tripartite double-dimer configuration π, thus giving a
relation between χ(η), as given by Definition 5, and 2ℓ(π) where ℓ(π) is the number of
closed loops of π. Details of this relation are omitted here due to space constraints.

We now make the following definition:

Definition 6. Let DDC(σa,b,c) be the set of all double-dimer configurations on the infinite
hexagon lattice such that for each π ∈ DDC(σa,b,c), there exists N ∈ N such that π restricted
to H(N) has the tripartite node pairing σa,b,c.

For elements of DDC(σa,b,c), we define the generating function as

Za,b,c
DDC(q) := lim

n→∞
Zn;a,b,c

DDC (q) =
1

w(π0)
∑

π∈DDC(σa,b,c)

2ℓ(π)w(π). (2.4)

Proof that Za,b,c
DDC(q) is well-defined is omitted here due to space constraints.
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3 Mapping double-box to double-dimer

Our first main result is the following:

Theorem 2. Let a, b, c ∈ N. Then

Za,b,c
DBC(q) = Za,b,c

DDC(q) (3.1)

where Za,b,c
DBC(q) is the generating function for double-box configurations as defined in Equation

2.2, and Za,b,c
DDC(q) is the generating function for double-dimer configurations on the hexagon

lattice with tripartite node pairing σa,b,c as defined in Equation 2.4.

The mapping between double-box configurations and double-dimer configurations
is easy to visualize via the folklore bijection, but significantly more difficult to prove. To
visualize, we apply the folklore bijection (see Figure 1) to the double-box configurations.
The result is a triple-dimer configuration on the hexagon graph, which is composed of a
single-dimer configuration for each plane partition of η = (η1, η2, η3), overlayed such that
the point (a, b, c) in R3 is the center hexagon (see Figure 7). We show that removing the
single-dimer configuration corresponding to the plane partition ηint results in a double-
dimer configuration on the hexagon lattice with the tripartite node pairing σa,b,c.

Figure 7: The tripartite double-dimer configuration corresponding to η = (η1, η2, η3)

from Figure 4. On the left, we have the three single-dimer configurations from η1, η2

and η3 overlayed, with the projected basepoints of η1, η2 and η3 in green, blue, and pink
(compare to Figure 3). The middle figure is the double-dimer configuration obtained
after removing the single-dimer configuration corresponding to ηint (note that triple
edges become double edges, and double edges become single edges). On the right is
the same double-dimer configuration with different colors to emphasize that the result
is in fact a tripartite double-dimer configuration.
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To prove Theorem 2, we map the double-box configurations to the tripartite double-
dimer configurations via a composition of several maps. We first define a map from the
double-box configurations to pairs of objects (π1, π2), where π1 is an order ideal under
the product order on Z3

≥0 (i.e. a plane partition) and π2 is an order ideal under the
product order on Z3

≥0 which contains M, where M is defined as the infinite collection of
boxes

M = ([0, a]× [0, b]× Z≥0) ∪ (Z≥0 × [0, b]× [0, c]) ∪ ([0, a]× Z≥0 × [0, c]) .

We then define a map which takes pairs of these objects (π1, π2) to another plane-
partition-like object called an AB configuration, which comes from Pandharipande–
Thomas (PT) theory. AB configurations are defined by Jenne, Webb, and Young in [4]
as the discrete version of the labelled box configurations defined by Pandharipande and
Thomas in [7]. We then use the work of Jenne, Webb, and Young in [4] to map the
AB configurations to the tripartite double-dimer configurations. Using these maps, we
show that double-box configurations map to objects (π1, π2) which satisfy a labeling al-
gorithm on the boxes, and that these labelled pairs (π2, π2) correspond to double-dimer
configurations on the hexagon graph with the tripartite node pairing σa,b,c as defined in
Section 2.2. The difficulty in proving the equivalence of generating functions of these
objects lies in the fact that these maps are not one-to-one.

4 Condensation

Once we have the equivalence of generating functions given by Theorem 2, we may
operate in the land of double-dimer configurations, which offers us many tools we can
use to prove Theorem 1. We show that both sides of Equation 1.1 satisfy a quadratic
recurrence called condensation, with the same initial conditions.

On the right hand side of Equation 1.1, we have M(q)2Ma,b,c(q), which we will denote
by X(a, b, c). We show that X(a, b, c) satisfies the following recurrence relation

X(a, b, c)X(a + 1, b + 1, c) = qcX(a + 1, b, c)X(a, b + 1, c)
+ X(a + 1, b + 1, c − 1)X(a, b, c + 1).

Note that M(q)4 factors out of every term, and so we want to show that

Ma,b,c(a)Ma+1,b+1,c(q) = qcMa+1,b,c(q)Ma,b+1,c(q) + Ma+1,b+1,c−1(q)Ma,b,c+1(q).

This follows from Kuo’s graphical condensation (Theorem 6.2 in [6]), where c is the
height of the room, with a small modification made which puts the factor of qc on the
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first term instead of the second term as in Theorem 6.2 in [6] (this modification relates
to how we overlap the graph sections to obtain the recurrence, details are omitted here).

For the left hand side of Equation 1.1, we may consider Za,b,c
DDC(q) instead of Za,b,c

DBC(q)
by Theorem 2. We apply double-dimer condensation, a result of Jenne [3], to Zn;a,b,c

DDC (q),
which we denote here by Zn

DDC(a, b, c) to emphasize the change in a, b, c in the recur-
rence. This gives the following relation

Zn
DDC(a, b, c)Zn

DDC(a + 1, b + 1, c) = Zn
DDC(a, b + 1, c)Zn

DDC(a + 1, b, c) (4.1)

+ qKZn,down
DDC (a + 1, b + 1, c − 1)Zn,up

DDC(a, b, c + 1).

We calculate this constant K, and show that it does not depend on n. Thus the limit is
well-defined, and so Za,b,c

DDC(q) also satisfies this recurrence. Lastly, we show that both
sides satisfy the same initial conditions. Details are omitted here, due to space con-
straints.
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