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Abstract. Poset permutahedra are an amalgamation of order polytopes and permuta-
hedra. We show that poset permutahedra give a unifying perspective on several recent
classes of polytopes that occurred, for example, in connection with colorful subdivi-
sions of polygons and Hessenberg varieties. As with order polytopes, the geometry
and the combinatorics of poset permutahedra can be completely described in terms of
the underlying poset. As applications of our results, we give a combinatorial descrip-
tion of the h-vectors of the partitioned permutahedra of Horiguchi et al. and poset
generalizations of Landau’s score sequences of tournaments. To prove our results,
we show that poset permutahedra arise from order polytopes via the fiber polytope
construction of Billera and Sturmfels.

Keywords: Order Polytopes, Fiber Polytopes, Monotone Path Polytopes, Score Se-
quences

1 Introduction

Order polytopes [24] provide a powerful link between polyhedral geometry and finite
posets. Harnessing this connection resulted in many important results including the
computation of order polynomials, the fundamental result that computing the volume
of a polytope is ♯P-Hard [9], and that certain statistics on linear extensions are log-
concave [23]. Since the foundational work of Stanley, other poset polytopes have been
introduced including marked poset polytopes [2], double poset polytopes [10], and poset
associahedra [14]. In this extended abstract we introduce another class of poset polytopes
that provided a unified perspective of polytopes that have been studied recently.

Let P = ([n],⪯) be a finite poset. The order polytope O(P) is the intersection of the
0/1-hypercube [0, 1]n with the order cone CP = {x ∈ Rn : xa ≺ xb for all a ⪯ b}. This is
a polytope with vertices in {0, 1}n with remarkable combinatorics that will be recalled
later. For our construction, recall that the standard permutahedron Πn ⊂ Rn is the
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Figure 1: Pictured are each of the two dimensional poset permutahedra other than the
permutahedron itself up to symmetry with their corresponding posets.

convex hull of all n! permutations of (1, 2, . . . , n). We define the poset permutahedron
of P by

ΠP := Πn ∩ CP . (1.1)

This is an (n − 1)-dimensional polytope with half-integral vertices. See Figure 1 for
examples.

Poset permutahedra provide a unified construction principle for polytopes that have
occurred in disparate areas. What follows is a non-exhaustive list:

• If P is the antichain, then ΠP = Πn.
• If P is a chain, then 2ΠP is unimodularly equivalent to the Newton polytope of the

discriminant [15, Section III.12.2]. The lattice points in ΠP − 1 are the well-studied
score sequences introduced by Landau [19]; see below for more.

• If P arises from the antichain by adjoining a maximial element, then ΠP is combi-
natorially equivalent to the stellahedron [22, Section 10.4].

• If P is the disjoint union of two chains of length m and n, respectively, then the face
lattice of ΠP is ismorphic to the poset of colorful subdivisions of an (m + n + 2)-
gon with bicolored vertices (cf. [1]) and extends the combinatorial description of
the Newton polytope of the classical resultant [15, Chapter 12].

• If P is the disjoint union of k chains of lengths m1, m2, . . . , mk, then ΠP is the type-
A partitioned permutahedron introduced and studied in [17, 16] in the context of
Hessenberg varieties and representation theory; see Section 5 for more.

Monotone Path Polytopes. Our key observation is that ΠP is a fiber polytope in the
sense of Billera–Sturmfels [6]. For a polytope P and a non-constant linear function φ on
P, the notion of cellular strings generalizes that of maximal φ-monotone paths in the
graph of P oriented by φ. The collection of cellular strings ordered by inclusion (i.e.,
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one cellular string is contained within another if the union of cells of one is a subset
of the union of cells of the other) is the Baues poset of (P, φ) from algebraic topology;
see [5]. While Baues posets can be rather wild, the subposet of coherent cellular strings
is isomorphic to the face poset of the monotone path polytope Σφ(P).

Theorem 1.1. Let P = ([n],⪯) be a poset. Then ΠP = Σ1(O(P)) + 1
2 1 with respect to the

linear function 1(x) = x1 + · · ·+ xn.

It is typically nontrivial to determine if a cellular string is coherent. In our situation,
however, it turns out that all cellular strings are coherent.

Theorem 1.2. Let P = ([n],⪯) and φ a linear function that is positive on Rn
≥0. Then all

cellular strings are coherent. In particular the face lattice of ΠP is isomorphic to the Baues poset
of (O(P), 1).

Theorem 1.2 allows us to prove the following results about poset permutahedra:
(1) Vertices of ΠP are in bijection to chains of filters ∅ = F0 ⊂ F1 ⊂ · · · ⊂ Fk = P such

that the poset Fi \ Fi−1 is connected for all i = 1, . . . , k (Theorem 3.1).
(2) Theorem 3.2 gives a combinatorial characterization of edges and the corresponding

edge directions.
(3) Facets of ΠP are in bijection to the set of proper filters F(P) and the cover relations

of P (Corollary 3.4).
(4) Corollary 3.5 yields the vertex-facet-incidences of ΠP , and Theorem 3.6 shows that

ΠP is simple if and only if the undirected Hasse diagram of P is a forest.
(5) Analogous to order polytopes, ΠP is subdivided by the set of all ΠL, where L ranges

over the linear extensions L(P) (Theorem 4.1). This allows us to compute the volume
of ΠP as |L(P)|nn−2

n! (Corollary 4.2).
(6) For every poset P , 2 · ΠP is a lattice polytope that has the integer decomposition

property, that is, if p ∈ m · 2ΠP is a lattice point, then there are lattice points
p1, . . . , pm ∈ 2ΠP with p = p1 + · · ·+ pm; see Section 4.

Partitioned Permutahedra and h-vectors. In [17] a toric orbifold is associated to a Weyl
group W and a choice of a parabolic subgroup WK. In type A, they call the associated
moment polytope a partitioned permutahedron Πn(K). It is shown partitioned permutahe-
dra are simple and their h-vectors were determined by using the cohomology of regular
Hessenberg varieties.

Theorem 1.3 ([17, Proposition 7.4]). The h-polynomial of the partitioned permutahedron for
K ⊆ [n − 1] is given by

hΠn(K)(x) = ∑
σ∈W(K)

xdes(σ),

where W(K) is the set of permutations σ such that σ−1(i)− σ−1(i + 1) ≤ 1 for all i ∈ K.
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In Section 5, we show that Πn(K) is the poset permutahedron of a disjoint union of
chains, which implies simplicity by Theorem 3.6. We provide a direct bijective proof of
Theorem 1.3.

P-score sequences. Consider a tournament with teams 1, 2, . . . , n. Any two teams play
against each other and during each match m points are distributed between the two
teams. This gives rise to a score sequence s = (s1, s2, . . . , sn). We call s a (strict) (P , m)-
score sequence if si ≤ sj (respectively si < sj) if i ⪯ j. Thus strict (P , m)-score sequences
ensure a relative ranking of the team given by P .

Theorem 1.4. The P-score sequences for m points are precisely the lattice points in m · (ΠP − 1).

Corollary 3.4 gives a simple characterization of (P , m)-score sequences. If P is a
chain, then this characterization is classical and originally due to Landau [19]. While
the question of the number of score sequence for m = 1 and varying number of teams
n has received considerable attention (cf. [11] and entries A000571, A007747, A047729-
A047731, and A047733-A047737 in OEIS [21]), we are not aware of results pertaining to
the number of score sequences with fixed number of teams n and varying the number
of points m.

All-coherent and Connectivity of flip graphs. We derive Theorem 1.2 from the more
general Lemma 2.1, that gives a necessary condition when all cellular strings of (P, 1)
are coherent for 0/1-polytopes P. Little is known about polytopes for which all cellular
strings are coherent for some choice of φ. Our results add to this list, which includes
simplices and hypercubes [6], (poly)matroid independence polytopes [8], and certain
zonotopes [12]. Furthermore, in very recent work [13] expanding on [3], it is shown that
a certain graph called the flip graph of monotone paths on d-dimensional polytopes is
(d − 1)-connected assuming the polytope satisfies a condition called being directionally
simple and that the graph is a Hasse diagram of a lattice. In their paper, they note
“it is an interesting question for future study to determine exactly how much further
this result can be pushed." In our case, since all cellular strings are coherent, this graph
is precisely the one-skeleton of the corresponding poset permutahedron. By Balinski’s
theorem, this graph is always (n − 1)-connected. However, order polytopes are not
directionally simple for the orientation induced by the linear functional 1(x) = x1 +
· · ·+ xn, so this family of polytopes pushes their results further.

2 Monotone Path Polytopes and Order Polytopes

In this section we show that poset permutahedra arise as monotone path polytopes of
order polytopes. Let P ⊂ Rn be a polytope and φ : Rn → R a linear function that is not
constant on P. A monotone path on P is the sequence of edges e1, . . . , em along a strictly
φ-increasing path in the graph of P from a minimizer to a maximizer of φ. Cellular

https://oeis.org/A000571
https://oeis.org/A007747
https://oeis.org/A047729
https://oeis.org/A047731
https://oeis.org/A047733
https://oeis.org/A047737
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strings generalize monotone paths to faces of higher dimensions. A cellular string is
a sequence (F1, F2, . . . ,Fk) of faces of P such that F1 and Fk contain a φ-minimizer and
maximizer respectively, and Fi ∩ Fi+1 is the φ-maximal face of Fi and the φ-minimal
face of Fi+1 for all 1 ≤ i ≤ k − 1. Cellular strings are partially ordered by refinement.
The resulting poset is the Baues poset of (P, φ), whose minimal elements are precisely
the monotone paths; see [5]. Let ψ be a linear function linearly independent of φ. The
ordered sequence of faces of P that maximize the linear functions ψ + tφ as t ranges
from −∞ to +∞ yields a cellular string, called a coherent cellular string. Billera and
Sturmfels [6] showed that the subposet of coherent cellular strings is the face poset of
a polytope, the monotone path polytope Σφ(P). They show that the monotone path
polytope is the Minkowski integral

Σφ(P) =
∫

R
P ∩ φ−1(s) ds .

Note that our definition differs from that in [6] by a scaling factor. For P = [0, 1]n and
the linear function 1(x) = x1 + · · ·+ xn, we get Σ1([0, 1]n) = Πn − 1

2 1, as in [6].

Proof sketch of Theorem 1.1. For the proof, we verify

Σ1(O(P)) =
∫

R
CP ∩ [0, 1]n ∩ 1−1(s) ds

= CP ∩
∫

R
[0, 1]n ∩ 1−1(s) ds = CP ∩

(
Πn − 1

2 1
)

.

Since −1
2 1 + CP = CP , this proves the claim. Note that proving this sequence of equali-

ties is nontrivial, since in general one cannot pull an intersection with a cone outside of
a Minkowski integral.

The result yields that the face poset of ΠP is a subposet of the Baues poset. The
following lemma, which is of interest in its own right, implies that all cellular strings of
(O(P), 1) are coherent. A version of this statement had also appeared as Corollary 3.4.2
in the PhD Thesis [7].

Lemma 2.1. Let P be a 0/1-polytope. If for all edges [u, v] ⊂ P the nonzero entries u − v are of
the same sign, then all cellular strings of (P, 1) are coherent.

Recall from [24] that O(P) is a 0/1-polytope with vertices corresponding to indicator
vectors eF ∈ {0, 1}n of filters F of P . The collection of filters of P ordered by inclusion
is the Birkhoff lattice F(P) and 1(eF ) = |F | is the rank of F in F(P). Two filters F ,F ′

correspond to the endpoints of an edge of O(P) if and only if, say, F ⊆ F ′ and F ′ \ F is
a connected poset. Hence all cellular strings of (O(P), 1) are coherent. In particular, the
order complex of the face lattice of Σ1(O(P)) is a simplicial sphere. Theorem 2.1 of [12]
implies that all cellular strings of (O(P), φ) are coherent, provided φ induces the same
orientation on the graph of O(P) as 1. This is the case if φ is positive on Rn

≥0. This then
yields Theorem 1.2.
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3 Faces of Poset Permutahedra

It follows from Theorem 1.2 that the vertices of ΠP correspond to 1-monotone paths on
O(P), which in turn correspond to chains

∅ = F0 ⊂ F1 ⊂ · · · ⊂ Fk = P

of filters of P such that the induced undirected subgraph of the Hasse diagram of P
given by restricting to Fi \ Fi−1 is connected for all i ∈ [k], that we denote by F•. We
denote the collection of such chains by C(P) and call these connected chains. This is an
accessible set system within the order complex of F(P) but not a simplicial subcomplex.
From [6, Theorem 5.3] we deduce the vertex set of ΠP . For A ⊆ [n], we write Ac = [n] \ A
for the complement.

Theorem 3.1. The vertices of ΠP are in bijection to connected chains of filters F• in P . For F•,
the corresponding vertex is

Ψ(F•) =
1
2

l

∑
i=1

(
|F c

i |+ |F c
i−1|+ 1

)
eFi\Fi−1

.

Two dimensional faces of 0/1-polytopes are either triangles or quadrilaterales. For
order polytopes O(P), they correspond to filters F ⊂ F ′ of P such that F ′ \ F has
at most two connected components. From the monotone path polytope perspective,
edges of ΠP correspond to cellular strings F1, . . . ,Fk in O(P) such that Fi is a 2-face for
precisely one i ∈ {1, . . . , k} and Fj are edges for all j ̸= i.

Theorem 3.2. Let ΠP be a poset permutahedron and F•,F ′
• ∈ C(P) be a pair of connected

chains of filters with the length of F• at least the length of F ′
•. Then Ψ(F•) and Ψ(F ′

•) are
adjacent if and only if there is an 1 ≤ i < k such that:

1. Fi+1 \ Fi−1 is connected and F ′
• is (Coarsening edges)

F ′
• = F0 ⊂ · · · ⊂ Fi−1 ⊂ Fi+1 ⊂ · · · ⊂ Fk .

Then we have

Ψ(F ′
•)− Ψ(F•) =

1
2

(
(|Fi| − |Fi+1|) eFi−1\Fi

+ (|Fi−1| − |Fi|) eFi+1\Fi

)
.

2. Fi+1 \ Fi−1 consists of two connected components and F ′
• is (Swapping edges)

F ′
• = F0 ⊂ · · · ⊂ Fi−1 ⊂ (Fi−1 ∪ (Fi+1 \ Fi)) ⊂ Fi+1 ⊂ · · · ⊂ Fk .

Then we have

Ψ(F ′
•)− Ψ(F•) = (|Fi| − |Fi+1|) eFi\Fi−1

+ (|Fi| − |Fi−1|) eFi+1\Fi
, .
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To determine the facets of ΠP it suffices by Theorems 1.1 and 1.2 to determine the
coarsest, nontrivial cellular strings. We denote the cover relations of a poset P by a ⋖ b.

Theorem 3.3. The coarsest nontrivial cellular strings of (O(P), 1) are of the following two
forms:

1. (F1), where F1 is a facet of the order polytope O(P) corresponding to a cover relation a⋖ b.
2. (F1, F2), where F1, F2 are faces of O(P) and there exists a filter F in P such that all

vertices in F1 correspond to filters contained in F and and all vertices in F2 correspond to
filters containing F .

The proof of Theorem 3.3 makes use of the following two properties of order poly-
topes. First, for any nonempty face F ⊆ O(P), there is a unique vertex that maximizes
1(x). Second, for any two filters F ⊆ F ′ there is a unique face F ⊆ O(P) whose vertices
are in bijection to the interval [F ,F ′] in the Birkhoff lattice of P .

For n ≥ 1 define the submodular set function fn by fn(S) := (n+1
2 ) − (n−|S|+1

2 ) for
S ⊆ [n]. Moreover, for S ⊆ [n], let 1S be the linear function given by 1S(x) := ∑i∈S xi.

Corollary 3.4. Let P = ([n],⪯) be a poset. A point x ∈ Rn is contain in ΠP if and only if

xa ≤ xb for all cover relations a ⋖ b
1F (x) ≤ fn(F ) for all proper, nonempty filters F ⊂ P

1(x) = fn([n]) = (n+1
2 ) .

The inequality description is irredundant.

From Theorem 3.3 and Corollary 3.4 we can also derive explicit vertex-facet inci-
dences for the poset permutahedron ΠP .

Corollary 3.5. A vertex given by the connected chain of filters ∅ = F0 ⊂ F1 ⊂ · · · ⊂ Fk = P
is contained in the facets corresponding to

1. the proper nonempty filters F1, . . . ,Fk−1 and
2. cover relations a ⋖ b such that a, b ∈ Fi \ Fi−1 for some i ∈ [k] with.

Applying this characterization together with a counting argument enables us to char-
acterize the simple poset permutahedra.

Theorem 3.6. A poset permutahedron ΠP is a simple polytope if and only if the undirected
Hasse diagram of P is a (not necessarily rooted) forest.

4 Subdivision, Volumes and Integer Points

We view a linear extension L of P as a refinement of ⪯ to a total order [n] and we collect
the linear extensions in L(P). For L ∈ L(P) it is well known that O(L) is a unimodular
simplex contained in O(P) and that {O(L) : L ∈ L(P)} is a triangulation of O(P). This
generalizes to poset permutahedra.
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Theorem 4.1. For any poset P , the set {ΠL : L ∈ L(P)} is a subdivision of ΠP .

Note that this is immediate from the initial definition we give for the poset per-
mutahedron in Equation (1.1) but is nonobvious from its equivalent formulation as a
fiber polytope. If P is the antichain on n elements, then the symmetric group acts
simply transitively on L(P) and shows that any two ΠL are isometric. In particular
vol(ΠL) = 1

n! vol Πn. The volume of Πn is famously known to be the number of span-
ning trees of the complete graph on n nodes. This yields the following:

Corollary 4.2. For a poset P on [n], the volume of ΠP is |L(P)|
n! nn−2. In particular, the proba-

bility that a random point of Πn is in ΠP is precisely the probability that a random permutation
is a linear extension of P .

A score sequence is an integer sequence 0 ≤ s1 ≤ · · · ≤ sn ≤ n − 1 that is a possible
result of an n-person round-robin tournament in which a single point is awarded to
the winner of a match. Equivalently, a score sequence is a reordering of the indegree
sequence of a tournament, that is, a directed complete graph on n nodes. For n = 2 the
only score sequence is 0 ≤ 1 and for n = 3 we have two score sequences: 0 ≤ 1 ≤ 2
and 1 ≤ 1 ≤ 1. A score vector is a tuple of integers t = (t1, . . . , tn), where ti records
the number of points that team i wins during the tournament. For n = 2 there are two
score vectors: (0, 1) and (1, 0); for n = 3 we have 7 score vectors: (1, 1, 1) and the six
permutations of (0, 1, 2).

If we define αij ∈ {−1, 1} for 1 ≤ i < j ≤ n by αij = 1 if j wins the match between i
and j and −1 otherwise, then the score vector t is

t =
1
2

(
(n − 1)1 + ∑

i<j
αij(ej − ei)

)
.

Thus, the collection of score vectors are the integer points in the projection of {−1, 1}(n
2)

with respect to the projection that sends the standard basis vector eij to ej − ei. This is
the permutahedron Πn up to the translation by 1. The characterization of the defining
facets of the convex hull of score vectors is due to Landau [19]. The score sequences are
the lattice points in ΠC − 1, where C is a chain poset. By Theorem 4.1, for general posets
P we have that the P-score vectors are the integer points in the poset permutahedron
ΠP − 1.

Theorem 1.4 for chain posets follows from [20], Theorem 4.1 implies the result for
every poset permutahedron. Combinatorially we can get this result by considering com-
plete directed graphs with m directed edges between any pair of nodes.

Decomposing every such multi-tournament for 2m into m tournaments with two
directed edges between any pair of nodes, shows the integer decomposition property (6)
from the introduction. Note that for this to work in general we need the integer point in
the second dilate of the poset permutahedron: for the chain poset on two elements we
only have one integer point (0, 1) in the first dilate.
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5 Partitioned Permutahedra

In [17], Horiguchi, Masuda, Shareshian, and Song defined partitioned permutahedra
with motivation coming from combinatorial algebraic geometry. To define these polyhe-
dra, they define a linear halfspace for each k ∈ [n − 1] given by

H(k) := {x ∈ Rn : xk ≤ xk+1} .

For each subset K ⊆ [n − 1], they define the partitioned permutahedron via

Πn(K) = Πn ∩
⋂

k∈K

H(k).

For every such subset K ⊆ [n − 1], we associate the poset PK = ([n],⪯) with cover
relations are given by i⋖ i + 1 if i ∈ K. The following follows directly from our definition
of poset permutahedra.

Proposition 5.1. For every K ⊆ [n − 1], we have Πn(K) = ΠPK .

Geometrically O(PK) is a product of simplices for which cellular strings are easy to
describe. In particular, Theorem 3.1, Corollary 3.4, and Theorem 3.3 recover the results
on vertices, facets, and incidences in [17].

Corollary 5.2. Partitioned permutahedra are simple polytopes.

This follows directly from the observation that PK is a disjoint union of chains and
Theorem 3.6. This follows also as a consequence of Proposition 4.5 in [17] .

Proposition 7.4 in [17] shows that the h-vector of Π(W) is the descent statistic re-
stricted to the permutations σ of [n] with σ−1(i)− σ−1(i + 1) ≤ 1 for all i ∈ K. The set
of these permutations is denoted by W(K). This is shown by applying results on the
cohomology of Hessenberg varieties. We sketch a simple combinatorial proof using the
geometry of poset permutahedra.

Proof sketch of Theorem 1.3. Recall that we can compute the h-polynomial of a simple
polytope the following way (see, e.g., [4, Chapter VI.6]): We first choose an edge-generic
linear functional ω : Rn → R, which induces an acyclic orientation on the graph of
the polytope P. If outdeg(v) denotes the out-degree of the vertex v, i.e., the number
ω-improving neighbors, then

hP(x) = ∑
v

xoutdeg(v) .

In order to prove the stated expression for the h-polynomial, we define a bijection g
between connected chains of filters in the poset P = [1, k1]⊎ [k1 + 1, k2]⊎ · · · ⊎ [kℓ + 1, n]
and W(K). For each σ ∈ W(K), we build g(σ) via the following algorithm. Initialize the
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1 = σ(3)

2 = σ(2)

3 = σ(1)

4 = σ(5)

5 = σ(4) Figure 2: Pictured is an illustration of the bijection g
used in the proof sketch of Theorem 1.3 for the per-
mutation 32154. First consider σ(5) = 4. Then the
smallest filter containing it is {4, 5}. The largest ele-
ment whose image is not covered is 3. Since σ(3) = 1,
and the smallest remaining filter containing 1 is the
whole chain. This yields the resulting chain of fil-
ters {4, 5} ⊆ {1, 2, 3, 4, 5}. The descents of σ are
{(1, 2), (2, 3), (4, 5)} and correspond exactly to refining
edges, which are all ω = (1, 2, 4, 8, 16)-improving.

chain of filters F• = {F0 = ∅}. We write
⋃F• =

⋃
F∈F• F . While

⋃F• ̸= [n], let k be
maximal such that σ(k) /∈ ⋃F•. Let F ′ be the unique smallest filter containing σ(k) ∪⋃F• and add F ′ to F•. When the process terminates, the result will be a connected
chain of filters. This is a bijection. See Figure 2 for an illustration.

Let ω(x) = ∑n
i=1 2ixi. Then to prove the theorem, it suffices to show that the size of

the descent set of σ is precisely the ω-out-degree of the corresponding vertex g(σ). One
can do this directly by applying our characterization of edge directions derived from
Theorem 3.2.

We also offer an alternative characterization of the vertices that makes them efficient
to count as a sum of multinomials or via memoization and the recurrence

am1,m2,...,mk =
k

∑
j=1

mj−1

∑
i=0

am1,m2,...,mj−1,i,mj+1,...,mk .

To do this, we require the notion of a high dimensional rook walk as found in [18].
Namely, a rook walk in a m × n grid is any sequence of moves a rook could take to move
from (0, 0) to (m, n), where the rook is only allowed to move to the right or up. In high
dimensions, one can consider any sequence from (0, 0, . . . , 0) to (m1, m2, . . . , mn) such
that at each step one can only increase in a single coordinate at a time.

Proposition 5.3. For K ⊆ [n − 1], the following sets have the same cardinality:
i) The set of vertices of the partitioned permutahedron Πn(K).

ii) The set W(K) = {σ ∈ Sn : σ−1(i)− σ−1(i + 1) ≤ 1 for all i ∈ K}.
iii) The set of high dimensional rook walks from (0, 0, . . . , 0) to (k1, k2 − k1, k3 − k2, . . . , n− kℓ),

where {k1 < k2 < · · · < kℓ < n} = [n] \ K.

In [18], they studied asymptotics and recurrences for the sequence of high dimen-
sional rook walks from (0, 0, . . . , 0) to (n, n, . . . , n), and our results give a new combina-
torial perspective for arbitrary endpoints. Finally, we note as a corollary of Corollary 4.2,
we can compute the volumes of the partitioned permutahedra:
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Corollary 5.4. The volume of the partitioned permutahedron Πn(K) for K ⊆ [n − 1] is given

nn−2

n!

(
n

k1, k2 − k1, k3 − k2, . . . , n − kℓ

)
for {k1 < k2 < · · · < kℓ < n} = [n] \ K.
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