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Abstract. We define a multivariable generalization of the Eulerian polynomials using
linear and descent based statistics of permutations and establish the connection with
the (α, t)-Eulerian polynomials based on cyclic and excedance based statistics of per-
mutations. As applications of this connection, we obtain the exponential generating
function for the multivariable Eulerian polynomials and γ-positive formulas of two
variants of Eulerian polynomials. We also show that enumerating the cycle André
permutations with respect to the number of drops, fixed points and cycles gives rise
to the normalised γ-vectors of the (α, t)-Eulerian polynomials. Our result generalizes
and unifies several recent results in the literature.
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1 Introduction

The Eulerian polynomials have a long and rich history, some of which is given in [7, 16,
8, 14]. For any positive integer n, we denote the symmetric group of [n] := {1, 2, . . . , n}
by Sn. For σ ∈ Sn, the integer i ∈ [n − 1] is called a descent (des) if σ(i) > σ(i + 1);
an ascent (asc) if σ(i) < σ(i + 1); an excedance (exc) if i < σ(i). It is well-known that the
Eulerian polynomials An(x) have the following combinatorial interpretations:

An(x) :=
n−1

∑
k=0

〈n
k

〉
xk = ∑

σ∈Sn

xasc(σ) = ∑
σ∈Sn

xdes(σ) = ∑
σ∈Sn

xexc(σ). (1.1)

Let Mn be the set of permutations σ ∈ Sn such that the first descent (if any) of σ appears
at σ−1(n). The binomial-Eulerian polynomials were introduced by Postnikov, Reiner, and
Williams [17, Section 10.4] as the h-polynomials of stellohedrons, and can also be defined
as in the following

Ãn(x) := ∑
σ∈Mn+1

xdes(σ) = 1 + x
n

∑
m=1

(
n
m

)
Am(x). (1.2)
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It is well-known [8, 15] that the Eulerian polynomials An(x) have the following γ-positive
expansion

An+1(x) =
⌊n/2⌋

∑
j=0

γn,j xj(1 + x)n−2j (1.3)

=
⌊n/2⌋

∑
j=0

2jdn,j xj(1 + x)n−2j, (1.4)

where γn,j is the number of permutations without double descents having j descents in
Sn+1 and dn,j is the number of André permutations with j descents in Sn+1. It is also
known [17, Section 10.4] that the polynomials Ãn(x) have the following gamma positive
formula

Ãn(x) =
⌊n/2⌋

∑
j=0

γ̃n,j xj(1 + x)n−2j, (1.5)

where γ̃n,j is the number of σ ∈ Mn+1 such that σ has j descents and no double descents.
The coefficients of the polynomials Ãn(x) can also be nicely expressed as sums of

products of Eulerian numbers and binomial coefficients. For integers a, b ≥ 0, Chung,
Graham, and Knuth [5] found the following identity with three proofs:

∑
k≥0

(
a + b

k

)〈
k

a − 1

〉
= ∑

k≥0

(
a + b

k

)〈
k

b − 1

〉
, (1.6)

where
〈

0
0

〉
= 1. Shareshian and Wachs [18] noticed that the above identity corresponds

exactly to the palindromicity of the coefficients of Ãn(x). Recently, Ji and Lin [13, Theo-
rem 4.1] found an α-analogue of (1.6).

For σ ∈ Sn, an index i ∈ [n] is a drop (drop) of σ if i > σ(i); a fixed point (fix) of σ

if i = σ(i). We shall also consider a permutation σ ∈ Sn as a word σ = σ1 . . . σn with
σi := σ(i) for i ∈ [n]. Say that a letter σi is a left-to-right maximum (lrmax) of σ if σi > σj
for every j < i; a right-to-left maximum (rlmax) of σ if σi > σj for every j > i.

In the middle of 1970’s Carlitz–Scoville considered several multivariate Eulerian poly-
nomials, among which are the so-called (α, β)-Eulerian polynomials [3]

An(x, y | α, β) := ∑
σ∈Sn+1

xasc(σ)ydes(σ)αlmax(σ)−1βrmax(σ)−1, (1.7a)

and the following ones [4], that we refer to (α, t)-Eulerian polynomials,

Acyc
n (x, y, t | α) := ∑

σ∈Sn

xexc(σ)ydrop(σ)tfix(σ)αcyc(σ), (1.7b)
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where cyc(σ) denotes the number of cycles of σ. As yn Acyc
n (x/y, 1, t/y | α) is equal to

Acyc
n (x, y, t | α), polynomial Acyc

n (x, y, t | α) is the homogeneous version of Acyc
n (x, 1, t | α),

which is studied in [8, Chapter 4].
For σ = σ1 . . . σn ∈ Sn with the boundary condition 0 − 0, i.e., σ0 = σn+1 = 0, a letter

σi ∈ [n] is called a valley (val) of σ if σi−1 > σi < σi+1; peak (pk) of σ if σi−1 < σi > σi+1;
double ascent (da) of σ if σi−1 < σi < σi+1; double descent (dd) of σ if σi−1 > σi > σi+1.

It is clear that the following identities hold

val = pk−1, asc = val+da, des = val+dd . (1.8)

Recently, refining the (α, β)-Eulerian polynomials An(x, y | α, β), Ji [12] considered a vari-
ation of Eulerian polynomials incorporating six statistics over permutations in Sn+1:

An(u1, u2, u3, u4 | α, β) := ∑
σ∈Sn+1

(u1u2)
val(σ)uda(σ)

3 udd(σ)
4 αlmax(σ)−1βrmax(σ)−1. (1.9)

In a follow-up Ji–Lin [13] considered a binomial analogue of Carlitz–Scoville’s polyno-
mial (1.7a) when α = β.

This paper originally arose from the desire to provide an alternative approach to Ji’s
generating function [12, Theorem 1.4] via previous known results in the literature, which
led us to the following connection formula: let xy = u1u2 and x + y = u3 + u4, then

An(u1, u2, u3, u4 | α, β) = Acyc
n

(
x, y,

αu3 + βu4

α + β
| α + β

)
. (1.10)

By combining a refined version of (1.10) and known group actions, among our main
results, we generalize Ji and Ji–Lin’s polynomials and results in [12, 13].

For a permutation σ = σ1 . . . σn ∈ Sn, we say that an index i ∈ [n] is a cycle peak (cpk)
of σ if σ−1(i) < i > σ(i); cycle valley (cval) of σ if σ−1(i) > i < σ(i); cycle double ascent
(cda) of σ if σ−1(i) < i < σ(i); cycle double descent (cdd) of σ if σ−1(i) > i > σ(i). Note
that cpk(σ) = cval(σ). The following is our first main result.

Theorem 1.1. If xy = u1u2 and x + y = u3 + u4, then

Acyc
n (x, y, t | α) = ∑

σ∈Sn

(u1u2)
cpk(σ)ucda(σ)

3 ucdd(σ)
4 tfix(σ)αcyc(σ). (1.11)

Let σ = σ1 . . . σn ∈ Sn with the boundary condition 0 − 0. A letter σi ∈ [n] is a

• left-to-right-maximum-peak (lmaxpk) if σi is a left-to-right maximum and also a peak;

• right-to-left-maximum-peak (rmaxpk) if σi is a right-to-left maximum and also a peak;

• left-to-right-maximum-double-ascent (lmaxda) if σi is a left-to-right maximum and
also a double ascent;
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• right-to-left-maximum-double-descent (rmaxdd) if σi is a right-to-left maximum and
also a double descent.

Let u = (u1, u2, u3, u4) and define the generalized Eulerian polynomial

An(u, f , g, t | α, β) = ∑
σ∈Sn+1

(u1u2)
val(σ)uda(σ)

3 udd(σ)
4 f lmaxpk(σ)−1grmaxpk(σ)−1

× tlmaxda(σ)+rmaxdd(σ)αlmax(σ)−1βrmax(σ)−1. (1.12)

The following is our second main result, which generalizes (1.10).

Theorem 1.2. If xy = u1u2 and x + y = u3 + u4, then

An(u, f , g, t | α, β) = Acyc
n

(
x, y,

αu3 + βu4

α f + βg
t | α f + βg

)
. (1.13)

In the next section, we present some consequences of the main theorems, and outline
the proofs of Theorem 1.1 and 1.2 in Section 3.

2 Applications of the main theorems

2.1 Exponential generating functions

The exponential generating function of polynomials Acyc
n (x, y, t | α) is well-known [8, 4,

2] and reads as follows

∑
n≥0

Acyc
n (x, y, t | α)

zn

n!
=

(
(x − y)etz

xeyz − yexz

)α

. (2.1)

Combining Theorem 1.2 with (2.1), we derive immediately the exponential generating
function of An(u, f , g, t | α, β) in (1.12), namely

Theorem 2.1. Let xy = u1u2 and x + y = u3 + u4. We have

∑
n≥0

An(u, f , g, t | α, β)
zn

n!
= e(αu3+βu4)tz

(
x − y

xeyz − yexz

)α f+βg
. (2.2)

From the above theorem we derive plainly the generating functions for Ji’s gener-
alized Eulerian polynomials An(u, 1, 1, 1 | α, β) and Ji–Lin’s binomial-Stirling Eulerian
polynomials An(u, 0, 1, 1 | α, β) [13, Theorem 1.5].

Furthermore, combining Theorem 1.2 and the continued fraction expansion of the or-
dinary generating function of Acyc

n (x, y, t | α) in [21, Théorème 3] we obtain the following
continued fraction formula for the ordinary generating function of An(u, f , g, t | α, β).
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Theorem 2.2. We have
∞

∑
n=0

An(u, f , g, t | α, β)zn =
1

1 − b0z −
λ1z2

1 − b1z −
λ2z2

1 − b2z − · · ·

, (2.3a)

where

bk = k(u3 + u4) + (αu3 + βu4)t, (2.3b)
λk+1 = (k + α f + βg)(k + 1)u1u2 (k ≥ 0). (2.3c)

In particular, the polynomials An(u, f , g, t | α, β) encompass the moment sequences of
the orthogonal Sheffer polynomials [22].

2.2 (α, t)-Eulerian and binomial-Eulerian polynomials

Define the (α, t)-Eulerian polynomials An(x, y, t | α) by

An (x, y, t | α) := ∑
σ∈Sn+1

xasc(σ)ydes(σ)tlmaxda(σ)+rmaxdd(σ)αlmax(σ)+rmax(σ)−2, (2.4a)

which is equal to An(x, y, x, y, 1, 1, t | α, α). By Theorem 1.2 we have

An (x, y, t | α) = Acyc
n

(
x, y,

x + y
2

t | 2α

)
. (2.4b)

Combining (2.4b) and Theorem 1.2 with f = g = 1, α = β, we obtain the following
t-analogue of Ji-Lin’s Theorem 1.6 [13].

Theorem 2.3. If xy = u1u2 and x + y = u3 + u4, then

An (x, y, t | α) = ∑
σ∈Sn+1

(u1u2)
val(σ)uda(σ)

3 udd(σ)
4 tlmaxda(σ)+rmaxdd(σ)αlmax(σ)+rmax(σ)−2.

We define the (α, t)-binomial-Eulerian polynomials Ãn(x, y, t | α) by

Ãn(x, y, t | α) = ∑
σ∈Mn+1

xasc(σ)ydes(σ)tlmaxda(σ)+rmaxdd(σ)αlmax(σ)+rmax(σ)−2, (2.5a)

which is equal to An(x, y, x, y, 0, 1, t | α, α) because a permutation σ ∈ Sn is an element
of Mn if and only if lmaxpk(σ) = 1. By Theorem 1.2 we have

Ãn(x, y, t | α) = Acyc
n (x, y, (x + y)t | α). (2.5b)

Combining (2.5b) and Theorem 1.2 with f = 0, g = 1, and α = β, we obtain the following
t-analogue of Ji-Lin’s Theorem 1.5 [13].
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Theorem 2.4. If xy = u1u2 and x + y = u3 + u4, then

Ãn(x, y, t | α) = ∑
σ∈Mn+1

(u1u2)
val(σ)uda(σ)

3 udd(σ)
4 tlmaxda(σ)+rmaxdd(σ)αlmax(σ)+rmax(σ)−2.

2.3 A symmetric (α, t)-Eulerian identity

Define two kinds of (α, t)-Eulerian numbers as follows:〈n
k

〉exc

α,t
:= ∑

σ∈Sn
exc(σ)=n−k

αcyc(σ)tfix(σ) (1 ≤ k ≤ n), (2.6a)

and 〈n
k

〉asc

α,t
:= ∑

σ∈Sn
asc(σ)=n−k

αrmax(σ)trmaxdd(σ) (1 ≤ k ≤ n). (2.6b)

It is easy to see that Acyc
n (x, y, t(x + y) | α) is symmetric in x and y because the involution

ϑ : σ 7→ σ−1 for σ ∈ Sn satisfies (exc, drop, fix) σ = (drop, exc, fix) σ−1. We have the
following symmetric (α, t)-Eulerian identity.

Theorem 2.5. For integers a, b ≥ 0, we have〈n
k

〉
α,t

:=
〈n

k

〉exc

α,t
=

〈n
k

〉asc

α,t
, (2.7a)

and

∑
k≥0

(αt)a+b−k
(

a + b
k

)〈
k
a

〉
α,t

= ∑
k≥0

(αt)a+b−k
(

a + b
k

)〈
k
b

〉
α,t

, (2.7b)

where
〈

0
k

〉
α,t

=
〈

k
0

〉
α,t

= δk,0.

Remark 1. When α = t = 1 and t = 1, identity (2.7) reduces to (1.6) and [13, Theorem 4.1],
respectively.

2.4 γ-positivity of (α, t)-Eulerian polynomials

The following lemma can be derived from Theorem 1.1 and 1.2 with suitable substitu-
tions [20, Lemma 2.2].

Lemma 2.1. For any variable f , we have

An(x, y, 0, x + y, f , 1, t | α, α)

= ∑
σ∈Sn+1
da(σ)=0

(xy)asc(σ)(x + y)n−2 asc(σ) f lmaxpk(σ)−1trmaxdd(σ)αlmax(σ)+rmax(σ)−2 (2.8a)

= ∑
σ∈Sn

cda(σ)=0

(xy)exc(σ)(x + y)n−2 exc(σ)tfix(σ)αcyc(σ)( f + 1)cyc(σ)−fix(σ). (2.8b)
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We define three types of subsets of Sn:

Scda=0
n,exc=j := {σ ∈ Sn : cda(σ) = 0 and exc(σ) = j}; (2.9a)

Sda=0
n,asc=j := {σ ∈ Sn : da(σ) = 0 and asc(σ) = j}; (2.9b)

Mda=0
n,asc=j := {σ ∈ Mn : da(σ) = 0 and asc(σ) = j}. (2.9c)

From Lemma 2.1, we derive the following combinatorial interpretations of the coeffi-
cients in the γ-expansion of An(x, y, t | α) and Ãn(x, y, t | α).

Theorem 2.6. For 0 ≤ j ≤ ⌊n/2⌋, we have

An(x, y, t | α) =
⌊n/2⌋

∑
j=0

γn,j(α, t)(xy)j(x + y)n−2j, (2.10)

where

γn,j(α, t) = ∑
σ∈Sda=0

n+1,asc=j

αlmax(σ)+rmax(σ)−2trmaxdd(σ) (2.11a)

= ∑
σ∈Scda=0

n,exc=j

2cyc(σ)−fix(σ)αcyc(σ)tfix(σ); (2.11b)

Remark 2. When t = 1, Carlitz and Scoville [3] studied the above γ-coefficients but did not
give any combinatorial interpretation. By complement operation σ 7→ σc, Equation (2.11a) with
t = 1 can be obtained in Ji-Lin’s [13, Theorem 1.6]. When α = t = 1, Equation (2.11a) is
equivalent to (1.3).

Theorem 2.7. For n ≥ 1, we have

Ãn(x, y, t | α) =
⌊ n

2 ⌋

∑
j=0

γ̃n,j(α, t)(xy)j(x + y)n−2j, (2.12)

where
γ̃n,j(α, t) = ∑

σ∈Mda=0
n+1,asc=j

αrmax(σ)−1trmaxdd(σ) = ∑
σ∈Scda=0

n,exc=j

αcyc (σ)tfix(σ). (2.13)

When t = 1, by complement operation σ 7→ σc, the first combinatorial interpretations
in (2.13) appeared in [13, Theorem 2.1]. When α = t = 1, Equation (2.13) is equivalent
to (1.5). More combinatorial interpretations of the γ-coefficients in (2.10) and (2.12) are
given in [20, Theorem 2.5 and 2.6].

From Theorem 2.1, we can derive the exponential generating function for these two
γ-coefficients, respectively.
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Theorem 2.8. Let u =
√

1 − 4x. We have

1 + ∑
n≥1

⌊n/2⌋

∑
j=0

γn,j(α, t)xj zn

n!
=

(
u e

1
2 (t−1)z

u cosh(uz/2)− sinh(uz/2)

)2α

, (2.14)

1 + ∑
n≥1

⌊n/2⌋

∑
j=0

γ̃n,j(α, t)xj zn

n!
=

(
u e(t−

1
2 )z

u cosh(uz/2)− sinh(uz/2)

)α

. (2.15)

2.5 γ-vector of (α, t)-Eulerian polynomials and cycle André permuta-
tions

For 0 ≤ j ≤ ⌊n/2⌋, let dn,j(α, t) = γn,j(α, t)/2j, then, Equation (2.10) reads

An(x, y, t | α) =
⌊n/2⌋

∑
j=0

2jdn,j(α, t)(xy)j(x + y)n−2j. (2.16)

From Theorem 2.2, we derive the continued fraction

∞

∑
n=0

⌊n/2⌋

∑
j=0

dn,j(α, t)xjzn =
1

1 − b0z −
λ1z2

1 − b1z −
λ2z2

1 − b2z − · · ·

, (2.17)

where

bk = k + αt, λk+1 =

(
k + 1

2

)
x + α(k + 1)x (k ≥ 0). (2.18)

It follows that dn,j(α, t) are polynomials in N[α, t]. The aim of this section is to provide
three combinatorial interpretations in terms of André (resp. cycle André) permutations.

Definition 1 ([10]). For a fixed x ∈ [n], let σ = σ1 · · · σn ∈ Sn. Say that σ is an André
permutation of the first kind (resp. second kind) if σ has no double descents, i.e., σi−1 >
σi > σi+1, and each factorisation u λ(x) x ρ(x) v of σ has property

• λ(x) = ∅ if ρ(x) = ∅,

• max(λ(x)) < max(ρ(x)) (resp. min(ρ(x)) < min(λ(x))) if λ(x) ̸= ∅,

where λ(x) and ρ(x) are the the maximal contiguous subword immediately to the left (resp.
right) of x whose letters are all greater than x.
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Let A1
n (resp. A2

n) be the set of André permutations of the first (resp. second) kind in
Sn. It is known [8] that the cardinality of A1

n (resp. A2
n) is the Euler number En.

Let σ = σ1 . . . σn ∈ Sn. A right-to-left minimum (rmin) of σ is an element σi such
that σj > σi if j > i. A letter σi ∈ [n] is a right-to-left-minimum-da (rminda) of σ if it is
a double ascent and σi is a rmin. Let A := {a1, . . . , ak} be a set of k positive integers. Let
C = (a1, . . . , ak) be a cycle (cyclic permutation) of A with a1 = min{a1, . . . , ak}. Then,
cycle C is called an André cycle if the word a2 . . . ak is an André permutation of the
first kind. We say that a permutation is a cycle André permutation if it is a product
of disjoint André cycles. Let CAn be the set of cycle André permutations of [n]. Note
that Hwang et al. [11] used cycle André permutations to characterise the so-called Web
permutations to provide a combinatorial interpretation for entries of the transition matrix
between the Specht and SL2-web bases.

Theorem 2.9. For 0 ≤ j ≤ ⌊n/2⌋, we have

dn,j(α, t) = ∑
σ∈CAn

drop(σ)=j

tfix(σ)αcyc(σ), (2.19a)

dn,j(α, t) = ∑
σ∈A(i)

n+1
des(σ)=j

trminda(σ)αrmin(σ)−1, (i = 1, 2). (2.19b)

We prove (2.19) by computing the exponential generating functions of both sides, and
derive the i = 1 case of (2.19b) from (2.19a) by a bijection from CAn to A1

n+1, and the
i = 2 case by constructing another bijection from A1

n+1 to A2
n+1 via André trees, see [20,

Section 4.3–4.5].

3 Proof outlines of Theorem 1.1 and 1.2

3.1 Preliminaries

Recall two variants θ1 and θ2 of Foata’s fundamental transformation FFT. For σ ∈ Sn,
the mapping θ1 : σ 7→ θ1(σ) (resp. θ2 : σ 7→ θ2(σ)) goes as follows: (a) Factorize σ as
product of disjoint cycles with the largest letter in the last (resp. first) position of each
cycle; (b) Order the cycles from left to right in decreasing (resp. increasing) order of their
largest letters, then erase the parentheses to obtain θ1(σ) (resp. θ2(σ)). See [19, p. 30].

Fix a letter x ∈ [n] and a permutation σ ∈ Sn, the x-factorization of σ is defined as the
concatenation σ = w1w2 x w4w5, where w2 (resp. w4) is the maximal contiguous subword
immediately to the left (resp. right) of x whose letters are all smaller than x. Define the
involution ξx(σ) : Sn → Sn by

ξx(σ) :=

{
w1w4 x w2w5, if x is a double ascent or a double descent of σ;
σ, if x is a valley or a peak of σ.
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Here, we use the convention σ(0) = σ(n + 1) = ∞. The involution ξS := ∏x∈S ξx
(S ⊆ [n]) defines a Zn

2 action on Sn [1], called the modified Foata and Strehl action or MFS
action, see [9]. Cooper et al. [6, Propositions 3 and 4] defined the cyclic valley hopping
ψx(σ) : Sn → Sn by

ψx(σ) :=

{
θ−1

2 ◦ ξx ◦ θ2(σ), if x is not a fixed point of σ;
σ, if x is a fixed point of σ,

where we treat the 0-th letter of θ2(σ) as 0 and the (n+1)-th letter as ∞. Define the
involution ψS := ∏x∈S ψx(S ⊆ [n]).

3.2 Proof of Theorem 1.1

For any permutation σ ∈ Sn, denote the orbit of σ under cyclic valley-hopping by
Orb(σ) := {ψS(σ)|S ⊆ [n]}, which has a unique permutation σ̄ without cyclic double
descents. By [6, Propositions 3 and 4], we have

∑
π∈Orb(σ)

(u1u2)
cpk(π)ucda(π)

3 ucdd(π)
4 tfix(π)αcyc(π) = (u1u2)

cpk(σ̄)(u3 + u4)
cda(σ̄)tfix(σ̄)αcyc(σ̄).

(3.1a)
By definition, it is clear that for σ ∈ Sn,

exc(σ) = cda(σ) + cpk(σ) and drop(σ) = cdd(σ) + cval(σ). (3.1b)

Setting u1 = u3 = x and u2 = u4 = y in (3.1a) yields

∑
π∈Orb(σ)

xexc(π)ydrop(π)tfix(π)αcyc(π) = (xy)cpk(σ̄)(x + y)cda(σ̄)tfix(σ̄)αcyc(σ̄). (3.1c)

Thus, if u1u2 = xy and u3 + u4 = x + y, combining (3.1a) and (3.1c) we have

∑
π∈Orb(σ)

(u1u2)
cpk(π)ucda(π)

3 ucdd(π)
4 tfix(π)αcyc(π) = ∑

π∈Orb(σ)
xexc(π)ydrop(π)tfix(π)αcyc(π).

Then summing over all the orbits of Sn gives Equation (1.11).

3.3 Proof of Theorem 1.2

For a finite set of positive integers E, we denote by SE the set of permutations of E. For
σ ∈ SE define the weight function

w(σ; α, a, b) = (u1u2)
cpk(σ)ucda(σ)

3 ucdd(σ)
4 afix(σ)bcyc(σ)−fix(σ)αcyc(σ), (3.2a)

w1(σ; α, a, b, t) = w(σ; α, a, b) tlmaxda(σ), (3.2b)

w2(τ; α, a, b, t) = w(σ; α, a, b) trmaxdd(τ). (3.2c)
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Let S⋆
n be the set of permutations in Sn of which each cycle has a color in {Red, Blue}.

An element of S⋆
n is called a cycle decorated permutation (CDP). Hence, a CDP π ∈ S⋆

n
is in bijection with a pair of permutations (σ, τ) ∈ SA × SB such that (A, B) is an
ordered set partition of [n] and π = στ, namely, the permutation σ consists of all red
cycles and τ the blue ones. By Theorem 1.1, under the assumption that xy = u1u2 and
x + y = u3 + u4, the left-hand side of equality (1.13) can be written as

Acyc
n

(
x, y, t(αu3 + βu4)(α f + βg)−1 | α f + βg

)
= ∑

π∈Sn

(u1u2)
cpk(π)ucda(π)

3 ucdd(π)
4 (t(αu3 + βu4))

fix(π)(α f + βg)cyc(π)−fix(π)

= ∑
(σ,τ)∈S⋆

n

w1(σ; α, u3, f , t)w2(τ; β, u4, g, t). (3.3)

We define a mapping ρ : S⋆
n → Sn+1 as follows:

(σ, τ) 7→ π̃ := θ2(σ) x θ1(τ) with x = n + 1, (3.4)

where θ1 and θ2 are the FFT, see Section 3.1. Clearly this is a bijection. It follows (1.13)
from combining ρ and (3.3).
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