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3D permutations and triangle solitaire

Juliette Schabanel*1

1LaBRI, Université de Bordeaux

Abstract. We provide a bijection between a class of 3-dimensional pattern avoiding
permutations and triangle bases, special sets of integer points arising from the theory
of TEP subshifts. This answers a conjecture of Bonichon and Morel.
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1 Introduction

In this paper, we build a bijection between objects that are seemingly unrelated: a class
of pattern avoiding 3-dimensional permutations and objects arising from the theory of
subshifts called triangle bases, that was conjectured by Bonichon and Morel in [6].

Permutations are a central object in combinatorics and their study has received a lot
of attention. One topic of particular interest is pattern avoidance in permutations, which
led to numerous enumerative and bijective results with various objects (see [10, 5] and
references therein).

One can see a permutation σ as a (2-dimensional) diagram with points (i, σ(i)), which
satisfies the property that in each row and column lies a unique point. With this defi-
nition comes a natural generalization to higher dimensions by defining a d-dimensional
diagram, and the notion of pattern avoidance extends naturally [2, 6, 1].

The second object arises from the theory of tilings and symbolic dynamics. A tiling is a
coloring of the grid Z2 with allowed subpatterns determined by a rule set R. The set of
tilings respecting a certain rule set is called a subshift [8]. Tilings have been widely stud-
ied during the last decades and many questions, such as the tiling problem, were proved
undecidable [4]. However, for some classes with strong structure or combinatorial prop-
erties, such as cellular automata, some problems become decidable and a deeper study
can be carried [9]. The class we consider in this paper, named TEP for totally extremally
permutive, was introduced by Salo in [11] and generalizes bipermutive cellular automata.
The language of any TEP subshift is decidable, and they possess bases, i.e. sets of cells
whose content can be chosen freely and determine the values of a larger set. Our object
of interest are the bases of triangles for the Ledrappier subshift.

In [6], Bonichon and Morel considered 3-permutations avoiding small patterns and
enumerated the first terms of these classes. It turned out that several of those sequences
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matched existing sequences in the OEIS1. In particular, the sets of triangle bases of size
n and Avn((12, 12), (312, 231)) have the same cardinalities up to n = 8, and they conjec-
tured that these two sets are in bijection. Our main result is to prove their conjecture:

Theorem 1.1. There is an explicit bijection between 3-permutations of size n avoiding patterns
(12, 12) and (312, 231) and triangle bases of size n.

This bijection makes a link between objects from two previously independent classes
which are hard to enumerate, and it allows to transport structure properties and methods
from one class to the other, such as a random sampling method relying on a Markov
chain. In addition to that, the construction is quite simple and could be applied to other
classes of pattern avoiding d-permutations (even for d > 3).

Precise definitions are given Section 2 and the construction is explained Section 3.
This bijection is quite simple in its construction and brings keys to understand bet-
ter those two objects. In the process of the proof, we also provide a description of
Avn((12, 12), (312, 231)) through sums analogous to the one of separable permutations
but with a shift. In Section 4, we describe a dynamical system on bases, the solitaire,
which translates to permutations though the bijection and allows uniform sampling.

2 Definitions and Setting

2.1 3-Permutations avoiding a pattern

A permutation σ = σ(1)σ(2) . . . σ(n) ∈ Sn is a bijection from J1, nK = {1, 2, . . . n} to
itself. The (2 dimensional) diagram of a permutation σ ∈ Sn is the set of points Pσ :=
{(1, σ(1)), . . . , (n, σ(n))}. The diagrams of permutations of size n are exactly the point
sets such that each row and column of J1, nK2 contains exactly one point.

A permutation σ contains a pattern π ∈ Sk if there is a set of indices i1 < i2 < . . . < ik
such that σ(i1)σ(i2) . . . σ(ik) = π (once standardized). Otherwise, we say that σ avoids π.
Given a set of patterns π1, . . . , πk, we denote by Avn(π1, . . . , πk) the set of permutations
of size n avoiding all the πis.

Figure 1: The permutation σ = 324615 with an occurrence of the pattern 231 in red.

1such as Av((12, 12)) matching the number of intervals of the weak Bruhat order, for which they were
able to provide a bijection
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Definition 2.1. A d-permutation (or d-dimensional permutation) of size n, is a tuple σσσ =
(σ1, . . . , σd−1) of d − 1 permutations of size n . We denote by Sd−1

n their set. The diagram of a
d-permutation is the set of points Pσσσ := {(i, σ1(i), . . . , σd−1(i)) | 1 ⩽ i ⩽ n} ∈ Zd.

The diagrams of d-permutations of size n are exactly the point sets such that every
hyperplane xi = j with i ∈ J1, dK and j ∈ J1, nK contains exactly one point. Examples are
given in Figure 2.

The definition of pattern avoidance extends naturally to d-permutations as follows.
Let πππ ∈ Sd−1

k be a pattern, a d-permutation σσσ ∈ Sd−1
n contains πππ if there is a set of indices

I ⊂ J1, nK such that σσσ|I = πππ (once standardized), otherwise it avoids it. Given a set of
d-patterns πππ1, . . . , πkπkπk we denote by Avn(πππ1, . . . , πππk) the set of d-permutations of size n
that avoid all the πππi.

In what follows, we focus on 3-permutations avoiding two particular patterns :
(12, 12) and (312, 231) which are depicted Figure 2.

Figure 2: Left : The two forbidden patterns : (12, 12) (left) and (312, 231) (right).
Right : a 3-permutation, (54231, 32514), with an occurrence of (312, 231) in orange

Remark 2.2. Note that a 3-permutation avoiding a 3-pattern is not the same as a couple of
permutations each avoiding a pattern as we require the occurrence to be on the same indices. For
example (312, 231) avoids (12, 12) although both 312 and 231 contain 12.

2.2 Tilings, configurations and bases

Our other class of objects, triangle bases, arises from the study of tilings which we will
now introduce.

2.2.1 Tilings

Let A be a set of symbols and S be a finite subset of Z2. Let R be a subset of AS. A
tiling with tile set A and allowed patterns R is a coloring c : Z2 → A of the grid Z2 with
symbols of A such that for each translation S′ of S, c|S′ ∈ R. In other words, we require
that wherever one looks at the coloring through an S-shaped window, what one sees is



4 Juliette Schabanel

Figure 3: An example of a tiling. Left: the rule set R. Middle: a valid tiling.
Right: an invalid tiling with a forbidden pattern highlighted.

in R. The elements of SA \ R are called the forbidden patterns and the set of valid tilings
for R the subshift (of finite type) with rule set R.

In what follows, we consider a special kind of subshifts, called TEP subshifts (where
TEP stands for Totally Extremally Permutive), which were introduced in [11]. A subshift
is TEP if for all x ∈ S, for each partial coloring c : S \ {x} → A, there is a unique a ∈ A
such that the extension of c with c(x) = a is in R. In other words, if one fills all cells of
S but one with arbitrary symbols of A, there is a unique way to complete it so that this
does not create a forbidden pattern. An example ,the XOR automaton tiling, is given
Figure 4. In what follows, we only consider TEP subshifts with S = {(0, 0), (1, 0), (0, 1)}.
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Figure 4: Left: The tiling rules of the XOR automaton. Right: An example of a valid
tiling. Adding or removing a pattern from R breaks the TEP property.

2.2.2 Filling

When confronted to a TEP subshift, one natural question to ask is “given a set of cells P
whose content are known, what other values can be deduced ?”. The following definition
aims at formalizing this notion.

Definition 2.3. Let P ⊂ Z2 be a set of cells. Performing a filling step of P consists in choosing
a position (x, y) such that |P∩ {(x, y), (x + 1, y), (x, y+ 1)}| = 2 and adding the missing point
to P. This process is confluent and converges to a limit set denoted φ(P) called the filling of P.

Intuitively, if we know the values of a tiling on P, then a filling step consists in using
the tiling rules to deduce the value of a new cell and adding it to the known set. The
filling of P is then the set of values which can always be deduced from P.
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Figure 5: An example of application of the filing process. Dark cells are the original
set, colored ones are added by the current step and light cells were filled earlier.

2.2.3 Independence and Bases

The other natural question is “given a set of cells P, can any choice of symbols for P be
extended into a valid tiling of Z2 ?”. When it is the case, we say that P is independent.

Denote Tn = {(x, y) | x, y ∈ N, x + y < n} the triangle of size n. A set of cells P
is a basis (of Tn) if for any partial coloring c : P → A, by iteratively deducing value
using the TEP rules of R we always end up with a valid coloring of Tn (i.e. all of Tn is
determined by P and there is no conflict). We denote by Bn the set of bases of Tn. We
call configuration of size n a set of n points C ⊂ Tn, those are the candidates for bases.

Theorem 2.4 ([12]). A configuration of size n is a triangle basis if and only if its filling is Tn.

Figure 6: Configurations of size 5 (dark cells) with their filling (light cells).
Left : A basis of T5. Middle : A non independent pattern. Right : A non filling pattern.

The idea is that n is the minimal amount of information needed to fill Tn, and if there
is a conflict then one point is redundant and there is not enough left to fill all of Tn.

The number of triangle bases for n up to 8 were computed in [11] and are the follow-
ing: 1, 3, 16, 122, 1188, 13844, 185448, 2781348, . . .

3 The bijection

In this section, we define a function that send 3-permutations to configurations and
prove that it is a bijection between Avn((12, 12), (312, 231)) and the set of triangle bases
of size n. This function relies on the inversion sequence of the permutations, which we
will now define.
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3.1 Inversions

Let σ ∈ Sn be a permutation. For i ∈ J1, nK, we denote by rσ(i) (resp. lσ(i)) the number
of i < j ⩽ n (resp. 1 ⩽ j < i) such that σ(i) > σ(j) (resp. σ(i) < σ(j)). These are called
the number of right (resp. left) inversions of σ at i and the sequence (rσ(i))1⩽i⩽n (resp.
(lσ(i))1⩽i⩽n) the right (resp. left) inversion sequence of sigma.

Looking at the diagram of σ, for each i rσ(i) is the number of points to the bottom
right of (i, σ(i)) and lσ(i) the number of points to the top left of it (see Figure 7). We
denote respectively by Rσ(i) and Lσ(i) those sets of points.

Rσ(i)

Lτ (i)σ(i)

τ(i)

i i

Figure 7: The set Rσ(i) (resp. Lτ(i)) is the points in the blue (resp. orange) area.

Proposition 3.1. The mapings σ 7→ (rσ(i))1⩽i⩽n and σ 7→ (lσ(i))1⩽i⩽n are bijective.

3.2 The function Γ

Let Γ be the function that maps a 3-permutation (σ, τ) ∈ S2
n to the configuration com-

posed of the points (rσ(i), lτ(i)) for 1 ⩽ i ⩽ n. When there is no ambiguity, we write
xi = rσ(i), yi = lτ(i) and denote pi the point (xi, yi) ∈ Γ(σ, τ).

Example 3.2. Let us consider the 3-permutation (254361, 624315). Its inversion sequences are
(132110, 011241) and its image through Γ is depicted Figure 8.

1
6 23

4

5

σ τ

Γ

Figure 8: The diagram of the 3-permutation (254361, 624315) and its image through Γ.

Proposition 3.3. For all (σ, τ) ∈ Avn((12, 12)), Γ(σ, τ) is a configuration of size n.

Proof. If (σ, τ) ∈ S2
n avoids (12, 12) then for all i < j, either σ(i) > σ(j) and rσ(i) > rσ(j)

or τ(i) > τ(j) and lτ(i) < lτ(j), hence all pi’s are distinct.
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Remark 3.4. Γ in fact sends 3-permutations to labeled configuration (by labeling point with the
integer used to compute its coordinates). Observe that if points are labeled, we can recover the
inversion sequences and so the permutations. However, our triangle bases are not labeled so we
have to forget this labeling and find a way to recover it. Still, the label variant might be useful for
some generalizations (see Section 5).

In the rest of this section, we will prove that when (σ, τ) ∈ Avn((12, 12), (312, 231)),
Γ(σ, τ) is a triangle basis. Intuitively, avoiding (12, 12) ensures that the points are “not
too close” and avoiding (312, 231) that they are “not too far”. In the two following
subsections we formalize these notions and prove that this is true.

Figure 9: The positions forbidden by the patterns (12, 12) (left) and (312, 231) (right).

3.3 Sparsity

For integers a, b and k, we denote by (a, b) + Tk the triangle {(x, y) | a ⩽ x, b ⩽ y and x +
y < a + b + k}. A configuration C is sparse if for all 1 ⩽ k < n, there is no triangle
T = (a, b) + Tk such that |C ∩ T| > k.

Proposition 3.5 ([12]). All independent sets (and so all bases) are sparse.

Intuitively, if a configuration is not sparse then we have too much information in one
area and it creates a default of independence.

Theorem 3.6. If (σ, τ) ∈ S2
n avoids (12, 12) then Γ(σ, τ) is sparse.

We omit the proof of this theorem as it is not needed to prove that Γ is a bijection.
Nonetheless, this theorem helps to understand the consequences of avoiding (12, 12) on
the image through Γ and can be useful for potential generalizations of this function to
some other classes (see Section 5).

3.4 Cuts and shifted sums

To prove that Γ is a bijection, we will give a recursive definition of triangle bases, define
an analogous decomposition for 3-permutations avoiding (12, 12) and (312, 231) and
prove that Γ transports these decompositions.

Definition 3.7. Let C1 and C2 be two configurations and h ∈ J0, |C1|K. The h-vertically shifted
sum of C1 and C2 is C1 :h C2 = ((|C2|, 0) + C1) ∪ ((0, h) + C2). It is a configuration of size
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|C1|+ |C2|. Similarly, we define the h-horizontally shifted sum by C1 ⊖h C2 = ((0, |C2|) +
C1)∪ ((h, 0) +C2) and the h-diagonally shifted sum by C1 ;h C2 = C1 ∪ ((|C1| − h, h) +C2).

If C is a configuration, a couple of subconfigurations of C, (C1, C2), is a vertical (resp. hori-
zontal, resp. diagonal) cut of C if C is a vertical (resp. horizontal, resp. diagonal) shifted-sum of
C1 and C2. Its position is the coordinate of the line separating C1 and C2.

h

h

k h

h

k h

k

h h

k

k

k k k k

C1

C2

σ2

τ2
σ1

τ1

τ1

C1

C2

σ1

σ1

σ2
τ1

τ2

C1

σ1σ1

τ1 τ1

C2

σ2

τ2

Figure 10: Shifted sums of configurations and 3-permutations. Left : Vertical sum.
Middle : Horizontal. Right : Diagonal. Parameters k and h are preserved through Γ.

Proposition 3.8. A configuration is a triangle basis if and only if it is either a single point or a
shifted sum of two triangle bases.

Proof. If C = B1 ⊙ B2, then each Bi fills a triangle of its size and those triangles touch, so
C fills the smallest triangle containing them, which has size |C|. So C is also a basis.

We now define the shifted sums on 3-permutations and show that Γ transports the
cuts.

Definition 3.9. Let (σ1, τ1) ∈ S2
k1

and (σ2, τ2) ∈ S2
k2

be two 3-permutations and h ∈ J0, k1K.
Their h-shifted sums are defined as the 3-permutations (σ, τ) of size k1 + k2 obtained by inserting
the diagram (σ2, τ2) into the one of (σ1, τ1) as described in Figure 10. As for configuration, we
say that a 3-permutation admits a cut if it is a shifted sum of two 3-permutations. We denote by
⊙ a shifted sum of unknown direction and shift.

Lemma 3.10. Let (σ, τ) ∈ Avn((12, 12)). It admits a cut (σ, τ) = (σ1, τ1) ⊙ (σ2, τ2) in a
given direction, at a position k with shift h if and only Γ(σ, τ) does. In that case, Γ((σ1, τ1)⊙
(σ2, τ2)) = Γ(σ1, τ1)⊙ Γ(σ2, τ2).

Proof. Let (σ, τ) ∈ Avn((12, 12)). We only consider the vertical cut case (σ, τ) = (σ1, τ1)
:h(σ2, τ2), the others can be obtained with similar arguments. Denote k the size of
(σ1, τ1), for all i ∈ J1, kK Rσ(i) = Rσ1(i) ∪ Jk + 1, nK and Lτ(i) = Lτ1(i) so the first k



3D permutations and triangle solitaire 9

points of Γ(σ, τ) are Γ(σ1, τ1) + (n − k, 0). And for all i ∈ Jk + 1, nK, Rσ(i) = Rσ2(i) and
Lτ(i) = Lτ1(i) + h so the last n − k points of Γ(σ, τ) are Γ(σ2, τ2) + (0, h). This is exactly
Γ((σ1, τ1):h (σ2, τ2)) = Γ(σ1, τ1)⊙ Γ(σ2, τ2).

Reciprocally, assume that Γ(σ, τ) = C1 :h C2. All points in C1 have abscissa at least
n − k, so they must be J1, kK since for all i, xi < n − i. We first need to prove that for
all i ∈ J1, kK, Jk + 1, nK ⊂ Rσ(i). Equality holds for i = k, and then for the others by
induction: for i ⩽ k, either there is a j > i such that j ∈ Rσ(i) and so Jk + 1, nK ⊂
Rσ(j) ⊂ Rσ(i) or there is none and Rσ(i) = Jk + 1, nK. Now consider the points M and
m where τ reaches respectively it maximum and minimum on Jk + 1, nK, lτ(M) = h so
there must be exactly h points in J1, kK above (M, τ(M)). Now for m, all integers greater
than k contribute to either xm or ym since (σ, τ) avoids (12, 12) and Lτ(M) ⊂ Lτ(m) since
Lτ ⊂ J1, kK and τ(m) ⩽ τ(M). So xm + ym = n − k − 1 + |Lτ(m) ∩ J1, kK| ⩾ n − k − 1 + h
but xm + ym < n − k + h so equality must hold, which means Lτ(m) ∩ J1, kK = Lτ(M).
So (σ, τ) admits a vertical cut at index k with shift h.

All that remains to prove now is that when (σ, τ) avoids (12, 12) and (312, 231), it
admits a cut. An induction will then give that Γ(Avn((12, 12), (312, 231))) = Bn.

Lemma 3.11. For all n ⩾ 2, if (σ, τ) ∈ Avn((12, 12), (312, 231)) then (σ, τ) admits a cut.

Proof. We proceed by induction. One can easily check that all permutations of S2
n avoid-

ing (12, 12) admit a cut (even two).
Let n > 2 and (σ, τ) ∈ Avn((12, 12), (312, 231)). Observe that if n is an extrema for

either σ or τ, then isolating n is a valid cut : if σ(n) = 1 (resp τ(n) = 1), there is a vertical
(resp. horizontal) cut and if σ(n) = n (resp τ(n) = n) then τ(n) = 1 (resp σ(n) = 1).

Now assume n is not an extrema. For 1 ⩽ i ⩽ n, denote by (σi, τi) the 3-permutation
obtained by deleting n. By induction hypothesis, it admits a shifted cut. We denote by
ki its position and hi its shift. To simplify, we do not standardize (σi, τi). Consider the
cut of (σn, τn) and assume that n is not compatible with the cut, otherwise we are done,
and that the cut is vertical (the other directions can be treated similarly).

If n is in the bottom right sector of σ, then it must be under the right block of τ (or
there would be a (12, 12)), but then one can take i ⩽ kn such that τ(n) < τ(i) < hn and j
such that σ(j) < σ(n) which is an occurrence of (312, 231). Now assume n is in the top
right sector of σ, n must still be under the right block of τ. Let m = σ−1(1) ̸= n and
consider the cut of (σm, τm).

1. (σm, τm) admits a vertical cut. Then n must be in the bottom right sector of σ so
km < kn and so the right block of τ in this cut must contain the one of the first cut,
thus m is compatible with the cut.

2. (σm, τm) admits a horizontal cut. Then since hn = 0 (or we would have τ(n) = 1)
km < kn or there would be empty planes, so all the right block of τn must be in the
bottom right sector of τm and therefore m is compatible with the cut.
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3. (σm, τm) admits a diagonal cut. Denote I its middle interval. It is impossible to
have n ∈ I because that would require an empty column in σ. This means that
I ⊂ J1, knK and so m is compatible with this cut.

Combining the two previous lemmas, we get the following :

Theorem 3.12. A 3-permutation avoiding (12, 12) and (312, 231) is either (1, 1) or a shifted
sum of two permutations in Av((12, 12), (312, 231)).

Corollary 3.13. For all (σ, τ) ∈ Avn((12, 12), (312, 231)), Γ(σ, τ) is a triangle basis.

Proof. This is true for n = 1. If n ⩾ 2, then (σ, τ) admits a cut. By induction, the image of
each side of the cut is a basis and so Γ(σ, τ) is a shifted sum of two bases, so a basis.

Theorem 3.14. For n ⩾ 1, Γ is a bijection between Avn((12, 12), (312, 231)) and bases of size
n.

Proof. The decomposition with shifted sums allows to inverse Γ as when a basis B is the
sum of two others, we know exactly which labels should appear in which subconfigura-
tion, so we can recover all labels this way. A pre-image of B by Γ can then be reconstruct
from the inversion sequences.

As for injectivity, although the decomposition is not unique, we can choose a canon-
ical cut, for instance prioritize vertical over horizontal over diagonal and minimize the
size of C1. Since a 3-permutation and its image throught Γ admit exactly the same cuts,
this ensures that no two 3-permutations give the same basis which different labels.

4 Solitaire

In this section, we introduce a dynamical system on configurations called the triangle
solitaire (defined in [11]) and we extend it to 3-permutations. This dynamical system
presents nice properties that makes it useful for random generation purposes, or to
extend our bijection to other pattern avoiding classes.

Definition 4.1. Let P and Q be sets of points. There is a solitaire move from P to Q, denoted
P → Q, if there is a position (x, y) ∈ Z2 such that their symmetric difference P∆Q is a subset
of size 2 of {(x, y), (x + 1, y), (x, y + 1)}. If P is a configuration, its orbit, denoted O(P) is the
set of configurations reachable from it using solitaire moves.

Intuitively, seeing Z2 as a playing grid and P and Q as marbles on this grid, when two
marbles are adjacent a solitaire move allows to move one using the other as a “pivot”.

Theorem 4.2 ([12]). For n ⩾ 1, the orbit of the line J0, n − 1K× {0} is exactly the bases Bn.
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Figure 11: The solitaire on the grid and the corresponding situation on 3-permutations
avoiding (12, 12) with i < j. Hashed areas must be empty for the move to be allowed.
One moves from one position to the other by exchanging the coordinates of points i
and j along the indicated axis in the diagram.

The solitaire extends naturally to labeled configurations, it can then be pulled back
through Γ to obtain a dynamical system on Av((12, 12)). See Figure 11.

Denote id the permutation n(n − 1)(n − 2) . . . 21.

Theorem 4.3. For all n ⩾ 1, O((id, id)) = Avn((12, 12), (312, 231)).

5 Discussion

Enumerative bounds: We now know that Avn((12, 12), (312, 231)) and the set of triangle
bases of size n have the same cardinality, but the question of its value remains open. The
difficulty comes the lack of nice recursive decomposition of the objects.

In [12], we gave the following bounds on triangle bases, which transfer to the class
Avn((12, 12), (312, 231)) through our bijection. To our knowledge, those are the first
bounds on this class.

3n! ⩽ |Bn| ⩽ c
( e

2

)n
nn− 5

2 with c > 0.

Random sampling: The solitaire defines a Markov chain on triangle bases. The di-
ameter of the reconfiguration graph is O(n3) [12], and we conjecture that its mixing time
is also polynomial since the graph has strong connectivity properties. This would allow to
sample uniformly triangle bases, and hence 3-permutations of Avn((12, 12), (312, 231))
by our bijection.

Other pattern avoiding classes: Our function Γ is well defined and invertible on all of
Av((12, 12)) if we consider labeled configurations, so it might be use to study bijectively
other sub classes of Av((12, 12)). For this, studying the orbits of the solitaire might
be relevant. Γ can also be generalized to d-permutations by using each permutation to
compute a coordinate, the image set would then be configurations of dimension d − 1.

Large random permutations: The combinatorial (and especially bijective) under-
standing of pattern avoiding permutations gives detailed information about their struc-
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ture, which can be applied to study the properties of large random objects. For instance,
the theory of permutons describes the scaling limit of many classes of pattern avoid-
ing permutations (see e.g. [3]). One can ask the same questions about large random
3-permutations [7], and perhaps our bijection can help study the properties of large
random permutations of Avn((12, 12), (312, 231)).
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