Séminaire Lotharingien de Combinatoire **93B** (2025) Article #43, 12 pp.

Equivariant Cohomology of Grassmannian Spanning Lines

Raymond Chou^{*1}, Tomoo Matsumura⁺², and Brendon Rhoades^{‡3}

¹Department of Mathematics, University of California San Diego, San Diego, CA ² International Christian University, Tokyo, Japan

²Department of Mathematics, University of California San Diego, San Diego, CA

Abstract. For positive integers $d \le k \le n$, let $X_{n,k,d}$ be the moduli space of *n*-tuples (ℓ_1, \ldots, ℓ_n) of lines in \mathbb{C}^k such that $\ell_1 + \cdots + \ell_n$ has vector space dimension *d*. The space $X_{n,k,d}$ carries an action of the rank *k* torus $T = (\mathbb{C}^*)^k$, and we present the *T*-equivariant cohomology of $X_{n,k,d}$. This solves a problem of Pawlowski and Rhoades. Our methods feature the orbit harmonics technique of combinatorial deformation theory and suggest a relationship between orbit harmonics and equivariant cohomology.

Keywords: equivariant cohomology, orbit harmonics, grassmannian line configurations

1 Introduction

Let *X* be a topological space carrying an action of a complex torus *T*. The *T*-equivariant cohomology ring $H_T^*(X)$ is an enhancement of the ordinary cohomology $H^*(X)$ of *X* which accounts for the action of T.¹ The map $X \to \{pt\}$ endows $H_T^*(X)$ with the structure of a $\mathbb{C}[t]$ -module, where t is the Lie algebra of *T*. Under mild conditions, the ordinary cohomology $H^*(X)$ may be recovered from $H_T^*(X)$ by the relation

$$H^*(X) = \mathbb{C} \otimes_{\mathbb{C}[\mathfrak{f}]} H^*_T(X) \tag{1.1}$$

where the generators of the polynomial ring $\mathbb{C}[\mathfrak{t}]$ act by zero on \mathbb{C} .

A *line* in \mathbb{C}^k is a 1-dimensional subspace $\ell \subseteq \mathbb{C}^k$. We compute the equivariant cohomology of the following moduli space of line configurations.

Definition 1.1. Let $d \leq k \leq n$ be positive integers. Let $X_{n,k,d}$ be the set of *n*-tuples (ℓ_1, \ldots, ℓ_n) of lines in \mathbb{C}^k such that the vector space sum $\ell_1 + \cdots + \ell_n$ has dimension *d*.

^{*}r2chou@ucsd.edu

⁺matsumura.tomoo@icu.ac.jp TM was partially supported by JSPS Grant-in-Aid for Scientific Research (C) 20K03571 and (B) 23K25772.

[‡]bprhoades@ucsd.edu. BR was partially supported by NSF Grant DMS-2246846.

¹For simplicity, we use complex coefficients for cohomology throughout this extended abstract, but our main results hold over any coefficient ring.

Writing \mathbb{P}^{k-1} for the complex projective space of lines in \mathbb{C}^k , we have a natural inclusion $X_{n,k,d} \subseteq (\mathbb{P}^{k-1})^n$ which gives $X_{n,k,d}$ the structure of an algebraic variety. The variety $X_{n,k,d}$ carries an action of the rank k torus $T = (\mathbb{C}^*)^k$ given by

$$t \cdot (\ell_1, \dots, \ell_n) := (t \cdot \ell_1, \dots, t \cdot \ell_n). \tag{1.2}$$

Special cases of $X_{n,k,d}$ have been considered before.

- If n = k = d, the variety $X_{n,n,n}$ consists of *n*-tuples (ℓ_1, \ldots, ℓ_n) of lines in \mathbb{C}^n which span \mathbb{C}^n . This space is homotopy equivalent to the type A_{n-1} complete flag variety Fl_n .² The geometry of Fl_n is governed by the combinatorics of permutations in the symmetric group \mathfrak{S}_n .
- If k = d, the variety $X_{n,k} := X_{n,k,k}$ consists of *n*-tuples (ℓ_1, \ldots, ℓ_n) of lines in \mathbb{C}^k which span \mathbb{C}^k . This variety of *spanning line configurations* was introduced by Pawlowski and Rhoades [13]. The geometry of $X_{n,k}$ is governed by the combinatorics of *Fubini words* in $\mathcal{W}_{n,k}$; these are surjective functions $w : [n] \rightarrow [k]$. Billey and Ryan [3] gave combinatorial descriptions of the corresponding Bruhat order(s) on $\mathcal{W}_{n,k}$.

Pawlowski and Rhoades proved [13] that the ordinary cohomology of $X_{n,k}$ is presented by the following quotient $R_{n,k}$ of $\mathbb{C}[\mathbf{x}_n]$:

$$H^{*}(X_{n,k}) = R_{n,k} := \mathbb{C}[\mathbf{x}_{n}] / (x_{1}^{k}, \dots, x_{n}^{k}, e_{n}(\mathbf{x}_{n}), e_{n-1}(\mathbf{x}_{n}), \dots, e_{n-k+1}(\mathbf{x}_{n})).$$
(1.3)

Here $e_d(\mathbf{x}_n)$ is the degree *d* elementary symmetric polynomial in the variable set $\mathbf{x}_n := \{x_1, \ldots, x_n\}$. The ring $R_{n,k}$ was introduced by Haglund, Rhoades, and Shimozono [10] to give an analogue of the coinvariant algebra in the context of the Haglund–Remmel–Wilson *delta conjecture* [9]. Pawlowski and Rhoades asked [13, Problem 9.8] for a presentation of the *T*-equivariant cohomology $H_T^*(X_{n,k})$; we solve the more general problem of presenting $H_T^*(X_{n,k,d})$.

To state our main result we need some notation. Write $Gr(d, \mathbb{C}^k)$ for the Grassmannian of *d*-dimensional subspaces $V \subseteq \mathbb{C}^k$. We have a surjection

$$p: X_{n,k,d} \twoheadrightarrow \mathbf{Gr}(d, \mathbb{C}^k) \tag{1.4}$$

which sends an *n*-tuple (ℓ_1, \ldots, ℓ_n) of lines to $\ell_1 + \cdots + \ell_n$. The rank *k* torus $T = (\mathbb{C}^*)^k$ acts naturally on $\operatorname{Gr}(d, \mathbb{C}^k)$, and the map *p* is *T*-equivariant. We write \mathcal{V}_d for the rank *d* tautological vector bundle over $\operatorname{Gr}(d, \mathbb{C}_k)$ whose fiber over a point $V \in \operatorname{Gr}(d, \mathbb{C}^k)$ is the vector space *V*. The pullback $p^*(\mathcal{V}_d)$ is a vector bundle over $X_{n,k,d}$.

²The homotopy equivalence is the natural projection $G/T \twoheadrightarrow G/B$. This map is a fiber bundle with contractible fiber $\cong U$.

In addition to the length *n* list $\mathbf{x}_n = \{x_1, \ldots, x_n\}$ of *x*-variables, we consider a length *d* list $\mathbf{y}_d = \{y_1, \ldots, y_d\}$ of *y*-variables and a length *k* list $\mathbf{t}_k = \{t_1, \ldots, t_k\}$ of *t*-variables. Let $\mathbb{C}[\mathbf{x}_n, \mathbf{y}_d, \mathbf{t}_k]$ be the rank n + d + k polynomial ring over all of these variables. The symmetric group \mathfrak{S}_d acts on the middle set of variables in $\mathbb{C}[\mathbf{x}_n, \mathbf{y}_d, \mathbf{t}_k]$; we write $\mathbb{C}[\mathbf{x}_n, \mathbf{y}_d, \mathbf{t}_k]$ for the associated invariant subring. Our presentation of the *T*-equivariant cohomology of $X_{n,k,d}$ reads as follows, where h_i stands for the complete homogeneous symmetric polynomial of degree *i*.

Theorem 1.2. For positive integers $n \ge k \ge d$, let $I_{n,k,d} \subseteq \mathbb{C}[\mathbf{x}_n, \mathbf{y}_d, \mathbf{t}_k]^{\mathfrak{S}_d}$ be the ideal generated by

The T-equivariant cohomology of $X_{n,k,d}$ *has presentation*

$$H_T^*(X_{n,k,d}) = \mathbb{C}[\mathbf{x}_n, \mathbf{y}_d, \mathbf{t}_k]^{\mathfrak{S}_d} / I_{n,k,d}$$
(1.5)

where

- x_i represents the first equivariant Chern class of the line bundle \mathcal{L}_i over $X_{n,k,d}$ with fiber ℓ_i over (ℓ_1, \ldots, ℓ_n) ,
- y_1, \ldots, y_d represent equivariant Chern roots of $p^*(\mathcal{V}_d)$, and
- t_1, \ldots, t_n are the images in $H^*_T(X_{n,k,d})$ of the standard generators of $H^*_T(\text{pt})$.

When k = d, the variety $X_{n,k,d}$ specializes to the variety $X_{n,k}$ of spanning line configurations in \mathbb{C}^k . Specializing Theorem 1.2 to k = d, our solution to the problem [13, Problem 9.8] of Pawlowski and Rhoades is as follows.

Corollary 1.3. For positive integers $n \ge k$, the *T*-equivariant cohomology of $X_{n,k}$ has quotient presentation

$$H_T^*(X_{n,k}) = \mathbb{C}[\mathbf{x}_n, \mathbf{y}_k] / I_{n,k}$$
(1.6)

where $I_{n,k} \subseteq \mathbb{C}[\mathbf{x}_n, \mathbf{y}_k]$ is the ideal generated by

- $e_r(\mathbf{x}_n) e_{r-1}(\mathbf{x}_n)h_1(\mathbf{t}_k) + \cdots + (-1)^r h_r(\mathbf{t}_k)$ for r > n k, and
- $x_i^k x_i^{k-1}e_1(\mathbf{t}_k) + \dots + (-1)^k e_k(\mathbf{t}_k)$ for $i = 1, \dots, n$.

The proof of Theorem 1.2 has two main parts: geometric and algebraic. Geometrically, we show that the relations in $I_{n,k,d}$ hold in the ring $H_T^*(X_{n,k,d})$ using the Whitney Sum Formula and calculate the rank of $H_T^*(X_{n,k,d})$ as a free $\mathbb{C}[\mathfrak{t}]$ -module using a *T*-stable affine paving of $X_{n,k,d}$. Algebraically, we show that $\mathbb{C}[\mathfrak{x}_n, \mathfrak{y}_d, \mathfrak{t}_k]^{\mathfrak{S}_d} / I_{n,k,d}$ is a free $\mathbb{C}[\mathfrak{t}_k]$ -module of the appropriate rank. For this, we apply a technique in combinatorial deformation theory called *orbit harmonics*.

The remainder of this extended abstract is organized as follows. In Section 2 we give background on equivariant cohomology, affine pavings, and orbit harmonics. In Section 3 we describe our general approach to equivariant cohomology via orbit harmonics and study the permutohedral variety from this point of view. In Section 4 we sketch the proof of Theorem 1.2.

2 Background

2.1 Equivariant Cohomology

Let X be a smooth complex variety equipped with an action of the rank k torus $T = (\mathbb{C}^*)^k$. As mentioned in the introduction, the equivariant cohomology ring $H_T^*(X)$ is an enhancement of the ordinary cohomology $H^*(X)$. We describe the basic features of $H_T^*(X)$, referring the reader to Anderson and Fulton's book [1] for a detailed treatment.

Let *ET* be a contractible space with a free left action of *T*. We define $ET \times_T X := ET \times X / \sim$ where $(e, x) \sim (e \cdot t^{-1}, t \cdot x)$ for all $e \in ET$, $x \in X$, and $t \in T$. The *equivariant cohomology ring* of *X* is defined by

$$H_T^*(X) := H^*(ET \times_T X) \tag{2.1}$$

where $H^*(ET \times_T X)$ is the usual singular cohomology. For example, if $X = \{pt\}$ is a single point, we may identify $ET \times_T \{pt\} = (\mathbb{P}^{\infty})^k$, where \mathbb{P}^{∞} is infinite-dimensional complex projective space. Since $H^*((\mathbb{P}^{\infty})^k) = \mathbb{C}[\mathbf{t}_k]$, the map $X \to \{pt\}$ gives the ring $H^*_T(X)$ the structure of a $\mathbb{C}[\mathbf{t}_k]$ -module.

Let $Y \subseteq X$ be a closed subvariety which is closed under the *T*-action. If *Y* has codimension *c* in *X*, we have a class $[Y] \in H_T^*(X)$ of cohomological degree 2*c*. An *affine paving* of *X* is a filtration

$$\emptyset = X_0 \subseteq X_1 \subseteq X_2 \subseteq \dots \subseteq X_m = X$$
(2.2)

of *X* by closed subvarieties such that each difference $X_i \setminus X_{i-1}$ is isomorphic to a disjoint union of affine spaces (possibly of varying dimensions). These affine spaces are referred to as *cells*, and the affine paving is *T-invariant* if the cells are closed under the action of *T*. If *X* has a *T*-invariant affine paving, the equivariant cohomology ring $H_T^*(X)$ is a free $\mathbb{C}[\mathbf{t}_k]$ -module with basis given by the classes $[\overline{C}]$ of the closures \overline{C} of these cells.

Let $\mathcal{E} \twoheadrightarrow X$ be a *T*-equivariant vector bundle of rank *r*. For $1 \leq i \leq r$ we have the *equivariant Chern class* $c_i^T(\mathcal{E}) \in H_T^{2i}(X)$. The *total equivariant Chern class* is the sum $c^T(\mathcal{E}) := 1 + c_1^T(\mathcal{E}) + \cdots + c_r^T(\mathcal{E})$. If we have a short exact sequence

$$0 \to \mathcal{E}' \to \mathcal{E} \to \mathcal{E}'' \to 0 \tag{2.3}$$

of *T*-equivariant bundles, there holds the relation $c^T(\mathcal{E}) = c^T(\mathcal{E}') \cdot c^T(\mathcal{E}'')$. It follows that if \mathcal{E} splits as a direct sum of equivariant line bundles $\mathcal{E} = \mathcal{L}_1 \oplus \cdots \oplus \mathcal{L}_r$, we have the factorization

$$c^{T}(\mathcal{E}) = c^{T}(\mathcal{L}_{1}) \cdots c^{T}(\mathcal{L}_{r}) = (1 + c_{1}^{T}(\mathcal{L}_{1})) \cdots (1 + c_{1}^{T}(\mathcal{L}_{r})).$$
 (2.4)

Even if \mathcal{E} does not split as a direct sum of equivariant line bundles, by choosing an appropriate flag extension $X' \to X$ we may still factor $c^T(\mathcal{E}) = (1 + \alpha_1) \cdots (1 + \alpha_r)$ where $\alpha_1, \ldots, \alpha_r \in H^2_T(X')$. The classes $\alpha_1, \ldots, \alpha_r$ are the *equivariant Chern roots* of \mathcal{E} ; any symmetric polynomial in $\alpha_1, \ldots, \alpha_r$ lies in $H^*_T(X)$. See [1, Section 2.3] for more information on these facts.

2.2 Orbit Harmonics

Let $\mathcal{Z} \subseteq \mathbb{C}^n$ be a finite locus of points in affine *n*-space \mathbb{C}^n . We have the vanishing ideal

$$\mathbf{I}(\mathcal{Z}) := \{ f \in \mathbb{C}[\mathbf{x}_n] : f(\mathbf{z}) = 0 \text{ for all } \mathbf{z} \in \mathcal{Z} \} \subseteq \mathbb{C}[\mathbf{x}_n].$$
(2.5)

If $I \subseteq \mathbb{C}[\mathbf{x}_n]$ is an ideal, recall that the *associated graded ideal* gr $I \subseteq \mathbb{C}[\mathbf{x}_n]$ is the homogeneous ideal

$$\operatorname{gr} I := (\tau(f) : f \in I, f \neq 0) \subseteq \mathbb{C}[\mathbf{x}_n]$$
(2.6)

where $\tau(f)$ is the top-degree homogeneous component of a nonzero polynomial f. The *orbit harmonics* deformation associates to \mathcal{Z} the graded quotient ring $\mathbb{C}[\mathbf{x}_n]/\operatorname{gr} \mathbf{I}(\mathcal{Z})$ where $\operatorname{gr} \mathbf{I}(\mathcal{Z}) \subseteq \mathbb{C}[\mathbf{x}_n]$. We have a vector space isomorphism

$$\mathbb{C}[\mathcal{Z}] := \mathbb{C}[\mathbf{x}_n] / \mathbf{I}(\mathcal{Z}) \cong_{\mathbb{C}} \mathbb{C}[\mathbf{x}_n] / \operatorname{gr} \mathbf{I}(\mathcal{Z})$$
(2.7)

where $\mathbb{C}[\mathbf{x}_n]/\operatorname{gr} \mathbf{I}(\mathcal{Z})$ is a graded vector space. If the locus \mathcal{Z} is a stable under the action of a finite matrix group $G \subseteq GL_n(\mathbb{C})$, (2.7) is an isomorphism of *G*-modules, where $\mathbb{C}[\mathbf{x}_n]/\operatorname{gr} \mathbf{I}(\mathcal{Z})$ is a graded *G*-module.

In geometric terms, orbit harmonics is a flat family which linearly deforms the reduced locus $\mathcal{Z} \subseteq \mathbb{C}^n$ to a subscheme of degree $\#\mathcal{Z}$ supported at the origin. This deformation is shown schematically below in the case of a locus of size $|\mathcal{Z}| = 6$ in \mathbb{C}^2 carrying an action of $G \cong \mathfrak{S}_3$ via reflection in the three displayed lines. Orbit harmonics quotients $\mathbb{C}[\mathbf{x}_n]/\operatorname{gr} \mathbf{I}(\mathcal{Z})$ have been applied to Donaldson–Thomas theory [14], increasing subsequence combinatorics [17], Ehrhart theory [15], and (importantly for us) cohomology presentation.

3 Equivariant Cohomology and Orbit Harmonics

Let *X* be a variety equipped with an action of a rank *k* torus $T \cong (\mathbb{C}^*)^k$, and let $\mathfrak{t} \cong \mathbb{C}^k$ be the Lie algebra of *T*. In many combinatorially interesting situations [6, 7, 8, 10, 13, 16], there is a nonempty Zariski-open subset $U \subseteq \mathfrak{t}$ such that

- for each $\alpha \in U$, we have a finite locus $\mathcal{Z}(\alpha) \subseteq \mathbb{C}^n$ depending on α ,
- the homogeneous ideal gr $I(\mathcal{Z}(\alpha)) \subseteq \mathbb{C}[\mathbf{x}_n]$ does not depend on α , and
- the ordinary cohomology ring $H^*(X)$ has presentation

$$H^*(X) = \mathbb{C}[\mathbf{x}_n] / \operatorname{gr} \mathbf{I}(\mathcal{Z}(\boldsymbol{\alpha})).$$
(3.1)

The loci $\mathcal{Z}(\alpha)$ may be put into a family $\mathcal{Z} \subseteq \mathbb{C}^n \times \mathfrak{t}$ given by

$$\mathcal{Z} := \text{Zariski closure of } \bigcup_{\boldsymbol{\alpha} \in U} \mathcal{Z}(\boldsymbol{\alpha}) \times \{\boldsymbol{\alpha}\} \text{ in } \mathbb{C}^n \times \mathfrak{t}.$$
(3.2)

We have the vanishing ideal $I(Z) \subseteq \mathbb{C}[\mathbb{C}^n \times \mathfrak{t}] \cong \mathbb{C}[\mathbf{x}_n, \mathbf{t}_k]$. It turns out that the equivariant cohomology of *X* often has quotient presentation

$$H_T^*(X) = \mathbb{C}[\mathbf{x}_n, \mathbf{t}_k] / \mathbf{I}(\mathcal{Z})$$
(3.3)

where the *t*-variables come from the torus action. The formula $H^*(X) = \mathbb{C} \otimes_{\mathbb{C}[t]} H^*_T(X)$ may be interpreted in terms of (3.3) as taking the scheme-theoretic fiber $\pi^{-1}(0)$ where $\pi : \mathbb{Z} \to t$ is the natural projection. Going in the other direction, orbit harmonics can sometimes *predict* equivariant cohomology rings, a theme we explore. We give two examples of this phenomenon (one old and one new) involving previously studied varieties before turning to the new variety $X_{n,k,d}$.

3.1 Type A Springer Fibers

Recall that the complete flag variety Fl_n is the moduli space

$$\operatorname{Fl}_n = \{ V_{\bullet} = (0 = V_0 \subset V_1 \subset \cdots \subset V_n = \mathbb{C}^n) : \dim V_i = i \}$$
(3.4)

of maximal chains of nested subspaces of \mathbb{C}^n . The rank *n* torus $(\mathbb{C}^*)^n \subseteq GL_n(\mathbb{C})$ of diagonal matrices acts naturally on \mathbb{C}^n , and induces an action on Fl_n .

Let $\mu = (\mu_1, ..., \mu_k) \vdash n$ be a partition of *n* with *k* parts and let $X : \mathbb{C}^n \to \mathbb{C}^n$ be a nilpotent matrix of Jordan type μ . The *Springer fiber* is the closed subvariety

$$\mathcal{B}_{\mu} := \{ V_{\bullet} \in \mathrm{Fl}_{n} : XV_{i} \subseteq V_{i} \text{ for all } i \}$$

$$(3.5)$$

of Fl_n . The Springer fiber \mathcal{B}_{μ} is stable under the action of the rank k subtorus $T \subseteq (\mathbb{C}^*)^n$ consisting of matrices of the form $\lambda_1 I_{\mu_1} \oplus \cdots \oplus \lambda_k I_{\mu_k}$ for $\lambda_1, \ldots, \lambda_k \in \mathbb{C}^*$. This gives rise to identifications $T = (\mathbb{C}^*)^k$ and $\mathfrak{t} = \mathbb{C}^k$.

Let $U \subseteq \mathfrak{t} = \mathbb{C}^k$ be the Zariski-open set

$$U := \{ \boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_k) \in \mathbb{C}^k : \alpha_1, \dots, \alpha_k \text{ are distinct} \}.$$
(3.6)

For any $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_k) \in U$, we have a locus $\mathcal{Z}(\boldsymbol{\alpha}) \subset \mathbb{C}^n$ given by

$$\mathcal{Z}(\boldsymbol{\alpha}) := \{ (z_1, \dots, z_n) \in \mathbb{C}^n : \alpha_i \text{ appears } \mu_i \text{ times among } z_1, \dots, z_n \}.$$
(3.7)

For example, if $\mu = (2, 1)$ we have $\mathcal{Z}(\alpha) = \{(\alpha_1, \alpha_1, \alpha_2), (\alpha_1, \alpha_2, \alpha_1), (\alpha_2, \alpha_1, \alpha_1)\}$. Garsia and Procesi proved [6] that the ideal gr $\mathbf{I}(\mathcal{Z}(\alpha)) \subseteq \mathbb{C}[\mathbf{x}_n]$ does not depend on $\alpha \in U$. Combining their result with the presentation of $H^*(\mathcal{B}_{\mu})$ given by Hotta and Springer [11], we arrive at the identification

$$H^*(\mathcal{B}_{\mu}) = \mathbb{C}[\mathbf{x}_n] / \operatorname{gr} \mathbf{I}(\mathcal{Z}(\boldsymbol{\alpha})) \text{ for any } \boldsymbol{\alpha} \in U.$$
(3.8)

Let $\mathcal{Z} \subseteq \mathbb{C}^n \times \mathfrak{t} = \mathbb{C}^{n+k}$ be the Zariski closure of $\bigcup_{\alpha \in U} \mathcal{Z}(\alpha) \times \{\alpha\}$ inside \mathbb{C}^{n+k} . We have $\mathbf{I}(\mathcal{Z}) \subseteq \mathbb{C}[\mathbf{x}_n, \mathbf{t}_k]$. Kumar and Procesi derived [12] the presentation

$$H_T^*(\mathcal{B}_{\mu}) = \mathbb{C}[\mathbf{x}_n, \mathbf{t}_k] / \mathbf{I}(\mathcal{Z})$$
(3.9)

of the equivariant cohomology of \mathcal{B}_{μ} .

3.2 Permutohedral variety

Let $S : \mathbb{C}^n \to \mathbb{C}^n$ be a diagonal matrix with distinct entries. The *permutohedral variety* Perm_n is the closed subvariety of Fl_n given by

$$\operatorname{Perm}_{n} := \{ V_{\bullet} \in \operatorname{Fl}_{n} : SV_{i} \subseteq V_{i+1} \text{ for } i = 1, 2, \dots, n-1 \}.$$
(3.10)

This is an important example of a *toric variety* and a *regular semisimple Hessenberg variety*. The variety Perm_n is stable under the action of the rank n - 1 torus $T \subset GL_n(\mathbb{C})$ given by

$$T = \{ \operatorname{diag}(\lambda_1, \dots, \lambda_n) : \lambda_1 \cdots \lambda_n = 1 \}.$$
(3.11)

We describe how known presentations of the (equivariant) cohomology of $Perm_n$ may be interpreted via orbit harmonics.

Let \mathcal{F} be the family of $N := 2^n - 2$ nonempty and proper subsets $I \subset [n]$ and let $\mathbb{C}^{\mathcal{F}}$ be the *N*-dimensional complex vector space with basis \mathcal{F} . Let $\mathbf{x}_{\mathcal{F}} := \{x_I : I \in \mathcal{F}\}$ be a family of variables indexed by \mathcal{F} and let $\mathbb{C}[\mathbf{x}_{\mathcal{F}}] = \mathbb{C}[x_I : I \in \mathcal{F}]$ be the rank *N* polynomial ring over these variables.

The Lie algebra t may be identified with the (n-1)-dimensional vector space

$$\mathfrak{t} = \{ \operatorname{diag}(\alpha_1, \dots, \alpha_n) : \alpha_1 + \dots + \alpha_n = 0 \}$$
(3.12)

and we identify its coordinate ring as $\mathbb{C}[\mathfrak{t}] = \mathbb{C}[\mathfrak{t}_n]/(t_1 + \cdots + t_n)$. Let $U \subset \mathfrak{t}$ be the Zariski-open subset of points $\mathfrak{a} = (\alpha_1, \ldots, \alpha_n)$ with distinct coordinates. For $\mathfrak{a} \in U$ and any permutation $w \in \mathfrak{S}_n$, we define a point

$$p(w, \boldsymbol{\alpha}) = (p(w, \boldsymbol{\alpha})_I)_{I \in \mathcal{F}} \in \mathbb{C}^{\mathcal{F}}$$

as follows. The permutation w determines a flag $\emptyset = I_0(w) \subset I_1(w) \subset \cdots \subset I_n(w) = [n]$ of subsets of [n] where $I_j(w) := \{w(1), \dots, w(j)\}$. For a subset $I \in \mathcal{F}$, we define the *I*-th component $p(w, \boldsymbol{\alpha})_I$ of $p(w, \boldsymbol{\alpha})$ by

$$p(w, \boldsymbol{\alpha})_{I} := \begin{cases} \alpha_{w(j)} - \alpha_{w(j+1)} & \text{if } I = I_{j}(w) \text{ for some } 0 < j < n, \\ 0 & \text{otherwise.} \end{cases}$$
(3.13)

We let $\mathcal{Z}(\boldsymbol{\alpha}) \subseteq \mathbb{C}^{\mathcal{F}}$ be the locus

$$\mathcal{Z}(\boldsymbol{\alpha}) := \{ p(w, \boldsymbol{\alpha}) : w \in \mathfrak{S}_n \}$$
(3.14)

so that $I(\mathcal{Z}(\alpha)) \subseteq \mathbb{C}[\mathbb{C}^{\mathcal{F}}] = \mathbb{C}[\mathbf{x}_{\mathcal{F}}]$ for each $\alpha \in U$. We also have the family

$$\mathcal{Z} := \text{Zariski closure of } \bigcup_{\boldsymbol{\alpha} \in U} \mathcal{Z}(\boldsymbol{\alpha}) \times \{\boldsymbol{\alpha}\} \text{ in } \mathbb{C}^{\mathcal{F}} \times \mathfrak{t}.$$
(3.15)

The ideal $\mathbf{I}(\mathcal{Z})$ is a subset of $\mathbb{C}[\mathbb{C}^{\mathcal{F}} \times \mathfrak{t}] = \mathbb{C}[\mathbf{x}_{\mathcal{F}}] \otimes \mathbb{C}[\mathbf{t}_n]/(t_1 + \cdots + t_n).$

Theorem 3.1. The associated graded ideal gr $I(\mathcal{Z}(\alpha)) \subseteq \mathbb{C}[\mathbb{C}^{\mathcal{F}}]$ does not depend on $\alpha \in U$. For any $\alpha \in U$, the ordinary cohomology of Perm_n has presentation

$$H^*(\operatorname{Perm}_n) = \mathbb{C}[\mathbb{C}^{\mathcal{F}}]/\operatorname{gr} \mathbf{I}(\mathcal{Z}(\boldsymbol{\alpha})).$$
(3.16)

Furthermore, the T-equivariant cohomology of $Perm_n$ has presentation

$$H_T^*(\operatorname{Perm}_n) = \mathbb{C}[\mathbb{C}^{\mathcal{F}} \times \mathfrak{t}] / \mathbf{I}(\mathcal{Z}).$$
(3.17)

Proof. (Sketch) Danilov proved [5] that the cohomology of $Perm_n$ has presentation

$$H^*(\operatorname{Perm}_n) = \mathbb{C}[\mathbf{x}_{\mathcal{F}}]/J \tag{3.18}$$

where $J \subseteq \mathbb{C}[\mathbf{x}_{\mathcal{F}}]$ is the ideal generated by

- all products $x_I \cdot x_{I'}$ for $I, I' \in \mathcal{F}$ where $I \not\subseteq I'$ and $I' \not\subseteq I$, and
- all differences of the form

$$\sum_{i\in I} x_I - \sum_{i+1\in I'} x_{I'}$$

for i = 1, 2, ..., n - 1.

Let $\alpha \in U$. To show $J \subseteq \operatorname{gr} \mathbf{I}(\mathcal{Z}(\alpha))$, we prove that each generator of J is the top-degree homogeneous component of a polynomial in $\mathbb{C}[\mathbf{x}_{\mathcal{F}}]$ which vanishes on $\mathcal{Z}(\alpha)$. If $I, I' \in \mathcal{F}$ satisfy $I \not\subseteq I'$ and $I' \not\subseteq I$, the product $x_I \cdot x_{I'}$ vanishes on $\mathcal{Z}(\alpha)$ since for any $w \in \mathfrak{S}_n$ the nonzero components of $p(w, \alpha)$ are indexed by a flag of subsets of [n]. Furthermore, for each i = 1, 2, ..., n - 1 it can be checked that the polynomial

$$\left(\sum_{i \in I} x_{I} - \sum_{i+1 \in I'} x_{I'}\right) - (\alpha_{i} - \alpha_{i+1})$$
(3.19)

vanishes on $\mathcal{Z}(\alpha)$, and the top degree component of this polynomial is the generator $\sum_{i \in I} x_I - \sum_{i+1 \in I'} x_{I'}$ of *J*. This proves that $J \subseteq \operatorname{gr} \mathbf{I}(\mathcal{Z}(\alpha))$. We have a canonical surjection

$$H^*(\operatorname{Perm}_n) = \mathbb{C}[\mathbf{x}_{\mathcal{F}}]/J \twoheadrightarrow \mathbb{C}[\mathbf{x}_{\mathcal{F}}]/\operatorname{gr} \mathbf{I}(\mathcal{Z}(\boldsymbol{\alpha})).$$
(3.20)

The orbit harmonics isomorphism (2.7) implies that $\mathbb{C}[\mathbf{x}_{\mathcal{F}}]/\operatorname{gr} \mathbf{I}(\mathcal{Z}(\boldsymbol{\alpha}))$ has dimension $\#\mathcal{Z}(\boldsymbol{\alpha}) = n!$. It is well-known that $H^*(\operatorname{Perm}_n)$ also has vector space dimension n!, which forces the surjection (3.20) to be an isomorphism and $\operatorname{gr} \mathbf{I}(\mathcal{Z}(\boldsymbol{\alpha})) = J$ for any $\boldsymbol{\alpha} \in U$.

Let $L \subseteq \mathbb{C}[\mathbf{x}_{\mathcal{F}}]$ be the ideal generated by all products $x_I \cdot x_{I'}$ for $I, I' \in \mathcal{F}$ for which $I \not\subseteq I'$ and $I' \not\subseteq I$. Bifet, De Concini, and Procesi proved [2] that the equivariant cohomology ring of Perm_{*n*} has presentation

$$H_T^*(\operatorname{Perm}_n) = \mathbb{C}[\mathbf{x}_{\mathcal{F}}]/L.$$
(3.21)

We have a C-algebra homomorphism

$$\widetilde{\varphi}: \mathbb{C}[\mathbb{C}^{\mathcal{F}} \times \mathfrak{t}] = \mathbb{C}[\mathbf{x}_{\mathcal{F}}] \otimes \mathbb{C}[\mathbf{t}_n] / (t_1 + \dots + t_n) \longrightarrow \mathbb{C}[\mathbf{x}_{\mathcal{F}}] / L$$
(3.22)

characterized by $\tilde{\varphi} : x_I \mapsto x_I$ for $I \in \mathcal{F}$ and $\tilde{\varphi} : t_i - t_{i+1} \mapsto \sum_{i \in I} x_I - \sum_{i+1 \in I'} x_I$ for i = 1, 2, ..., n - 1. It can be checked that $I(\mathcal{Z}) \subseteq \text{Ker}(\tilde{\varphi})$, so we have an induced homomorphism

$$\varphi: \mathbb{C}[\mathbb{C}^{\mathcal{F}} \times \mathfrak{t}]/\mathbf{I}(\mathcal{Z}) \longrightarrow \mathbb{C}[\mathbf{x}_{\mathcal{F}}]/L.$$
(3.23)

On the other hand, since $L \subseteq I(\mathcal{Z})$ we have another C-algebra homomorphism

$$\psi: \mathbb{C}[\mathbf{x}_{\mathcal{F}}]/L \longrightarrow \mathbb{C}[\mathbb{C}^{\mathcal{F}} \times \mathfrak{t}]/\mathbf{I}(\mathcal{Z})$$
(3.24)

characterized by $\psi : x_I \mapsto x_I$ for $I \in \mathcal{F}$. It is not hard to see that φ and ψ are mutually inverse.

4 Grassmannian Line Configurations

This section outlines the main ideas used to prove Theorem 1.2. Recall that we aim to show $H_T^*(X_{n,k,d}) = \mathbb{C}[\mathbf{x}_n, \mathbf{y}_d, \mathbf{t}_k]^{\mathfrak{S}_d} / I_{n,k,d}$ where $I_{n,k,d}$ has generators as described in that theorem. We define

$$\mathcal{W}_{nk,d} := \{ w : [n] \to [k] : \text{ the image of } w \text{ has size } d \}.$$
(4.1)

It is not difficult to see that $\mathcal{W}_{n,k,d}$ is counted by $\#\mathcal{W}_{n,k,d} = \frac{k!}{(k-d)!} \cdot \text{Stir}(n,d)$ where Stir(*n*, *d*) is the *Stirling number of the second kind* counting *d*-block set partitions of [n].

Lemma 4.1. The quotient ring $\mathbb{C}[\mathbf{x}_n, \mathbf{y}_d, \mathbf{t}_k]^{\mathfrak{S}_d} / I_{n,k,d}$ is a free $\mathbb{C}[\mathbf{t}_k]$ -module of rank equal to $\#\mathcal{W}_{n,k,d}$.

Lemma 4.1 is established using orbit harmonics arguments related to those in Section 3; see [4] for details. With this result in hand, the cohomology presentation in Theorem 1.2 is established as follows.

Proof. (of Theorem 1.2, sketch) The map $p : X_{n,k,d} \to \operatorname{Gr}(d, \mathbb{C}^k)$ given by $p : (\ell_1, \ldots, \ell_n) \mapsto \ell_1 + \cdots + \ell_n$ is a fiber bundle with fiber isomorphic to $X_{n,d}$. The Leray–Hirsch Theorem and results of Pawlowski–Rhoades [13] may be used to show that $H^*_T(X_{n,k,d})$ is generated by

- the equivariant Chern classes $c_1^T(\mathcal{L}_i)$ where $\mathcal{L}_i \to X_{n,k,d}$ has fiber ℓ_i over (ℓ_1, \ldots, ℓ_n) ,
- the equivariant Chern classes $c_i^T(p^*(\mathcal{V}_d))$ where $\mathcal{V}_d \twoheadrightarrow \operatorname{Gr}(d, \mathbb{C}^k)$ is the vector bundle with fiber V over $V \in \operatorname{Gr}(d, \mathbb{C}^k)$ and i = 1, 2, ..., d, and
- the standard generators t_1, \ldots, t_k of $H_T^*(\text{pt})$.

We therefore have a surjective $\mathbb{C}[\mathbf{t}_k]$ -algebra homomorphism

$$\widetilde{\varphi} : \mathbb{C}[\mathbf{x}_n, \mathbf{y}_d, \mathbf{t}_k]^{\mathfrak{S}_d} \twoheadrightarrow H_T^*(X_{n,k,d})$$
(4.2)

characterized by $\widetilde{\varphi} : x_i \mapsto c_1^T(\mathcal{L}_i)$ and $\widetilde{\varphi} : e_i(\mathbf{y}_d) \mapsto c_i^T(p^*(\mathcal{V}_d))$.

We show that each generator of $I_{n,k,d}$ lies in the kernel of $\tilde{\varphi}$. Let \mathbb{C}^k be the trivial rank k bundle over a variety with the standard action of $T = (\mathbb{C}^*)^k$ on each fiber. The bundle \mathbb{C}^k has total Chern class $c^T(\mathbb{C}^k) = (1 + t_1) \cdots (1 + t_k)$ over any variety. We have a short exact sequence

$$0 \to \mathcal{V}_d \to \mathbb{C}^k \to \mathbb{C}^k / \mathcal{V}_d \to 0 \tag{4.3}$$

of bundles over $\operatorname{Gr}(d, \mathbb{C}^k)$. Since $\mathbb{C}^k / \mathcal{V}_d$ has rank k - d, we have $c_r^T(\mathbb{C}^k / \mathcal{V}_d) = 0$ for r > k - d. Since $c^T(\mathbb{C}^k) = c^T(\mathcal{V}_d) \cdot c^T(\mathbb{C}^k / \mathcal{V}_d)$ we have

$$\sum_{a+b=r} (-1)^a e_a(\mathbf{t}_k) h_b(\mathbf{y}_d) \in \operatorname{Ker}(\widetilde{\varphi})$$
 whenever $r > k - d$.

Similarly, we have a short exact sequence

$$0 \to \mathcal{K}_{n-d} \to \mathcal{L}_1 \oplus \cdots \oplus \mathcal{L}_n \xrightarrow{\psi} p^*(\mathcal{V}_d) \to 0$$
(4.4)

of bundles over $X_{n,k,d}$ where ψ is induced by vector addition $(v_1, \ldots, v_n) \mapsto v_1 + \cdots + v_n$ and \mathcal{K}_{n-d} is the kernel of ψ . Since \mathcal{K}_{n-d} has rank n-d, we have $c_r^T(\mathcal{K}_{n-d}) = 0$ whenever r > n-d. The relation $c^T(\mathcal{L}_1) \cdots c^T(\mathcal{L}_n) = c^T(\mathcal{L}_1 \oplus \cdots \oplus \mathcal{L}_n) = c^T(\mathcal{K}_{n-d}) \cdot c^T(p^*(\mathcal{V}_d))$ implies

$$\sum_{a+b=r}(-1)^a e_a(\mathbf{x}_n)h_b(\mathbf{y}_d) \in \operatorname{Ker}(\widetilde{\varphi})$$
 whenever $r > n-d$

Finally, for each i = 1, 2, ..., n we have a short exact sequence

$$0 \to \mathcal{L}_i \to \mathbb{C}^k \to \mathbb{C}^k / \mathcal{L}_i \to 0 \tag{4.5}$$

of vector bundles over $X_{n,k,d}$. Since $\mathbb{C}^k / \mathcal{L}_i$ has rank k - 1, we have $c_k^T(\mathbb{C}^k / \mathcal{L}_i) = 0$. The relation $c^T(\mathbb{C}^k) = c^T(\mathcal{L}_i) \cdot c^T(\mathbb{C}^k / \mathcal{L}_i)$ implies

$$x_i^k - x_i^{k-1}e_1(\mathbf{t}_k) + \dots + (-1)^k e_k(\mathbf{t}_k) \in \operatorname{Ker}(\widetilde{\varphi}) \text{ for } i = 1, 2, \dots, n$$

We conclude that $I_{n,k,d} \subseteq \text{Ker}(\tilde{\varphi})$, so we have an induced surjection of $\mathbb{C}[\mathbf{t}_k]$ -algebras

$$\varphi: \mathbb{C}[\mathbf{x}_n, \mathbf{y}_d, \mathbf{t}_k]^{\mathfrak{S}_d} / I_{n,k,d} \twoheadrightarrow H_T^*(X_{n,k,d}).$$
(4.6)

We want to prove that the surjection φ is in fact an isomorphism. The fiber bundle

$$X_{n,d} \hookrightarrow X_{n,k,d} \xrightarrow{p} \operatorname{Gr}(d, \mathbb{C}^k)$$
 (4.7)

gives rise (see [4, Lemma 4.3]) to an isomorphism of $H^*_T(\operatorname{Gr}(d, \mathbb{C}^k))$ -modules

$$H_T^*(X_{n,k,d}) \cong H_T^*(\operatorname{Gr}(d, \mathbb{C}^k)) \otimes_{\mathbb{C}} H^*(X_{n,d}).$$
(4.8)

The standard Schubert cell decomposition of $Gr(d, \mathbb{C}^k)$ gives rise to a *T*-invariant affine paving of $Gr(d, \mathbb{C}^k)$ with $\binom{k}{d}$ cells. On the other hand, Pawlowski–Rhoades [13] proved that $H^*(X_{n,d})$ has vector space dimension $d! \cdot Stir(n, d)$. It follows that $H^*_T(X_{n,k,d})$ is a free $\mathbb{C}[\mathbf{t}_k]$ -module of rank

$$\binom{k}{d} \times d! \cdot \operatorname{Stir}(n, d) = \frac{k!}{(k-d)!} \cdot \operatorname{Stir}(n, d) = \# \mathcal{W}_{n,k,d}.$$
(4.9)

By Lemma 4.1, we conclude that φ is an epimorphism between free $\mathbb{C}[\mathbf{t}_k]$ -modules of the same rank $\#W_{n,k,d}$. It follows that φ is an isomorphism.

Acknowledgements

The authors thank Leonardo Mihalcea, Ed Richmond, and Travis Scrimshaw for helpful conversations.

References

- D. Anderson and W. Fulton. *Equivariant cohomology in algebraic geometry*. Vol. 210. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2024, pp. xv+446. DOI.
- [2] E. Bifet, C. De Concini, and C. Procesi. "Cohomology of regular embeddings". *Adv. Math.* 82.1 (1990), pp. 1–34. DOI.
- [3] S. C. Billey and S. Ryan. "Brewing Fubini-Bruhat orders". Vol. 91B. 2024, Art. 45, 12 pp.
- [4] R. Chou, T. Matsumura, and B. Rhoades. "Equivariant cohomology and orbit harmonics" (2024). arXiv:2410.02105.
- [5] V. I. Danilov. "The geometry of toric varieties". *Russian Mathematical Surveys* 33.2 (1978), pp. 97–154. DOI.
- [6] A. M. Garsia and C. Procesi. "On certain graded S_n-modules and the q-Kostka polynomials". Adv. Math. 94.1 (1992), pp. 82–138. DOI.
- [7] S. Griffin. "Ordered set partitions, Garsia-Procesi modules, and rank varieties". *Trans. Amer. Math. Soc.* **374**.4 (2021), pp. 2609–2660. DOI.
- [8] S. T. Griffin, J. Levinson, and A. Woo. "Springer fibers and the delta conjecture at t = 0". *Adv. Math.* **439** (2024), Paper No. 109491, 53 pp. DOI.
- [9] J. Haglund, J. B. Remmel, and A. T. Wilson. "The delta conjecture". *Trans. Amer. Math. Soc.* 370.6 (2018), pp. 4029–4057. DOI.
- [10] J. Haglund, B. Rhoades, and M. Shimozono. "Ordered set partitions, generalized coinvariant algebras, and the delta conjecture". *Adv. Math.* **329** (2018), pp. 851–915. DOI.
- [11] R. Hotta and T. Springer. "A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups". *Invent. Math.* 41.2 (1977), pp. 113–127. DOI.
- [12] S Kumar and C Procesi. "An algebro-geometric realization of equivariant cohomology of some Springer fibers". J. Alg. **368** (2012), pp. 70–74. DOI.
- [13] B. Pawlowski and B. Rhoades. "A flag variety for the delta conjecture". *Trans. Amer. Math. Soc.* **372**.11 (2019), pp. 8195–8248. DOI.
- [14] M. Reineke, B. Rhoades, and V. Tewari. "Zonotopal Algebras, Orbit Harmonics, and Donaldson–Thomas Invariants of Symmetric Quivers". *Int. Math. Res. Not.* 2023.23 (2023), pp. 20169–20210. DOI.
- [15] V. Reiner and B. Rhoades. "Harmonics and graded Ehrhart theory". 2024. arXiv:2407.06511.
- [16] B. Rhoades. "Spanning subspace configurations". Selecta Math. (N.S.) 27.1 (2021), Paper No. 8, 36 pp. DOI.
- [17] B. Rhoades. "Increasing subsequences, matrix loci and Viennot shadows". Vol. 12. 2024, Paper No. e97, 23 pp. DOI.