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Abstract. For positive integers d < k < n, let X}, 4 be the moduli space of n-tuples
(04,...,¢,) of lines in Ck such that ¢; + - - - + £,, has vector space dimension d. The space
X, k4 carries an action of the rank k torus T = (C*)¥, and we present the T-equivariant
cohomology of X, 4. This solves a problem of Pawlowski and Rhoades. Our methods
feature the orbit harmonics technique of combinatorial deformation theory and suggest
a relationship between orbit harmonics and equivariant cohomology.
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1 Introduction

Let X be a topological space carrying an action of a complex torus T. The T-equivariant
cohomology ring H}(X) is an enhancement of the ordinary cohomology H*(X) of X which
accounts for the action of T.! The map X — {pt} endows H%(X) with the structure of
a C[t]-module, where t is the Lie algebra of T. Under mild conditions, the ordinary
cohomology H*(X) may be recovered from H}(X) by the relation

H(X) = C @ H}(X) 11

where the generators of the polynomial ring C|[t| act by zero on C.
A line in CF is a 1-dimensional subspace ¢ C CF. We compute the equivariant coho-
mology of the following moduli space of line configurations.

Definition 1.1. Let d < k < n be positive integers. Let X, ;; be the set of n-tuples
(01,...,¢,) of lines in Ck such that the vector space sum ¢ + - - - 4+ £, has dimension d.
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Writing P~ for the complex projective space of lines in C¥, we have a natural inclu-
sion X, 4 C (]Pk_l)” which gives X, i ; the structure of an algebraic variety. The variety
X, k4 carries an action of the rank k torus T = (C*)* given by

t'(g]_,...,gn) = (t'él,...,t'gn). (1.2)
Special cases of X,, x ; have been considered before.

e If n = k = d, the variety X, consists of n-tuples ({1, ...,¥¢,) of lines in C" which
span C". This space is homotopy equivalent to the type A, _; complete flag variety
Fl,.> The geometry of Fl, is governed by the combinatorics of permutations in the
symmetric group G&,,.

o If k = d, the variety X, x := X, xx consists of n-tuples ({1,...,¢,) of lines in C*
which span CK. This variety of spanning line configurations was introduced by
Pawlowski and Rhoades [!5]. The geometry of X, ; is governed by the combi-
natorics of Fubini words in W, ; these are surjective functions w : [n] — [k]. Billey
and Ryan [?] gave combinatorial descriptions of the corresponding Bruhat order(s)
on W, k.

Pawlowski and Rhoades proved [!7] that the ordinary cohomology of X,  is pre-
sented by the following quotient R, ; of C[x,]:

H* (X, 1) = Ryux := Clxu]/ (x5, 0, 6K, en(xu), en1xu), - -, en—gi1 (X)) (1.3)

Here e;(x;,) is the degree d elementary symmetric polynomial in the variable set x,, :=
{x1,...,x,}. The ring R, x was introduced by Haglund, Rhoades, and Shimozono [10]
to give an analogue of the coinvariant algebra in the context of the Haglund—Remmel-
Wilson delta conjecture [7]. Pawlowski and Rhoades asked [1, Problem 9.8] for a presen-
tation of the T-equivariant cohomology H7 (X, x); we solve the more general problem of
presenting H7 (X, k4)-

To state our main result we need some notation. Write Gr(d, C¥) for the Grassman-
nian of d-dimensional subspaces V C C*. We have a surjection

p: Xpja — Gr(d,C") (1.4)

which sends an n-tuple (¢4, ...,£,) of lines to 1 + - - - + £,,. The rank k torus T = (C*)¥
acts naturally on Gr(d, C¥), and the map p is T-equivariant. We write V, for the rank d
tautological vector bundle over Gr(d,C;) whose fiber over a point V € Gr(d,CF) is the
vector space V. The pullback p*(V;) is a vector bundle over X,, s 4.

2The homotopy equivalence is the natural projection G/T — G/B. This map is a fiber bundle with
contractible fiber = U.
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In addition to the length n list x, = {x1, ..., x, } of x-variables, we consider a length d
list y; = {y1,...,y4} of y-variables and a length k list t, = {t1,..., f} of t-variables. Let
C[xn,ya, ] be the rank n + d + k polynomial ring over all of these variables. The sym-
metric group &, acts on the middle set of variables in C[x;, y4, t;]; we write C[x;, ya, tx]©¢
for the associated invariant subring. Our presentation of the T-equivariant cohomology
of X, x4 reads as follows, where h; stands for the complete homogeneous symmetric
polynomial of degree i.

Theorem 1.2. For positive integers n >k > d, let I, 4 C C[Xp, Y4, t;]S4 be the ideal generated
by

* er(t) —e1(t)hi(ya) + -+ (=1)"he(yq) forr > k—d,
® e (xn) —er—1(xn)1(yq) + -+ (=1)"he(yq) for r > n—d, and
o xd — xfflel(yd) 4 (=Dey(yy) fori=1,...,n.
The T-equivariant cohomology of X, x 4 has presentation
Hi(Xuka) = Cln, ya, 4]/ Ly (1.5)
where

* x; represents the first equivariant Chern class of the line bundle L; over X,, \ 4 with fiber {;
over ({1,...,4y),

® y1,...,Y4 represent equivariant Chern roots of p*(Vy), and
® t1,...,t, are the images in H}(X,, i 4) of the standard generators of Hy(pt).

When k = d, the variety X, ; specializes to the variety X, ; of spanning line con-
figurations in C. Specializing Theorem 1.2 to k = d, our solution to the problem [13,
Problem 9.8] of Pawlowski and Rhoades is as follows.

Corollary 1.3. For positive integers n > k, the T-equivariant cohomology of X,, x has quotient
presentation

Hi(Xox) = Clxu, yi) / Ly i (1.6)
where I, C C[xy,yy] is the ideal generated by

® e, (xyn) —er—1(Xn)h1 () + - - -+ (—=1)"hy () for r > n —k, and

o xk xfflel(tk) 4 (=Dkep(ty) fori=1,...,n.

; —
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The proof of Theorem 1.2 has two main parts: geometric and algebraic. Geometri-
cally, we show that the relations in I, ; ; hold in the ring H} (X, s 4) using the Whitney
Sum Formula and calculate the rank of Hj (X, 4) as a free C[t]-module using a T-
stable affine paving of X, 4. Algebraically, we show that C[x,,ys, t]% /1,1  is a free
C[tc]-module of the appropriate rank. For this, we apply a technique in combinatorial
deformation theory called orbit harmonics.

The remainder of this extended abstract is organized as follows. In Section 2 we give
background on equivariant cohomology, affine pavings, and orbit harmonics. In Sec-
tion 3 we describe our general approach to equivariant cohomology via orbit harmonics
and study the permutohedral variety from this point of view. In Section 4 we sketch the
proof of Theorem 1.2.

2 Background

2.1 Equivariant Cohomology

Let X be a smooth complex variety equipped with an action of the rank k torus T =
(C*)¥. As mentioned in the introduction, the equivariant cohomology ring Hj(X) is
an enhancement of the ordinary cohomology H*(X). We describe the basic features of
H7}(X), referring the reader to Anderson and Fulton’s book [!] for a detailed treatment.

Let ET be a contractible space with a free left action of T. We define ET x1 X :=
ET x X/ ~ where (e,x) ~ (e-t71,t-x) foralle € ET, x € X, and t € T. The equivariant
cohomology ring of X is defined by

H:(X) := H*(ET x71 X) (2.1)

where H*(ET x 7 X) is the usual singular cohomology. For example, if X = {pt} is a
single point, we may identify ET xt {pt} = (P®)¥, where P® is infinite-dimensional
complex projective space. Since H*((P*)¥) = C[t;], the map X — {pt} gives the ring
H7(X) the structure of a C[t;]-module.

Let Y C X be a closed subvariety which is closed under the T-action. If Y has
codimension ¢ in X, we have a class [Y] € H7(X) of cohomological degree 2c. An affine
paving of X is a filtration

G=XoCX3CXC---CX =X (2.2)

of X by closed subvarieties such that each difference X; \ X;_; is isomorphic to a disjoint
union of affine spaces (possibly of varying dimensions). These affine spaces are referred
to as cells, and the affine paving is T-invariant if the cells are closed under the action of
T. If X has a T-invariant affine paving, the equivariant cohomology ring H(X) is a free
C[t;]-module with basis given by the classes [C] of the closures C of these cells.
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Let £ — X be a T-equivariant vector bundle of rank r. For 1 < i < r we have
the equivariant Chern class ] (£) € H#(X). The total equivariant Chern class is the sum

cT(E) :=14cT(&)+ -+ (&). If we have a short exact sequence
0-& =€=E">0 (2.3)

of T-equivariant bundles, there holds the relation c¢T(£) = cT (&) - cT(£"). It follows that
if £ splits as a direct sum of equivariant line bundles £ = £1 @ --- ® L,;, we have the
factorization

(€)= (Lr) e (Lr) = (L (L1)) - (T+c1 (L)) (2.4)

Even if £ does not split as a direct sum of equivariant line bundles, by choosing an
appropriate flag extension X’ —» X we may still factor ¢’ (£) = (1 +aq)---(1+ a;)
where «q,...,a, € H%(X’). The classes w1, ...,a, are the equivariant Chern roots of &;
any symmetric polynomial in «q,...,«;, lies in H}(X) See [!, Section 2.3] for more
information on these facts.

2.2 Orbit Harmonics

Let Z C C" be a finite locus of points in affine n-space C". We have the vanishing ideal
I(Z):={f€Clxy] : f(z) =0forallz € Z} C C[xy]. (2.5)

If I C C[xy] is an ideal, recall that the associated graded ideal gr I C C|x,] is the homoge-
neous ideal

grli=(t(f) : f€ L f#0) CClx 2.6)
where 7(f) is the top-degree homogeneous component of a nonzero polynomial f.

The orbit harmonics deformation associates to Z the graded quotient ring C|x,]/grI(Z)
where grI(Z) C C[x,]. We have a vector space isomorphism

C[Z] = Clx)/I(Z) ¢ Clxu] /gr1(Z) 7)

where C|x,|/grI(Z) is a graded vector space. If the locus Z is a stable under the action
of a finite matrix group G C GL,(C), (2.7) is an isomorphism of G-modules, where
C[x,]/grI(Z) is a graded G-module.

In geometric terms, orbit harmonics is a flat family which linearly deforms the re-
duced locus Z C C" to a subscheme of degree #Z supported at the origin. This deforma-
tion is shown schematically below in the case of a locus of size | Z| = 6 in C? carrying an
action of G = &3 via reflection in the three displayed lines. Orbit harmonics quotients
C|x,]/grI(Z) have been applied to Donaldson-Thomas theory [14], increasing subse-
quence combinatorics [17], Ehrhart theory [15], and (importantly for us) cohomology
presentation.
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e

3 Equivariant Cohomology and Orbit Harmonics

Let X be a variety equipped with an action of a rank k torus T = (C*)*, and let t = CF
be the Lie algebra of T. In many combinatorially interesting situations [0, 7, &, 10, 13,
], there is a nonempty Zariski-open subset U C t such that

e for each « € U, we have a finite locus Z(a) C C" depending on «,
e the homogeneous ideal grI(Z(«)) C C[x,| does not depend on «, and

e the ordinary cohomology ring H*(X) has presentation

H*(X) = Clx] /gr1(Z(a)). G3.1)

The loci Z(«) may be put into a family Z C C" x t given by

Z := Zariski closure of | ] Z(a) x {a} in C" x t. (3.2)

acl

We have the vanishing ideal I(Z) C C[C" X t| = C|xy, t]. It turns out that the equivari-
ant cohomology of X often has quotient presentation

H} (X) = Clx, 4] /1(Z) (33)

where the t-variables come from the torus action. The formula H*(X) = C ®¢yy H1(X)

may be interpreted in terms of (3.3) as taking the scheme-theoretic fiber 771(0) where
7T : Z — tis the natural projection. Going in the other direction, orbit harmonics can
sometimes predict equivariant cohomology rings, a theme we explore. We give two exam-
ples of this phenomenon (one old and one new) involving previously studied varieties
before turning to the new variety X, i 4.

3.1 Type A Springer Fibers
Recall that the complete flag variety Fl,, is the moduli space
Fl, ={Ve=(0=VWWcViC---CV,=C") : dimV; =i} (3.4)

of maximal chains of nested subspaces of C". The rank n torus (C*)" C GL,(C) of
diagonal matrices acts naturally on C", and induces an action on Fl,.
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Let 4 = (p1,..., k) F n be a partition of n with k parts and let X : C" — C" be a
nilpotent matrix of Jordan type u. The Springer fiber is the closed subvariety

B, :={Vs € Fl, : XV; CV; for all i} (3.5)

of Fl,,. The Springer fiber B, is stable under the action of the rank k subtorus T C (C*)"
consisting of matrices of the form A1l & - - - ® Agly, for Ay,..., A € C*. This gives rise
to identifications T = (C*)* and t = C.

Let U C t = C* be the Zariski-open set

U:={a=(ay,...,a) € C": ay,...,a are distinct}. (3.6)
For any & = (ay,...,a;) € U, we have a locus Z(«) C C" given by
Z(a) :={(z1,...,2n) € C" : a; appears y; times among z1,...,Zx }. (3.7)

For example, if 4 = (2,1) we have Z(a) = {(a1, a1, a2), (a1, a2, &1), (a2, 21, 21) }. Garsia
and Procesi proved [¢] that the ideal grI(Z(a)) C C|x,] does not depend on & € U.
Combining their result with the presentation of H*(B,) given by Hotta and Springer
[11], we arrive at the identification

H*(By,) = C[xn|/gr1(Z(a)) for any & € U. (3.8)

Let Z C C" x t = C"** be the Zariski closure of U,y Z(a) x {a} inside C"**. We have
I(Z) C Clxy, t;]. Kumar and Procesi derived [1”] the presentation

H} (By) = Clxa, ) /1(2) (39)

of the equivariant cohomology of B,.

3.2 Permutohedral variety

Let S : C" — C" be a diagonal matrix with distinct entries. The permutohedral variety
Perm,, is the closed subvariety of Fl,, given by

Perm, :={V, € Fl, : SV, CV; ;fori=1,2,...,n—1}. (3.10)

This is an important example of a toric variety and a regular semisimple Hessenberg variety.
The variety Perm,, is stable under the action of the rank n — 1 torus T C GL,(C) given
by

T = {diag(A1,..., Au) : A1--- Ay =1} (3.11)
We describe how known presentations of the (equivariant) cohomology of Perm; may
be interpreted via orbit harmonics.
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Let F be the family of N := 2" — 2 nonempty and proper subsets I C [n] and let
C’ be the N-dimensional complex vector space with basis F. Let xr := {x; : [ € F}
be a family of variables indexed by F and let C[xz] = C[x; : I € F] be the rank N
polynomial ring over these variables.

The Lie algebra t may be identified with the (n — 1)-dimensional vector space

t = {diag(a1,...,an) : @1 +---+a, =0} (3.12)

and we identify its coordinate ring as C[t] = C[t,]/(fy + -+ t,). Let U C t be the
Zariski-open subset of points & = («aq,...,a,) with distinct coordinates. For « € U and
any permutation w € &,, we define a point

p(w,a) = (p(w,a))jer € CT

as follows. The permutation w determines a flag @ = Ip(w) C L1(w) C --- C I,(w) = [n]
of subsets of [n] where [;(w) := {w(1),...,w(j)}. For a subset I € F, we define the I-th
component p(w, «); of p(w, ) by

p(w,0);] = {«xw(]-) — ey 1= I]:(w) for some 0 < j < n, (3.13)
0 otherwise.
We let Z(a) C C7 be the locus
Z(a) :={p(w,a) : we&,} (3.14)
so that I(Z(«)) C C[C”] = C[x£] for each a € U. We also have the family
Z := Zariski closure of | ] Z(a) x {a} in C’ xt. (3.15)

acl
The ideal I(Z) is a subset of C[C” x t] = C[xr| ® C[t,]/(t1 + - - + tn).

Theorem 3.1. The associated graded ideal gr1(Z(a)) C C[C”] does not depend on & € U. For
any « € U, the ordinary cohomology of Perm,, has presentation

H*(Perm,,) = C[CT]/grI(Z(a)). (3.16)
Furthermore, the T-equivariant cohomology of Perm,, has presentation
Hi(Perm,,) = C[CT x ]/1(2). (3.17)
Proof. (Sketch) Danilov proved [5] that the cohomology of Perm, has presentation
H*(Perm,) = C[xx]/] (3.18)

where | C C[xz] is the ideal generated by
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e all products x; - xp for I,I' € F where I £ I'and I’ Z I, and

¢ all differences of the form
le — Z Xy
iel i+lel’
fori=1,2,...,n—1.

Let « € U. To show | C grI(Z(a)), we prove that each generator of | is the top-degree
homogeneous component of a polynomial in C[x x| which vanishes on Z(«). If I,I' € F
satisfy I Z I' and I' Z I, the product x; - x» vanishes on Z (&) since for any w € &, the
nonzero components of p(w, ) are indexed by a flag of subsets of [n]. Furthermore, for
eachi=1,2,...,n — 1 it can be checked that the polynomial

(le - ) xl’) — (& — &ig1) (3.19)

iel i+lel’

vanishes on Z(«), and the top degree component of this polynomial is the generator
Yicr X1 — Yir1er xp of J. This proves that | C grI(Z(a)). We have a canonical surjection

H*(Perm,) = C|xx]/] - C[xr|/grI(Z(«)). (3.20)

The orbit harmonics isomorphism (2.7) implies that C[xr|/grI(Z(«)) has dimension
#Z(a) = n!. It is well-known that H*(Perm,,) also has vector space dimension n!, which
forces the surjection (3.20) to be an isomorphism and grI(Z(a)) = J for any a« € U.

Let L C C[xz] be the ideal generated by all products x; - xp for I, I € F for which [
I"and I’ Z I. Bifet, De Concini, and Procesi proved [?] that the equivariant cohomology
ring of Perm,, has presentation

Hi(Perm,) = C[xr]/L. (3.21)
We have a C-algebra homomorphism
§:C[CT x ] =Clxz] ®C[ty]/(t1 + - - + tn) — C[xF]/L (3.22)

characterized by ¢ : x; — xy for I € Fand ¢ : t; —ti;1 — Yic;Xr — Yir1ep X1 for
i=1,2,...,n—1. It can be checked that I(Z) C Ker(¢), so we have an induced homo-
morphism

¢ : C[CT x{]/1(2) — C[x#]/L. (3.23)

On the other hand, since L C I(Z) we have another C-algebra homomorphism
¥: C[xz]/L — C[CT x {]/1(2) (3.24)

characterized by ¢ : x; — xy for I € F. It is not hard to see that ¢ and ¢ are mutually
inverse. N
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4 Grassmannian Line Configurations

This section outlines the main ideas used to prove Theorem 1.2. Recall that we aim to
show H:(X,14) = C[xu, ya, ]S/ 1, x4 where I, ; ; has generators as described in that
theorem. We define

Wy ka = {w: [n] = [k] : the image of w has size d}. 4.1)

It is not difficult to see that W, is counted by #W,,; = ﬁ - Stir(n,d) where
Stir(n, d) is the Stirling number of the second kind counting d-block set partitions of [n].

Lemma 4.1. The quotient ring C[xu,ya, t|®?/ L, x4 is a free C[ty]-module of rank equal to
#Wn,k,d'

Lemma 4.1 is established using orbit harmonics arguments related to those in Sec-
tion 3; see [4] for details. With this result in hand, the cohomology presentation in
Theorem 1.2 is established as follows.

Proof. (of Theorem 1.2, sketch) The map p : X, x g — Gr(d,CF) givenby p: (¢{1,...,0,) —
{1+ ---+ ¥, is a fiber bundle with fiber isomorphic to X,, ;. The Leray-Hirsch Theorem
and results of Pawlowski-Rhoades [13] may be used to show that H7(X,, x 4) is generated
by

o the equivariant Chern classes ¢! (£;) where £; — X, 4 has fiber ¢; over ({1,...,(y),

e the equivariant Chern classes c! (p*(V;)) where V; — Gr(d, C¥) is the vector bun-
dle with fiber V over V € Gr(d,C*) andi = 1,2,...,d, and

e the standard generators 4, ..., of Hj(pt).

We therefore have a surjective C|[ty]-algebra homomorphism
¢ : Clxn, ya, 4] — HF (X 10) (4.2)

characterized by ¢ : x; — ¢] (£;) and ¢ : e;(yy) — ¢ (p*(Va))-
We show that each generator of I, ; 4 lies in the kernel of ¢. Let C* be the trivial rank
k bundle over a variety with the standard action of T = (C*)¥ on each fiber. The bundle
CF has total Chern class ¢T(C¥) = (1+t;)--- (1 + t;) over any variety. We have a short
exact sequence
0>V, —-C-Ck/v; =0 (4.3)

of bundles over Gr(d,CF). Since C*/V; has rank k — d, we have c! (C*/V,;) = 0 for
r >k —d. Since cT(CF) = cT(V,) - cT(C*/V,;) we have

Yourv—r(—1)%ea(te)hp(yy) € Ker(¢) whenever r > k —d.
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Similarly, we have a short exact sequence

0= Kpod— L1® @ Ly~ p* (V) > 0 (4.4)

of bundles over X, x ; where ¢ is induced by vector addition (v1,...,v,) = v1 + - - + vy

and K,_, is the kernel of ¥. Since K,,_; has rank n — d, we have ¢! (K,_s) = 0 whenever

r > n —d. The relation cT(L£y)---cT(Ly) = cT(L1® - B Ly) = T (Kp_g) - T (p*(Vy))
implies

Yurv—r(—1)%a(xn)hp(ys) € Ker(¢) whenever r > n —d.
Finally, for each i = 1,2, ...,n we have a short exact sequence
0L, —Cr—-C/L;,—0 (4.5)

of vector bundles over X, 4. Since C¥/L; has rank k — 1, we have c,{(Ck/ L;) = 0. The
relation cT(CF) = cT(L;) - cT(C¥/ L;) implies
XK — e () + - -+ (= 1) er(t) € Ker (@) fori =1,2,...,n.

1 1

We conclude that I, ; s C Ker(¢), so we have an induced surjection of C|t;]-algebras
¢ : Clxn, ya, 4%/ I ga — Hi (X ka)- (4.6)
We want to prove that the surjection ¢ is in fact an isomorphism. The fiber bundle
Xyg < Xppa —+ Gr(d,CF) (4.7)
gives rise (see [, Lemma 4.3]) to an isomorphism of Hz(Gr(d, C¥))-modules
Hi(Xpp4) = Hp(Gr(d,C)) ©c H* (Xi). (4.8)

The standard Schubert cell decomposition of Gr(d, C¥) gives rise to a T-invariant affine
paving of Gr(d, C¥) with (S) cells. On the other hand, Pawlowski-Rhoades [!3] proved
that H*(X,, 4) has vector space dimension d! - Stir(n,d). It follows that H7 (X, k) is a
free C[ty]-module of rank

[
(Z) x d!-Stir(n,d) = ﬁ -Stir(n,d) = #WV,, 4. (4.9)
By Lemma 4.1, we conclude that ¢ is an epimorphism between free C[t;]-modules of the
same rank #W, ;. It follows that ¢ is an isomorphism. O
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