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Abstract. For positive integers d ≤ k ≤ n, let Xn,k,d be the moduli space of n-tuples
(ℓ1, . . . , ℓn) of lines in Ck such that ℓ1 + · · ·+ ℓn has vector space dimension d. The space
Xn,k,d carries an action of the rank k torus T = (C∗)k, and we present the T-equivariant
cohomology of Xn,k,d. This solves a problem of Pawlowski and Rhoades. Our methods
feature the orbit harmonics technique of combinatorial deformation theory and suggest
a relationship between orbit harmonics and equivariant cohomology.
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1 Introduction

Let X be a topological space carrying an action of a complex torus T. The T-equivariant
cohomology ring H∗

T(X) is an enhancement of the ordinary cohomology H∗(X) of X which
accounts for the action of T.1 The map X → {pt} endows H∗

T(X) with the structure of
a C[t]-module, where t is the Lie algebra of T. Under mild conditions, the ordinary
cohomology H∗(X) may be recovered from H∗

T(X) by the relation

H∗(X) = C ⊗C[t] H∗
T(X) (1.1)

where the generators of the polynomial ring C[t] act by zero on C.
A line in Ck is a 1-dimensional subspace ℓ ⊆ Ck. We compute the equivariant coho-

mology of the following moduli space of line configurations.

Definition 1.1. Let d ≤ k ≤ n be positive integers. Let Xn,k,d be the set of n-tuples
(ℓ1, . . . , ℓn) of lines in Ck such that the vector space sum ℓ1 + · · ·+ ℓn has dimension d.
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Writing Pk−1 for the complex projective space of lines in Ck, we have a natural inclu-
sion Xn,k,d ⊆ (Pk−1)n which gives Xn,k,d the structure of an algebraic variety. The variety
Xn,k,d carries an action of the rank k torus T = (C∗)k given by

t · (ℓ1, . . . , ℓn) := (t · ℓ1, . . . , t · ℓn). (1.2)

Special cases of Xn,k,d have been considered before.

• If n = k = d, the variety Xn,n,n consists of n-tuples (ℓ1, . . . , ℓn) of lines in Cn which
span Cn. This space is homotopy equivalent to the type An−1 complete flag variety
Fln.2 The geometry of Fln is governed by the combinatorics of permutations in the
symmetric group Sn.

• If k = d, the variety Xn,k := Xn,k,k consists of n-tuples (ℓ1, . . . , ℓn) of lines in Ck

which span Ck. This variety of spanning line configurations was introduced by
Pawlowski and Rhoades [13]. The geometry of Xn,k is governed by the combi-
natorics of Fubini words in Wn,k; these are surjective functions w : [n] ↠ [k]. Billey
and Ryan [3] gave combinatorial descriptions of the corresponding Bruhat order(s)
on Wn,k.

Pawlowski and Rhoades proved [13] that the ordinary cohomology of Xn,k is pre-
sented by the following quotient Rn,k of C[xn]:

H∗(Xn,k) = Rn,k := C[xn]/(xk
1, . . . , xk

n, en(xn), en−1(xn), . . . , en−k+1(xn)). (1.3)

Here ed(xn) is the degree d elementary symmetric polynomial in the variable set xn :=
{x1, . . . , xn}. The ring Rn,k was introduced by Haglund, Rhoades, and Shimozono [10]
to give an analogue of the coinvariant algebra in the context of the Haglund–Remmel–
Wilson delta conjecture [9]. Pawlowski and Rhoades asked [13, Problem 9.8] for a presen-
tation of the T-equivariant cohomology H∗

T(Xn,k); we solve the more general problem of
presenting H∗

T(Xn,k,d).
To state our main result we need some notation. Write Gr(d, Ck) for the Grassman-

nian of d-dimensional subspaces V ⊆ Ck. We have a surjection

p : Xn,k,d ↠ Gr(d, Ck) (1.4)

which sends an n-tuple (ℓ1, . . . , ℓn) of lines to ℓ1 + · · ·+ ℓn. The rank k torus T = (C∗)k

acts naturally on Gr(d, Ck), and the map p is T-equivariant. We write Vd for the rank d
tautological vector bundle over Gr(d, Ck) whose fiber over a point V ∈ Gr(d, Ck) is the
vector space V. The pullback p∗(Vd) is a vector bundle over Xn,k,d.

2The homotopy equivalence is the natural projection G/T ↠ G/B. This map is a fiber bundle with
contractible fiber ∼= U.
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In addition to the length n list xn = {x1, . . . , xn} of x-variables, we consider a length d
list yd = {y1, . . . , yd} of y-variables and a length k list tk = {t1, . . . , tk} of t-variables. Let
C[xn, yd, tk] be the rank n + d + k polynomial ring over all of these variables. The sym-
metric group Sd acts on the middle set of variables in C[xn, yd, tk]; we write C[xn, yd, tk]

Sd

for the associated invariant subring. Our presentation of the T-equivariant cohomology
of Xn,k,d reads as follows, where hi stands for the complete homogeneous symmetric
polynomial of degree i.

Theorem 1.2. For positive integers n ≥ k ≥ d, let In,k,d ⊆ C[xn, yd, tk]
Sd be the ideal generated

by

• er(tk)− er−1(tk)h1(yd) + · · ·+ (−1)rhr(yd) for r > k − d,

• er(xn)− er−1(xn)h1(yd) + · · ·+ (−1)rhr(yd) for r > n − d, and

• xd
i − xd−1

i e1(yd) + · · ·+ (−1)ded(yd) for i = 1, . . . , n.

The T-equivariant cohomology of Xn,k,d has presentation

H∗
T(Xn,k,d) = C[xn, yd, tk]

Sd /In,k,d (1.5)

where

• xi represents the first equivariant Chern class of the line bundle Li over Xn,k,d with fiber ℓi
over (ℓ1, . . . , ℓn),

• y1, . . . , yd represent equivariant Chern roots of p∗(Vd), and

• t1, . . . , tn are the images in H∗
T(Xn,k,d) of the standard generators of H∗

T(pt).

When k = d, the variety Xn,k,d specializes to the variety Xn,k of spanning line con-
figurations in Ck. Specializing Theorem 1.2 to k = d, our solution to the problem [13,
Problem 9.8] of Pawlowski and Rhoades is as follows.

Corollary 1.3. For positive integers n ≥ k, the T-equivariant cohomology of Xn,k has quotient
presentation

H∗
T(Xn,k) = C[xn, yk]/In,k (1.6)

where In,k ⊆ C[xn, yk] is the ideal generated by

• er(xn)− er−1(xn)h1(tk) + · · ·+ (−1)rhr(tk) for r > n − k, and

• xk
i − xk−1

i e1(tk) + · · ·+ (−1)kek(tk) for i = 1, . . . , n.
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The proof of Theorem 1.2 has two main parts: geometric and algebraic. Geometri-
cally, we show that the relations in In,k,d hold in the ring H∗

T(Xn,k,d) using the Whitney
Sum Formula and calculate the rank of H∗

T(Xn,k,d) as a free C[t]-module using a T-
stable affine paving of Xn,k,d. Algebraically, we show that C[xn, yd, tk]

Sd /In,k,d is a free
C[tk]-module of the appropriate rank. For this, we apply a technique in combinatorial
deformation theory called orbit harmonics.

The remainder of this extended abstract is organized as follows. In Section 2 we give
background on equivariant cohomology, affine pavings, and orbit harmonics. In Sec-
tion 3 we describe our general approach to equivariant cohomology via orbit harmonics
and study the permutohedral variety from this point of view. In Section 4 we sketch the
proof of Theorem 1.2.

2 Background

2.1 Equivariant Cohomology

Let X be a smooth complex variety equipped with an action of the rank k torus T =
(C∗)k. As mentioned in the introduction, the equivariant cohomology ring H∗

T(X) is
an enhancement of the ordinary cohomology H∗(X). We describe the basic features of
H∗

T(X), referring the reader to Anderson and Fulton’s book [1] for a detailed treatment.
Let ET be a contractible space with a free left action of T. We define ET ×T X :=

ET × X/ ∼ where (e, x) ∼ (e · t−1, t · x) for all e ∈ ET, x ∈ X, and t ∈ T. The equivariant
cohomology ring of X is defined by

H∗
T(X) := H∗(ET ×T X) (2.1)

where H∗(ET ×T X) is the usual singular cohomology. For example, if X = {pt} is a
single point, we may identify ET ×T {pt} = (P∞)k, where P∞ is infinite-dimensional
complex projective space. Since H∗((P∞)k) = C[tk], the map X → {pt} gives the ring
H∗

T(X) the structure of a C[tk]-module.
Let Y ⊆ X be a closed subvariety which is closed under the T-action. If Y has

codimension c in X, we have a class [Y] ∈ H∗
T(X) of cohomological degree 2c. An affine

paving of X is a filtration

∅ = X0 ⊆ X1 ⊆ X2 ⊆ · · · ⊆ Xm = X (2.2)

of X by closed subvarieties such that each difference Xi ∖Xi−1 is isomorphic to a disjoint
union of affine spaces (possibly of varying dimensions). These affine spaces are referred
to as cells, and the affine paving is T-invariant if the cells are closed under the action of
T. If X has a T-invariant affine paving, the equivariant cohomology ring H∗

T(X) is a free
C[tk]-module with basis given by the classes [C] of the closures C of these cells.
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Let E ↠ X be a T-equivariant vector bundle of rank r. For 1 ≤ i ≤ r we have
the equivariant Chern class cT

i (E) ∈ H2i
T (X). The total equivariant Chern class is the sum

cT(E) := 1 + cT
1 (E) + · · ·+ cT

r (E). If we have a short exact sequence

0 → E ′ → E → E ′′ → 0 (2.3)

of T-equivariant bundles, there holds the relation cT(E) = cT(E ′) · cT(E ′′). It follows that
if E splits as a direct sum of equivariant line bundles E = L1 ⊕ · · · ⊕ Lr, we have the
factorization

cT(E) = cT(L1) · · · cT(Lr) = (1 + cT
1 (L1)) · · · (1 + cT

1 (Lr)). (2.4)

Even if E does not split as a direct sum of equivariant line bundles, by choosing an
appropriate flag extension X′ ↠ X we may still factor cT(E) = (1 + α1) · · · (1 + αr)
where α1, . . . , αr ∈ H2

T(X′). The classes α1, . . . , αr are the equivariant Chern roots of E ;
any symmetric polynomial in α1, . . . , αr lies in H∗

T(X). See [1, Section 2.3] for more
information on these facts.

2.2 Orbit Harmonics

Let Z ⊆ Cn be a finite locus of points in affine n-space Cn. We have the vanishing ideal

I(Z) := { f ∈ C[xn] : f (z) = 0 for all z ∈ Z} ⊆ C[xn]. (2.5)

If I ⊆ C[xn] is an ideal, recall that the associated graded ideal gr I ⊆ C[xn] is the homoge-
neous ideal

gr I := (τ( f ) : f ∈ I, f ̸= 0) ⊆ C[xn] (2.6)

where τ( f ) is the top-degree homogeneous component of a nonzero polynomial f .
The orbit harmonics deformation associates to Z the graded quotient ring C[xn]/gr I(Z)
where gr I(Z) ⊆ C[xn]. We have a vector space isomorphism

C[Z ] := C[xn]/I(Z) ∼=C C[xn]/gr I(Z) (2.7)

where C[xn]/gr I(Z) is a graded vector space. If the locus Z is a stable under the action
of a finite matrix group G ⊆ GLn(C), (2.7) is an isomorphism of G-modules, where
C[xn]/gr I(Z) is a graded G-module.

In geometric terms, orbit harmonics is a flat family which linearly deforms the re-
duced locus Z ⊆ Cn to a subscheme of degree #Z supported at the origin. This deforma-
tion is shown schematically below in the case of a locus of size |Z| = 6 in C2 carrying an
action of G ∼= S3 via reflection in the three displayed lines. Orbit harmonics quotients
C[xn]/gr I(Z) have been applied to Donaldson–Thomas theory [14], increasing subse-
quence combinatorics [17], Ehrhart theory [15], and (importantly for us) cohomology
presentation.
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3 Equivariant Cohomology and Orbit Harmonics

Let X be a variety equipped with an action of a rank k torus T ∼= (C∗)k, and let t ∼= Ck

be the Lie algebra of T. In many combinatorially interesting situations [6, 7, 8, 10, 13,
16], there is a nonempty Zariski-open subset U ⊆ t such that

• for each α ∈ U, we have a finite locus Z(α) ⊆ Cn depending on α,

• the homogeneous ideal gr I(Z(α)) ⊆ C[xn] does not depend on α, and

• the ordinary cohomology ring H∗(X) has presentation

H∗(X) = C[xn]/gr I(Z(α)). (3.1)

The loci Z(α) may be put into a family Z ⊆ Cn × t given by

Z := Zariski closure of
⋃

α∈U
Z(α)× {α} in Cn × t. (3.2)

We have the vanishing ideal I(Z) ⊆ C[Cn × t] ∼= C[xn, tk]. It turns out that the equivari-
ant cohomology of X often has quotient presentation

H∗
T(X) = C[xn, tk]/I(Z) (3.3)

where the t-variables come from the torus action. The formula H∗(X) = C ⊗C[t] H∗
T(X)

may be interpreted in terms of (3.3) as taking the scheme-theoretic fiber π−1(0) where
π : Z → t is the natural projection. Going in the other direction, orbit harmonics can
sometimes predict equivariant cohomology rings, a theme we explore. We give two exam-
ples of this phenomenon (one old and one new) involving previously studied varieties
before turning to the new variety Xn,k,d.

3.1 Type A Springer Fibers

Recall that the complete flag variety Fln is the moduli space

Fln = {V• = (0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = Cn) : dim Vi = i} (3.4)

of maximal chains of nested subspaces of Cn. The rank n torus (C∗)n ⊆ GLn(C) of
diagonal matrices acts naturally on Cn, and induces an action on Fln.
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Let µ = (µ1, . . . , µk) ⊢ n be a partition of n with k parts and let X : Cn → Cn be a
nilpotent matrix of Jordan type µ. The Springer fiber is the closed subvariety

Bµ := {V• ∈ Fln : XVi ⊆ Vi for all i} (3.5)

of Fln. The Springer fiber Bµ is stable under the action of the rank k subtorus T ⊆ (C∗)n

consisting of matrices of the form λ1 Iµ1 ⊕ · · · ⊕ λk Iµk for λ1, . . . , λk ∈ C∗. This gives rise
to identifications T = (C∗)k and t = Ck.

Let U ⊆ t = Ck be the Zariski-open set

U := {α = (α1, . . . , αk) ∈ Ck : α1, . . . , αk are distinct}. (3.6)

For any α = (α1, . . . , αk) ∈ U, we have a locus Z(α) ⊂ Cn given by

Z(α) := {(z1, . . . , zn) ∈ Cn : αi appears µi times among z1, . . . , zn}. (3.7)

For example, if µ = (2, 1) we have Z(α) = {(α1, α1, α2), (α1, α2, α1), (α2, α1, α1)}. Garsia
and Procesi proved [6] that the ideal gr I(Z(α)) ⊆ C[xn] does not depend on α ∈ U.
Combining their result with the presentation of H∗(Bµ) given by Hotta and Springer
[11], we arrive at the identification

H∗(Bµ) = C[xn]/gr I(Z(α)) for any α ∈ U. (3.8)

Let Z ⊆ Cn × t = Cn+k be the Zariski closure of
⋃

α∈U Z(α)× {α} inside Cn+k. We have
I(Z) ⊆ C[xn, tk]. Kumar and Procesi derived [12] the presentation

H∗
T(Bµ) = C[xn, tk]/I(Z) (3.9)

of the equivariant cohomology of Bµ.

3.2 Permutohedral variety

Let S : Cn → Cn be a diagonal matrix with distinct entries. The permutohedral variety
Permn is the closed subvariety of Fln given by

Permn := {V• ∈ Fln : SVi ⊆ Vi+1 for i = 1, 2, . . . , n − 1}. (3.10)

This is an important example of a toric variety and a regular semisimple Hessenberg variety.
The variety Permn is stable under the action of the rank n − 1 torus T ⊂ GLn(C) given
by

T = {diag(λ1, . . . , λn) : λ1 · · · λn = 1}. (3.11)

We describe how known presentations of the (equivariant) cohomology of Permn may
be interpreted via orbit harmonics.
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Let F be the family of N := 2n − 2 nonempty and proper subsets I ⊂ [n] and let
CF be the N-dimensional complex vector space with basis F . Let xF := {xI : I ∈ F}
be a family of variables indexed by F and let C[xF ] = C[xI : I ∈ F ] be the rank N
polynomial ring over these variables.

The Lie algebra t may be identified with the (n − 1)-dimensional vector space

t = {diag(α1, . . . , αn) : α1 + · · ·+ αn = 0} (3.12)

and we identify its coordinate ring as C[t] = C[tn]/(t1 + · · · + tn). Let U ⊂ t be the
Zariski-open subset of points α = (α1, . . . , αn) with distinct coordinates. For α ∈ U and
any permutation w ∈ Sn, we define a point

p(w, α) = (p(w, α)I)I∈F ∈ CF

as follows. The permutation w determines a flag ∅ = I0(w) ⊂ I1(w) ⊂ · · · ⊂ In(w) = [n]
of subsets of [n] where Ij(w) := {w(1), . . . , w(j)}. For a subset I ∈ F , we define the I-th
component p(w, α)I of p(w, α) by

p(w, α)I :=

{
αw(j) − αw(j+1) if I = Ij(w) for some 0 < j < n,
0 otherwise.

(3.13)

We let Z(α) ⊆ CF be the locus

Z(α) := {p(w, α) : w ∈ Sn} (3.14)

so that I(Z(α)) ⊆ C[CF ] = C[xF ] for each α ∈ U. We also have the family

Z := Zariski closure of
⋃

α∈U
Z(α)× {α} in CF × t. (3.15)

The ideal I(Z) is a subset of C[CF × t] = C[xF ]⊗ C[tn]/(t1 + · · ·+ tn).

Theorem 3.1. The associated graded ideal gr I(Z(α)) ⊆ C[CF ] does not depend on α ∈ U. For
any α ∈ U, the ordinary cohomology of Permn has presentation

H∗(Permn) = C[CF ]/gr I(Z(α)). (3.16)

Furthermore, the T-equivariant cohomology of Permn has presentation

H∗
T(Permn) = C[CF × t]/I(Z). (3.17)

Proof. (Sketch) Danilov proved [5] that the cohomology of Permn has presentation

H∗(Permn) = C[xF ]/J (3.18)

where J ⊆ C[xF ] is the ideal generated by
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• all products xI · xI′ for I, I′ ∈ F where I ̸⊆ I′ and I′ ̸⊆ I, and

• all differences of the form
∑
i∈I

xI − ∑
i+1∈I′

xI′

for i = 1, 2, . . . , n − 1.

Let α ∈ U. To show J ⊆ gr I(Z(α)), we prove that each generator of J is the top-degree
homogeneous component of a polynomial in C[xF ] which vanishes on Z(α). If I, I′ ∈ F
satisfy I ̸⊆ I′ and I′ ̸⊆ I, the product xI · xI′ vanishes on Z(α) since for any w ∈ Sn the
nonzero components of p(w, α) are indexed by a flag of subsets of [n]. Furthermore, for
each i = 1, 2, . . . , n − 1 it can be checked that the polynomial(

∑
i∈I

xI − ∑
i+1∈I′

xI′

)
− (αi − αi+1) (3.19)

vanishes on Z(α), and the top degree component of this polynomial is the generator
∑i∈I xI − ∑i+1∈I′ xI′ of J. This proves that J ⊆ gr I(Z(α)). We have a canonical surjection

H∗(Permn) = C[xF ]/J ↠ C[xF ]/gr I(Z(α)). (3.20)

The orbit harmonics isomorphism (2.7) implies that C[xF ]/gr I(Z(α)) has dimension
#Z(α) = n!. It is well-known that H∗(Permn) also has vector space dimension n!, which
forces the surjection (3.20) to be an isomorphism and gr I(Z(α)) = J for any α ∈ U.

Let L ⊆ C[xF ] be the ideal generated by all products xI · xI′ for I, I′ ∈ F for which I ̸⊆
I′ and I′ ̸⊆ I. Bifet, De Concini, and Procesi proved [2] that the equivariant cohomology
ring of Permn has presentation

H∗
T(Permn) = C[xF ]/L. (3.21)

We have a C-algebra homomorphism

φ̃ : C[CF × t] = C[xF ]⊗ C[tn]/(t1 + · · ·+ tn) −→ C[xF ]/L (3.22)

characterized by φ̃ : xI 7→ xI for I ∈ F and φ̃ : ti − ti+1 7→ ∑i∈I xI − ∑i+1∈I′ xI for
i = 1, 2, . . . , n − 1. It can be checked that I(Z) ⊆ Ker(φ̃), so we have an induced homo-
morphism

φ : C[CF × t]/I(Z) −→ C[xF ]/L. (3.23)

On the other hand, since L ⊆ I(Z) we have another C-algebra homomorphism

ψ : C[xF ]/L −→ C[CF × t]/I(Z) (3.24)

characterized by ψ : xI 7→ xI for I ∈ F . It is not hard to see that φ and ψ are mutually
inverse.
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4 Grassmannian Line Configurations

This section outlines the main ideas used to prove Theorem 1.2. Recall that we aim to
show H∗

T(Xn,k,d) = C[xn, yd, tk]
Sd /In,k,d where In,k,d has generators as described in that

theorem. We define

Wn,k,d := {w : [n] → [k] : the image of w has size d}. (4.1)

It is not difficult to see that Wn,k,d is counted by #Wn,k,d = k!
(k−d)! · Stir(n, d) where

Stir(n, d) is the Stirling number of the second kind counting d-block set partitions of [n].

Lemma 4.1. The quotient ring C[xn, yd, tk]
Sd /In,k,d is a free C[tk]-module of rank equal to

#Wn,k,d.

Lemma 4.1 is established using orbit harmonics arguments related to those in Sec-
tion 3; see [4] for details. With this result in hand, the cohomology presentation in
Theorem 1.2 is established as follows.

Proof. (of Theorem 1.2, sketch) The map p : Xn,k,d → Gr(d, Ck) given by p : (ℓ1, . . . , ℓn) 7→
ℓ1 + · · ·+ ℓn is a fiber bundle with fiber isomorphic to Xn,d. The Leray–Hirsch Theorem
and results of Pawlowski–Rhoades [13] may be used to show that H∗

T(Xn,k,d) is generated
by

• the equivariant Chern classes cT
1 (Li) where Li ↠ Xn,k,d has fiber ℓi over (ℓ1, . . . , ℓn),

• the equivariant Chern classes cT
i (p∗(Vd)) where Vd ↠ Gr(d, Ck) is the vector bun-

dle with fiber V over V ∈ Gr(d, Ck) and i = 1, 2, . . . , d, and

• the standard generators t1, . . . , tk of H∗
T(pt).

We therefore have a surjective C[tk]-algebra homomorphism

φ̃ : C[xn, yd, tk]
Sd ↠ H∗

T(Xn,k,d) (4.2)

characterized by φ̃ : xi 7→ cT
1 (Li) and φ̃ : ei(yd) 7→ cT

i (p∗(Vd)).
We show that each generator of In,k,d lies in the kernel of φ̃. Let Ck be the trivial rank

k bundle over a variety with the standard action of T = (C∗)k on each fiber. The bundle
Ck has total Chern class cT(Ck) = (1 + t1) · · · (1 + tk) over any variety. We have a short
exact sequence

0 → Vd → Ck → Ck/Vd → 0 (4.3)

of bundles over Gr(d, Ck). Since Ck/Vd has rank k − d, we have cT
r (C

k/Vd) = 0 for
r > k − d. Since cT(Ck) = cT(Vd) · cT(Ck/Vd) we have

∑a+b=r(−1)aea(tk)hb(yd) ∈ Ker(φ̃) whenever r > k − d.
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Similarly, we have a short exact sequence

0 → Kn−d → L1 ⊕ · · · ⊕ Ln
ψ−→ p∗(Vd) → 0 (4.4)

of bundles over Xn,k,d where ψ is induced by vector addition (v1, . . . , vn) 7→ v1 + · · ·+ vn
and Kn−d is the kernel of ψ. Since Kn−d has rank n − d, we have cT

r (Kn−d) = 0 whenever
r > n − d. The relation cT(L1) · · · cT(Ln) = cT(L1 ⊕ · · · ⊕ Ln) = cT(Kn−d) · cT(p∗(Vd))
implies

∑a+b=r(−1)aea(xn)hb(yd) ∈ Ker(φ̃) whenever r > n − d.

Finally, for each i = 1, 2, . . . , n we have a short exact sequence

0 → Li → Ck → Ck/Li → 0 (4.5)

of vector bundles over Xn,k,d. Since Ck/Li has rank k − 1, we have cT
k (C

k/Li) = 0. The
relation cT(Ck) = cT(Li) · cT(Ck/Li) implies

xk
i − xk−1

i e1(tk) + · · ·+ (−1)kek(tk) ∈ Ker(φ̃) for i = 1, 2, . . . , n.

We conclude that In,k,d ⊆ Ker(φ̃), so we have an induced surjection of C[tk]-algebras

φ : C[xn, yd, tk]
Sd /In,k,d ↠ H∗

T(Xn,k,d). (4.6)

We want to prove that the surjection φ is in fact an isomorphism. The fiber bundle

Xn,d ↪→ Xn,k,d
p−→ Gr(d, Ck) (4.7)

gives rise (see [4, Lemma 4.3]) to an isomorphism of H∗
T(Gr(d, Ck))-modules

H∗
T(Xn,k,d) ∼= H∗

T(Gr(d, Ck))⊗C H∗(Xn,d). (4.8)

The standard Schubert cell decomposition of Gr(d, Ck) gives rise to a T-invariant affine
paving of Gr(d, Ck) with (k

d) cells. On the other hand, Pawlowski–Rhoades [13] proved
that H∗(Xn,d) has vector space dimension d! · Stir(n, d). It follows that H∗

T(Xn,k,d) is a
free C[tk]-module of rank(

k
d

)
× d! · Stir(n, d) =

k!
(k − d)!

· Stir(n, d) = #Wn,k,d. (4.9)

By Lemma 4.1, we conclude that φ is an epimorphism between free C[tk]-modules of the
same rank #Wn,k,d. It follows that φ is an isomorphism.
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