Séminaire Lotharingien de Combinatoire **93B** (2025) Article #44, 12 pp.

Proof of the Newell–Littlewood saturation conjecture

Jaewon Min*1

¹Dept. of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801

Abstract. By inventing the notion of *honeycombs*, A. Knutson and T. Tao proved the saturation conjecture for Littlewood–Richardson coefficients. The Newell–Littlewood numbers are a generalization of the Littlewood–Richardson coefficients. By introducing honeycombs on a Möbius strip, we prove the saturation conjecture for Newell–Littlewood numbers posed by S. Gao, G. Orelowitz and A. Yong.

Keywords: Littlewood–Richardson coefficients, representation theory, Lie groups, saturation, honeycombs, Möbius strips

1 Introduction

1.1 Background

The irreducible polynomial representations V_{λ} of $GL_n\mathbb{C}$ are indexed by the set of partitions

$$\operatorname{Par}_{n} := \{ \lambda = (\lambda_{1}, \cdots, \lambda_{n}) \in \mathbb{Z}^{n} \mid \lambda_{1} \geq \cdots \geq \lambda_{n} \geq 0 \};$$
(1.1)

see, *e.g.*, [3]. For each $\mu, \nu \in Par_n$,

$$V_{\mu} \otimes V_{\nu} \cong \bigoplus_{\lambda \in \operatorname{Par}_{n}} V_{\lambda}^{\oplus c_{\mu,\nu}^{\lambda}}.$$
(1.2)

The tensor product multiplicities $c_{\mu,\nu}^{\lambda}$ are the **Littlewood–Richardson coefficients**.

For each $k \in \mathbb{N} := \{1, 2, 3, ...\}$ and $\lambda \in Par_n$, let $k\lambda := (k\lambda_1, \cdots, k\lambda_n)$.

Theorem 1 (Saturation of Littlewood–Richardson coefficients [14]). Let $\lambda, \mu, \nu \in \text{Par}_n$. If there exists $k \in \mathbb{N}$ such that $c_{k\mu,k\nu}^{k\lambda} > 0$, then $c_{\mu,\nu}^{\lambda} > 0$.

A. Knutson and T. Tao proved Theorem 1 using *honeycombs* [14]. Honeycombs are combinatorial objects used to count Littlewood–Richardson coefficients. This paper concerns a generalization of Theorem 1 and its proof.

^{*}jaewonm2@illinois.edu. Jaewon Min was partially supported by UIUC Campus Research Board grant RB24025.

The significance of the saturation theorem stems from *Horn's conjecture* [8] which gives a recursive description of linear inequalities, called *Horn's inequalities*, on the eigenvalues of $n \times n$ Hermitian matrices A, B and A + B. Theorem 1 combined with earlier work of A. A. Klyachko [13] proved Horn's conjecture; see W. Fulton's survey [4].

1.2 Main result

We generalize Theorem 1 and its proof to the **Newell–Littlewood numbers**, which are defined, using the Littlewood–Richardson coefficients, as follows:

$$N_{\lambda,\mu,\nu} := \sum_{\alpha,\beta,\gamma\in\operatorname{Par}_n} c^{\lambda}_{\beta,\gamma} c^{\mu}_{\gamma,\alpha} c^{\nu}_{\alpha,\beta} \quad (\lambda,\mu,\nu\in\operatorname{Par}_n).$$
(1.3)

For each $\lambda \in \text{Par}_n$, let $|\lambda| := \lambda_1 + \cdots + \lambda_n$. If $c_{\mu,\nu}^{\lambda} \neq 0$, then $|\mu| + |\nu| = |\lambda|$. According to [6, Lemma 2.2],

$$|\mu| + |\nu| = |\lambda| \quad \Rightarrow \quad N_{\lambda,\mu,\nu} = c_{\mu,\nu}^{\lambda}. \tag{1.4}$$

Thus, Newell-Littlewood numbers generalize Littlewood-Richardson coefficients.

In 2021, S. Gao, G. Orelowitz and A. Yong [6, Conjecture 5.5, 5.6] conjectured a generalization of Theorem 1. In *ibid.*, this conjecture was proved for the special cases that $\lambda = \mu = \nu$ [6, Theorem 4.1] and for n = 2 [6, Theorem 4.1]. In [5, Corollary 6.1], S. Gao, G. Orelowitz, N. Ressayre, and A. Yong gave a computational proof of the cases when $n \leq 5$. Our main result is a complete proof of said conjecture from [6, Conjecture 1.1], by modifying the proof of Theorem 1 in [14].

Theorem 2 (Newell–Littlewood saturation [17, Theorem 1.2]). Let $\lambda, \mu, \nu \in Par_n$ satisfying $|\lambda| + |\mu| + |\nu| \equiv 0 \pmod{2}$. If there exists $k \in \mathbb{N}$ such that $N_{k\lambda,k\mu,k\nu} > 0$, then $N_{\lambda,\mu,\nu} > 0$.

This follows from the technical center of this paper, Theorem 7, and is introduced at the end. In view of (1.4), Theorem 2 immediately implies the saturation of Littlewood–Richardson coefficients.

We now discuss consequences of proving Theorem 2. Analogous to the Horn's inequalities, S. Gao, G. Orelowitz and A. Yong [7, Theorem 1.3] defined *extended Horn inequalities* (which we will not restate here) and proved that they are necessary conditions for $N_{\lambda,\mu,\nu} > 0$. Additionally, they conjectured the converse; our paper also confirms this conjecture, due to [5, Corollary 8.5].

Corollary 1. [7, Conjecture 1.4] If $(\lambda, \mu, \nu) \in (\operatorname{Par}_n)^3$ satisfies the extended Horn inequalities and $|\lambda| + |\mu| + |\nu| \equiv 0 \pmod{2}$, then $N_{\lambda,\mu,\nu} > 0$.

Therefore, the extended Horn inequalities and $|\lambda| + |\mu| + |\nu| \equiv 0 \pmod{2}$ completely determine the set

$$NL := \{ (\lambda, \mu, \nu) \in (Par_n)^3 \mid N_{\lambda, \mu, \nu} > 0 \}.$$
(1.5)

NL saturation

Another application is to the eigenvalues of a family of complex matrices. Let

$$\operatorname{Par}_{n}^{\mathbb{Q}} := \{ \lambda = (\lambda_{1}, \cdots, \lambda_{n}) \in \mathbb{Q}^{n} \mid \lambda_{1} \geq \cdots \geq \lambda_{n} \geq 0 \},$$
(1.6)

$$\operatorname{NL-sat}(n) := \{ (\lambda, \mu, \nu) \in (\operatorname{Par}_{n}^{\mathbb{Q}})^{3} \mid \exists k > 0, \quad N_{k\lambda, k\mu, k\nu} > 0 \}.$$

$$(1.7)$$

In [5, Proposition 3.1], S. Gao, G. Orelowitz, N. Ressayre and A. Yong proved that NL-sat(*n*) describes an analogue of the Horn problem for matrices in $\mathfrak{sp}_{2n}\mathbb{C} \cap \mathfrak{u}_{2n}\mathbb{C}$. Theorem 2 shows that NL-sat(*n*) can be simplified to NL.

Lastly, Theorem 2 is related to the conjecture suggested in [14, Section 7]. Given a split reductive group *G* over \mathbb{C} , it has a root system and its irreducible representation is indexed by a dominant integral weight λ . Write the dual weight as λ^* and the tensor product multiplicities by $c_{\mu,\nu}^{\lambda}(G)$.

Theorem 3. [10, Theorem 1.1] Let G be a split reductive group over \mathbb{C} . Then there exists $k_G \in \mathbb{N}$ with following property: if λ, μ, ν are dominant integral weights such that $\lambda^* + \mu + \nu$ is in the root lattice,

$$\exists k \in \mathbb{N} \text{ such that } c_{k\mu,k\nu}^{k\lambda}(G) > 0 \quad \Rightarrow \quad c_{k_G\mu,k_G\nu}^{k_G\lambda}(G) > 0. \tag{1.8}$$

Conjecture 1. [11, Conjecture 1.4] *If the root system of G is simply laced, then* k_G *can be chosen as* 1.

In particular, we are interested in the cases when $G = SO_{2n+1}C$, $Sp_{2n}C$, $SO_{2n}C$. In [10, Theorem 1.1], M. Kapovich and J. J. Millson proved that $k_G = 4$. Additionally, P. Belkale and S. Kumar [1, Theorem 6, 7] proved that $k_G = 2$ if G is $SO_{2n+1}C$ or $Sp_{2n}C$. S. V. Sam [18, Theorem 1.1] proved that $k_G = 2$ when $G = SO_{2n+1}C$, $Sp_{2n}C$, $SO_{2n}C$, by using quiver representations, extending the proof of Theorem 1 given by H. Derksen and J. Weyman [2].

The possibility that $k_G = 1$ when $G = SO_{2n}\mathbb{C}$ remains open. For recent work concerning $SO_{2n}\mathbb{C}$ and $Spin_{2n}\mathbb{C}$, see, *e.g.*, [9, 12].

Let $G = SO_{2n+1}\mathbb{C}$, $Sp_{2n}\mathbb{C}$, $SO_{2n}\mathbb{C}$. For the classical Lie groups, irreducible representations are indexed by the set of partitions Par_n ; see, *e.g.*, [3, 16]. $l(\lambda)$ denotes the number of non-zero components of $\lambda = (\lambda_1, \dots, \lambda_n)$. According to [15, Theorem 3.1],

$$l(\mu) + l(\nu) \le n \quad \Rightarrow \quad N_{\lambda,\mu,\nu} = c^{\lambda}_{\mu,\nu}(G). \tag{1.9}$$

The condition (1.9) imposed on μ , $\nu \in Par_n$ is called the *stable range*. The next result is an immediate consequence of Theorem 2:

Corollary 2. Let $G = SO_{2n+1}\mathbb{C}$, $Sp_{2n}\mathbb{C}$, $SO_{2n}\mathbb{C}$. Suppose $\lambda, \mu, \nu \in Par_n$ and $l(\mu) + l(\nu) \leq n$. If there exists $k \in \mathbb{N}$ such that $c_{k\mu,k\nu}^{k\lambda}(G) > 0$, then $c_{\mu,\nu}^{\lambda}(G) > 0$.

Thus, k_G from Conjecture 1 may be taken as 1 for $G = SO_{2n+1}\mathbb{C}$, $Sp_{2n}\mathbb{C}$, $SO_{2n}\mathbb{C}$ if (μ, ν) is in the stable range.

2 Saturation of Littlewood–Richardson coeffcients

In this paper, *B* is fixed to be the two-dimensional real vector space

$$B := \{ (x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0 \}.$$
 (2.1)

Let the **lattice points** of *B* be

$$B_{\mathbb{Z}} := \{ (x, y, z) \in \mathbb{Z}^3 \mid x + y + z = 0 \}.$$
(2.2)

A. Knutson and T. Tao constructed a directed graph Δ_n ; see [14, Figure 3]. Write V_{Δ_n} as the set of vertices of Δ_n . If $h : V_{\Delta_n} \to B$ satisfies conditions to be a *configuration*, h is called a **honeycomb**; see [14, Section 2.1] for details. Also, see [14, Section 2.2] to check how they read off three partitions $\lambda, \mu, \nu \in \text{Par}_n$ from a honeycomb h, which is *boundary condition* of h denoted by $\partial(h)$.

Theorem 4 ([14, Theorem 4]). Let $\lambda, \mu, \nu \in Par_n$. Then $c_{\mu,\nu}^{\lambda}$ counts the number of honeycombs *h* satisfying:

- $\partial(h) = (\lambda, \mu, \nu)$, and
- $\forall v \in V_{\Delta_n}, h(v) \in B_{\mathbb{Z}}.$

Theorem 5 ([14, Theorem 2]). *For any honeycomb* h *with* $\partial(h) \in \mathbb{Z}^{3n}$ *, there exists a honeycomb* g *such that:*

- $\partial(g) = \partial(h)$, and
- $\forall v \in V_{\Delta_n}, g(v) \in B_{\mathbb{Z}}.$

See [14, Section 5] to check the construction of honeycomb *g* in Theorem 5, named as *largest lift*. As a corollary, we have Theorem 1.

Proof of Theorem 1. Suppose $\lambda, \mu, \nu \in Par_n$ and $k \in \mathbb{N}$ such that $c_{k\mu,k\nu}^{k\lambda} > 0$. By Theorem 4, there exists a honeycomb *h* such that

$$\partial(h) = (k\lambda, k\mu, k\nu). \tag{2.3}$$

Since k > 0, $\frac{1}{k}h$ is also a honeycomb; for instance, see [17, Lemma 2.1]. Then

$$\partial \left(\frac{1}{k}h\right) = (\lambda, \mu, \nu).$$
(2.4)

Apply Theorem 5 to find a honeycomb g such that $\partial(g) = \partial(\frac{1}{k}h)$ and $g(v) \in B_{\mathbb{Z}}$ for all $v \in V_{\Delta_n}$. By Theorem 4 once more, $c_{\mu,\nu}^{\lambda} > 0$.

Figure 2: Identify $\tilde{\Gamma}_5$ to have Γ_5 .

3 Graphs embedded in Möbius strips

Define a directed graph $\tilde{\Gamma}_n$ of which vertices and edges are

$$V_{\widetilde{\Gamma}_n} = \{ \widetilde{A}_{i,j} \mid i, j \in \mathbb{Z}, 0 \le i \le n \} \cup \{ \widetilde{B}_{i,j} \mid i, j \in \mathbb{Z}, 0 \le i \le n \},$$
(3.1)

$$E_{\widetilde{\Gamma}_n} = \{ (\widetilde{A}_{i,j}, \widetilde{B}_{i,j}) \mid i, j \in \mathbb{Z}, 0 \le i \le n \}$$

$$(3.2)$$

$$\cup \{ (\widetilde{A}_{i,j}, \widetilde{B}_{i-1,j}) \mid i, j \in \mathbb{Z}, 1 \le i \le n \}$$

$$(3.3)$$

$$\cup \{ (\widetilde{A}_{i,j}, \widetilde{B}_{i-1,j-1}) \mid i, j \in \mathbb{Z}, 1 \le i \le n \}.$$

$$(3.4)$$

Here, we denote a directed edge from U to W as (U, W). As in Figure 1, $\tilde{\Gamma}_n$ is an infinite strip composed of (n - 1)-number of layers of hexagons. There are vertices connected to exactly one edge in Figure 1, namely $\tilde{A}_{0,j}$, $\tilde{B}_{n,j}$ for $j \in \mathbb{Z}$. Such vertices of $\tilde{\Gamma}_n$ are the **boundary vertices** in $\tilde{\Gamma}_n$.

We now define a graph Γ_n , which will be a "quotient graph" of $\tilde{\Gamma}_n$. Intuitively, "slice" $\tilde{\Gamma}_n$ into pieces by using trapezoids as in Figure 2. We want to identify all trapezoids as one, which corresponds to the quotient graph Γ_n . For instance, four bold vertices of $\tilde{\Gamma}_5$ in Figure 2 are identified as a vertex of Γ_5 .

Figure 3: The graph Γ_5 .

To be precise, identify the vertices of $\tilde{\Gamma}_n$ using the equivalence relation \sim defined by

$$\widetilde{A}_{i,j} \sim \widetilde{B}_{-i+n,-i+j+2n}, \quad \widetilde{B}_{i,j} \sim \widetilde{A}_{-i+n,-i+j+2n}. \quad (i,j \in \mathbb{Z}, 0 \le i \le n).$$
(3.5)

The vertices of Γ_n are representatives of the equivalence classes $[\tilde{P}]$ for each $\tilde{P} \in V_{\tilde{\Gamma}_n}$; we have the quotient map induced by the equivalence relation:

$$p_v: V_{\widetilde{\Gamma}_n} \to V_{\Gamma_n}, \quad \widetilde{P} \mapsto [\widetilde{P}].$$
 (3.6)

Next, we define an equivalence relation \equiv on the edges in $\tilde{\Gamma}_n$. Write a directed edge $\tilde{e} = (\text{tail}(\tilde{e}), \text{head}(\tilde{e}))$. For each $\tilde{e} = (\tilde{A}, \tilde{B})$ and $\tilde{e}' = (\tilde{A}', \tilde{B}')$, set

$$\widetilde{e} \equiv \widetilde{e}' \iff \widetilde{A} \sim \widetilde{A}', \widetilde{B} \sim \widetilde{B}' \text{ or } \widetilde{A} \sim \widetilde{B}', \widetilde{B} \sim \widetilde{A}'.$$
(3.7)

The edges of Γ_n are representatives of equivalence classes $[\tilde{e}]$ for each $\tilde{e} \in E_{\tilde{\Gamma}_n}$. Here, $[\tilde{e}]$ is a *non-directed* edge connecting $p_v(\text{tail}(\tilde{e}))$ and $p_v(\text{head}(\tilde{e}))$. We denote a non-directed edge $e = \{A, B\}$ if *e* connects vertices *A* and *B*. The quotient map is defined by

$$p_e: E_{\widetilde{\Gamma}_n} \to E_{\Gamma_n}, \quad \widetilde{e} \mapsto [\widetilde{e}].$$
 (3.8)

From (3.5), $\widetilde{A}_{i,j} \sim \widetilde{A}_{i,j+3n}$ and $\widetilde{B}_{i,j} \sim \widetilde{B}_{i,j+3n}$ for all indices. Therefore, there are 3n(n+1)-many equivalence classes in $V_{\widetilde{\Gamma}_n}$, each represented by $\widetilde{A}_{i,j}$ for $0 \le i \le n, 1 \le j \le 3n$. Set $A_{i,j} := p_v(\widetilde{A}_{i,j})$ for $0 \le i \le n, 1 \le j \le 3n$.

In summary, Γ_n is a finite graph embedded in a Möbius strip. For instance, consider Γ_5 in Figure 3. Each of the vertices $A_{1,1}, A_{2,1}, A_{3,1}, A_{4,1}, A_{5,1}$ are connected to $A_{5,10}, A_{4,9}, A_{3,8}, A_{2,7}, A_{1,6}$, respectively.

Figure 4: The infinite strip \widetilde{B}_{δ} contained in *B*.

Figure 5: The Möbius strip B_{δ} and its covering space \widetilde{B}_{δ} .

4 Covering space of Möbius strips

Fix $\delta \in \mathbb{N}$. For each $k \in \mathbb{Z}$, define subsets of *B*

$$D_{\delta}^{(2k)} := \{ (x, y, z) \in B \mid (k-1)\delta \le x \le k\delta, \quad (k-1)\delta \le y \le k\delta \},$$
(4.1)

$$D_{\delta}^{(2k+1)} := \{ (x, y, z) \in B \mid (k-1)\delta \le x \le k\delta, \quad k\delta \le y \le (k+1)\delta \}, \tag{4.2}$$

$$\widetilde{B}_{\delta} := \bigcup_{k \in \mathbb{Z}} D_{\delta}^{(k)}.$$
(4.3)

 \widetilde{B}_{δ} is depicted in Figure 4, as an infinite zigzag strip. Here, $D_{\delta}^{(k)}$ is a rhombus. In Figure 4, there are six rhombi, which are $D_{\delta}^{(0)}, D_{\delta}^{(-1)}, \dots, \dots, D_{\delta}^{(-5)}$, from left to right.

We want to define a quotient space B_{δ} of \tilde{B}_{δ} . Intuitively, we "slice" \tilde{B}_{δ} into pieces and identify them into one to construct B_{δ} . See Figure 5, where the four bold points are identified as one element in B_{δ} .

To write a formal definition, define an equivalence relation on *B*, namely

$$(x, y, z) \sim (y - 2\delta, x - \delta, z + 3\delta). \tag{4.4}$$

Denote the quotient map by $q : B \to B / \sim$. Define $B_{\delta} := q(\tilde{B}_{\delta})$. \tilde{B}_{δ} is an infinite strip whereas B_{δ} is a Möbius strip; see Figure 5.

Figure 6: Image of \tilde{h} contained in \tilde{B}_{δ} when n = 5.

By the equivalence relation on *B*, $D_{\delta}^{(k)}$ is identified to $D_{\delta}^{(k-3)}$ for all $k \in \mathbb{Z}$. For instance, $D_{\delta}^{(0)}$ and $D_{\delta}^{(-3)}$, $D_{\delta}^{(-1)}$ and $D_{\delta}^{(-4)}$, $D_{\delta}^{(-2)}$ and $D_{\delta}^{(-5)}$ are identified by the map q in Figure 4.

5 Möbius honeycombs

Define a direction map $d : E_{\widetilde{\Gamma}_n} \to B$ by mapping

$$(\widetilde{A}_{i,j}, \widetilde{B}_{i-1,j-1}) \mapsto (0, -1, 1), \quad (\widetilde{A}_{i,j}, \widetilde{B}_{i-1,j}) \mapsto (1, 0, -1), \quad (\widetilde{A}_{i,j}, \widetilde{B}_{i,j}) \mapsto (-1, 1, 0).$$
 (5.1)

As in Figure 1, *d* maps each southeast edges to (0, -1, 1), southwest edges to (1, 0, -1), and north edges to (-1, 1, 0). Define a function $\tilde{h} : V_{\tilde{\Gamma}_n} \to B$ satisfying

$$\widetilde{h}(\mathsf{head}(\widetilde{e})) - \widetilde{h}(\mathsf{tail}(\widetilde{e})) \in \{a \cdot v \in B \mid a \ge 0, v = d(\widetilde{e})\}, \quad \widetilde{e} \in E_{\widetilde{\Gamma}_n}.$$
(5.2)

Consider $\tilde{A}_{0,1}, \tilde{A}_{0,2}, \dots, \tilde{A}_{0,3n}$, which are representatives of equivalence classes of boundary vertices. For instance, in Figure 1, these vertices are on the lowest level, from right to left. Add conditions on \tilde{h} so that it satisfies

$$\hat{h}(\hat{A}_{0,j}) \in \{(-2\delta, 2\delta - \xi, \xi) \mid 4\delta \le \xi \le 5\delta\}, \quad (1 \le j \le n)$$
(5.3a)

$$\widetilde{h}(\widetilde{A}_{0,j}) \in \{(-\delta, \delta - \xi, \xi) \mid 2\delta \le \xi \le 3\delta\}, \quad (n+1 \le j \le 2n)$$
(5.3b)

$$\widetilde{h}(\widetilde{A}_{0,j}) \in \{(0, -\xi, \xi) \mid 0 \le \xi \le \delta\}, \quad (2n+1 \le j \le 3n).$$
(5.3c)

When n = 5, for each $1 \le j \le 5$, $\tilde{A}_{0,j}$ should be mapped to the line segment connecting $(-2\delta, -3\delta, 5\delta)$ and $(-2\delta, -2\delta, 4\delta)$, which is in the boundary of $D_{\delta}^{(-4)}$; see Figure 4. The cases of $6 \le j \le 10$ and $11 \le j \le 15$ can be interpreted in similar fashion. NL saturation

Figure 7: Images of *h* repeated due to identification.

The last condition on \tilde{h} is

$$\widetilde{P}_1 \sim \widetilde{P}_2 \in V_{\widetilde{\Gamma}_n} \Rightarrow \widetilde{h}(\widetilde{P}_1) \sim \widetilde{h}(\widetilde{P}_2) \in B.$$
 (5.4)

For fixed $\delta \in \mathbb{N}$, $\tilde{h} : V_{\tilde{\Gamma}_n} \to B$ is a **Möbius honeycomb** of size δ if \tilde{h} satisfies (5.2), (5.3) and (5.4). In (5.3), write ξ_i as the *z*-coordinate of $\tilde{h}(\tilde{A}_{0,i})$. Define the **boundary condition** of \tilde{h} as (ξ_1, \dots, ξ_{3n}) and denote it as $\partial(\tilde{h})$. See Figure 6 and 7 for illustrations of Möbius honeycombs.

6 Saturation of Newell–Littlewood numbers

Our goal is to generalize Theorem 4 and Theorem 5 from Littlewood–Richardson coefficients to Newell–Littlewood numbers. As a result, we have Theorem 6 and Theorem 7, leading to Theorem 2.

Theorem 6 ([17, Theorem 3.1]). Let $\lambda, \mu, \nu \in \operatorname{Par}_n$ and $\delta \in \mathbb{N}$ such that $\delta \geq \lambda_1, \mu_1, \nu_1$. Then $N_{\lambda,\mu,\nu}$ counts the number of Möbius honeycombs \tilde{h} of size δ satisfying:

- $\partial(\tilde{h}) = (\lambda_1 + 4\delta, \dots, \lambda_n + 4\delta, \mu_1 + 2\delta, \dots, \mu_n + 2\delta, \nu_1, \dots, \nu_n)$, and
- $\forall \widetilde{W} \in V_{\widetilde{\Gamma}_{u'}}, \widetilde{h}(\widetilde{W}) \in B_{\mathbb{Z}}.$

Proof. By Theorem 4, $c^{\lambda}_{\beta,\gamma}c^{\mu}_{\gamma,\alpha}c^{\nu}_{\alpha,\beta}$ is the number of ordered triples $(h_{\lambda}, h_{\mu}, h_{\nu})$ of honey-combs satisfying:

- $\partial(h_{\lambda}) = (\lambda, \beta, \gamma), \, \partial(h_{\mu}) = (\mu, \gamma, \alpha), \, \partial(h_{\nu}) = (\nu, \alpha, \beta), \text{ and}$
- $\forall v \in V_{\Delta_n}, h_{\lambda}(v), h_{\mu}(v), h_{\nu}(v) \in B_{\mathbb{Z}}.$

If $c_{\beta,\gamma}^{\lambda}c_{\gamma,\alpha}^{\mu}c_{\alpha,\beta}^{\nu} \neq 0$, then $\delta \geq \alpha_1, \beta_1, \gamma_1$ follows from $\delta \geq \lambda_1, \mu_1, \nu_1$. As a result,

$$\forall v \in V_{\Delta_n}, \quad h_{\lambda}(v), h_{\mu}(v), h_{\nu}(v) \in D_{\delta}^{(0)}.$$
(6.1)

We have infinite copies of three different types of rhombi depicted in Figure 8. Each type of rhombi is arranged in *B* as follows.

Figure 8: Image of h_{λ} , h_{μ} , h_{ν} contained in $D_{\delta}^{(0)}$ when n = 5.

Figure 9: n = 3, $\delta = 3$, $\lambda = \mu = \nu = (3, 2, 1)$. Then $N_{\lambda, \mu, \nu} = 20$.

- h_{λ} rhombus: \cdots , $D_{\delta}^{(-4)}$, $D_{\delta}^{(-1)}$, $D_{\delta}^{(2)}$, $D_{\delta}^{(5)}$, \cdots
- h_{μ} rhombus: ..., $D_{\delta}^{(-5)}, D_{\delta}^{(-2)}, D_{\delta}^{(1)}, D_{\delta}^{(4)}, ...$
- h_{ν} rhombus: \cdots , $D_{\delta}^{(-6)}$, $D_{\delta}^{(-3)}$, $D_{\delta}^{(0)}$, $D_{\delta}^{(3)}$, \cdots

Gluing pieces along the line segments α^* , β^* and γ^* , we have \tilde{h} satisfying the given conditions. Therefore, the number of \tilde{h} satisfying the given conditions is greater than or equal to $N_{\lambda,\mu,\nu}$.

Conversely, by slicing \widetilde{B}_{δ} into $D_{\delta}^{(k)}$, we can reverse the process above, proving the other side of the inequality.

In short, $c^{\lambda}_{\beta,\gamma}c^{\nu}_{\gamma,\alpha}c^{\nu}_{\alpha,\beta}$ leads to gluing three honeycombs, which is a Möbius strip. Here, the boundary of Möbius strip is chosen as in Figure 7 so that gluing process can be reversed.

For instance, let n = 3 and $\lambda = \mu = \nu = (3, 2, 1)$. Since $\lambda_1 = \mu_1 = \nu_1 = 3$, take $\delta = 3$. In Figure 9, the number of Möbius honeycombs satisfying the conditions is 20. Therefore, $N_{\lambda,\mu,\nu} = 20$.

NL saturation

Theorem 7 ([17, Theorem 3.2]). Let $\delta \in \mathbb{N}$ and \tilde{h} be a Möbius honeycomb of size δ such that $\partial(\tilde{h}) = (\xi_1, \dots, \xi_{3n})$ in \mathbb{Z}^{3n} and $\sum_{1 \leq j \leq 3n} \xi_j \equiv 0 \pmod{2}$. Then there exists a Möbius honeycomb \tilde{g} of size δ with:

- $\partial(\widetilde{g}) = \partial(\widetilde{h})$, and
- $\forall \widetilde{W} \in V_{\widetilde{\Gamma}_n}, \widetilde{g}(\widetilde{W}) \in B_{\mathbb{Z}}.$

For the existence of \tilde{g} in Theorem 7, see [17, Section 4] for the construction of *largest lifts* of Möbius honeycombs and [17, Section 5] for readjustment. As a corollary, we have Theorem 2.

Proof of Theorem 2. Suppose that $N_{k\lambda,k\mu,k\nu} > 0$. Choose $\delta \in \mathbb{N}$ such that $\delta \ge \lambda_1, \mu_1, \nu_1$. By Theorem 6, there exists a Möbius honeycomb \tilde{h} of size $k\delta$ satisfying

$$\partial(\tilde{h}) = (k\lambda_1 + 4k\delta, \cdots, k\lambda_n + 4k\delta, k\mu_1 + 2k\delta, \cdots, k\mu_n + 2k\delta, k\nu_1, \cdots, k\nu_n).$$
(6.2)

Due to [17, Lemma A.7], $\frac{1}{k}\tilde{h}$ is a Möbius honeycomb of size δ and

$$\partial\left(\frac{1}{k}\widetilde{h}\right) = (\lambda_1 + 4\delta, \cdots, \lambda_n + 4\delta, \mu_1 + 2\delta, \cdots, \mu_n + 2\delta, \nu_1, \cdots, \nu_n).$$
(6.3)

In particular, $\partial \left(\frac{1}{k}\widetilde{h}\right) \in \mathbb{Z}^{3n}$ and the sum of its components is $|\lambda| + |\mu| + |\nu| + 6n\delta$, which is an even integer due to the condition $|\lambda| + |\mu| + |\nu| \equiv 0 \pmod{2}$. Apply Theorem 7 to find a Möbius honeycomb \widetilde{g} of size δ such that

$$\partial\left(\frac{1}{k}\widetilde{h}\right) = \partial(\widetilde{g}) \text{ and } \forall \widetilde{W} \in V_{\widetilde{\Gamma}_n}, \ \widetilde{g}(\widetilde{W}) \in B_{\mathbb{Z}}.$$
 (6.4)

Due to the existence of \tilde{g} , $N_{\lambda,\mu,\nu} > 0$ follows from Theorem 6.

Acknowledgements

We thank Shiliang Gao and Alexander Yong for helpful remarks on this preprint. We thank Jiyang Gao for pointing out the exceptional case of "white triangle of size 0.5".

References

- [1] P. Belkale and S. Kumar. "Eigencone, saturation and Horn problems for symplectic and odd orthogonal groups". J. Algebraic Geom. **19**.2 (2010), pp. 199–242. DOI.
- [2] H. Derksen and J. Weyman. "Semi-invariants of quivers and saturation for Littlewood-Richardson coefficients". J. Amer. Math. Soc. 13.3 (2000), pp. 467–479. DOI.

- [3] W. Fulton and J. Harris. *Representation Theory: A First Course*. Graduate Texts in Mathematics. Springer New York, 1991. DOI.
- [4] W. Fulton. "Eigenvalues, invariant factors, highest weights, and Schubert calculus". *Bull. Amer. Math. Soc.* (*N.S.*) **37**.3 (2000), pp. 209–249. DOI.
- [5] S. Gao, G. Orelowitz, N. Ressayre, and A. yong. "Newell-Littlewood numbers III: eigencones and GIT-semigroups". 2022. arXiv:2107.03152.
- [6] S. Gao, G. Orelowitz, and A. Yong. "Newell-Littlewood numbers". *Trans. Amer. Math. Soc.* **374**.9 (2021), pp. 6331–6366. DOI.
- [7] S. Gao, G. Orelowitz, and A. Yong. "Newell-Littlewood numbers II: extended Horn inequalities". *Algebr. Comb.* 5.6 (2022), pp. 1287–1297. DOI.
- [8] A. Horn. "Eigenvalues of sums of Hermitian matrices". *Pacific J. Math.* 12 (1962), pp. 225–241. Link.
- [9] M. Kapovich, S. Kumar, and J. J. Millson. "The eigencone and saturation for Spin(8)". Pure Appl. Math. Q. 5.2, Special Issue: In honor of Friedrich Hirzebruch. Part 1 (2009), pp. 755– 780. DOI.
- [10] M. Kapovich and J. J. Millson. "A path model for geodesics in Euclidean buildings and its applications to representation theory". *Groups Geom. Dyn.* 2.3 (2008), pp. 405–480. DOI.
- [11] M. Kapovich and J. J. Millson. "Structure of the tensor product semigroup". Asian J. Math. 10.3 (2006), pp. 493–539. DOI.
- [12] J. Kiers. "On the saturation conjecture for Spin(2n)". Exp. Math. 30.2 (2021), pp. 258–267.
 DOI.
- [13] A. A. Klyachko. "Stable bundles, representation theory and Hermitian operators". *Selecta Math.* (*N.S.*) **4**.3 (1998), pp. 419–445. DOI.
- [14] A. Knutson and T. Tao. "The honeycomb model of $GL_n(\mathbf{C})$ tensor products. I. Proof of the saturation conjecture". *J. Amer. Math. Soc.* **12**.4 (1999), pp. 1055–1090. DOI.
- [15] K. Koike. "On the decomposition of tensor products of the representations of the classical groups: by means of the universal characters". *Adv. Math.* **74**.1 (1989), pp. 57–86. DOI.
- [16] K. Koike and I. Terada. "Young-diagrammatic methods for the representation theory of the classical groups of type B_n , C_n , D_n ". J. Algebra **107**.2 (1987), pp. 466–511. **DOI**.
- [17] J. Min. "Proof of the Newell-Littlewood saturation conjecture". 2024. arXiv:2409.00233.
- [18] S. V. Sam. "Symmetric quivers, invariant theory, and saturation theorems for the classical groups". *Adv. Math.* **229**.2 (2012), pp. 1104–1135. DOI.