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Abstract. By inventing the notion of honeycombs, A. Knutson and T. Tao proved the
saturation conjecture for Littlewood–Richardson coefficients. The Newell–Littlewood
numbers are a generalization of the Littlewood–Richardson coefficients. By introduc-
ing honeycombs on a Möbius strip, we prove the saturation conjecture for Newell–
Littlewood numbers posed by S. Gao, G. Orelowitz and A. Yong.
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1 Introduction

1.1 Background

The irreducible polynomial representations Vλ of GLnC are indexed by the set of parti-
tions

Parn := {λ = (λ1, · · · , λn) ∈ Zn | λ1 ≥ · · · ≥ λn ≥ 0}; (1.1)

see, e.g., [3]. For each µ, ν ∈ Parn,

Vµ ⊗ Vν
∼=

⊕
λ∈Parn

V
⊕cλ

µ,ν
λ . (1.2)

The tensor product multiplicities cλ
µ,ν are the Littlewood–Richardson coefficients.

For each k ∈ N := {1, 2, 3, . . .} and λ ∈ Parn, let kλ := (kλ1, · · · , kλn).

Theorem 1 (Saturation of Littlewood–Richardson coefficients [14]). Let λ, µ, ν ∈ Parn. If
there exists k ∈ N such that ckλ

kµ,kν > 0, then cλ
µ,ν > 0.

A. Knutson and T. Tao proved Theorem 1 using honeycombs [14]. Honeycombs are
combinatorial objects used to count Littlewood–Richardson coefficients. This paper con-
cerns a generalization of Theorem 1 and its proof.
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The significance of the saturation theorem stems from Horn’s conjecture [8] which
gives a recursive description of linear inequalities, called Horn’s inequalities, on the eigen-
values of n × n Hermitian matrices A, B and A + B. Theorem 1 combined with earlier
work of A. A. Klyachko [13] proved Horn’s conjecture; see W. Fulton’s survey [4].

1.2 Main result

We generalize Theorem 1 and its proof to the Newell–Littlewood numbers, which are
defined, using the Littlewood–Richardson coefficients, as follows:

Nλ,µ,ν := ∑
α,β,γ∈Parn

cλ
β,γcµ

γ,αcν
α,β (λ, µ, ν ∈ Parn). (1.3)

For each λ ∈ Parn, let |λ| := λ1 + · · ·+ λn. If cλ
µ,ν ̸= 0, then |µ|+ |ν| = |λ|. According

to [6, Lemma 2.2],
|µ|+ |ν| = |λ| ⇒ Nλ,µ,ν = cλ

µ,ν. (1.4)

Thus, Newell–Littlewood numbers generalize Littlewood–Richardson coefficients.
In 2021, S. Gao, G. Orelowitz and A. Yong [6, Conjecture 5.5, 5.6] conjectured a

generalization of Theorem 1. In ibid., this conjecture was proved for the special cases that
λ = µ = ν [6, Theorem 4.1] and for n = 2 [6, Theorem 4.1]. In [5, Corollary 6.1], S. Gao,
G. Orelowitz, N. Ressayre, and A. Yong gave a computational proof of the cases when
n ≤ 5. Our main result is a complete proof of said conjecture from [6, Conjecture 1.1],
by modifying the proof of Theorem 1 in [14].

Theorem 2 (Newell–Littlewood saturation [17, Theorem 1.2]). Let λ, µ, ν ∈ Parn satisfying
|λ|+ |µ|+ |ν| ≡ 0 (mod 2). If there exists k ∈ N such that Nkλ,kµ,kν > 0, then Nλ,µ,ν > 0.

This follows from the technical center of this paper, Theorem 7, and is introduced at
the end. In view of (1.4), Theorem 2 immediately implies the saturation of Littlewood–
Richardson coefficients.

We now discuss consequences of proving Theorem 2. Analogous to the Horn’s in-
equalities, S. Gao, G. Orelowitz and A. Yong [7, Theorem 1.3] defined extended Horn
inequalities (which we will not restate here) and proved that they are necessary condi-
tions for Nλ,µ,ν > 0. Additionally, they conjectured the converse; our paper also confirms
this conjecture, due to [5, Corollary 8.5].

Corollary 1. [7, Conjecture 1.4] If (λ, µ, ν) ∈ (Parn)3 satisfies the extended Horn inequalities
and |λ|+ |µ|+ |ν| ≡ 0 (mod 2), then Nλ,µ,ν > 0.

Therefore, the extended Horn inequalities and |λ|+ |µ|+ |ν| ≡ 0 (mod 2) completely
determine the set

NL := {(λ, µ, ν) ∈ (Parn)
3 | Nλ,µ,ν > 0}. (1.5)
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Another application is to the eigenvalues of a family of complex matrices. Let

ParQ
n := {λ = (λ1, · · · , λn) ∈ Qn | λ1 ≥ · · · ≥ λn ≥ 0}, (1.6)

NL-sat(n) := {(λ, µ, ν) ∈ (ParQ
n )

3 | ∃k > 0, Nkλ,kµ,kν > 0}. (1.7)

In [5, Proposition 3.1], S. Gao, G. Orelowitz, N. Ressayre and A. Yong proved that
NL-sat(n) describes an analogue of the Horn problem for matrices in sp2nC ∩ u2nC.
Theorem 2 shows that NL-sat(n) can be simplified to NL.

Lastly, Theorem 2 is related to the conjecture suggested in [14, Section 7]. Given a
split reductive group G over C, it has a root system and its irreducible representation is
indexed by a dominant integral weight λ. Write the dual weight as λ∗ and the tensor
product multiplicities by cλ

µ,ν(G).

Theorem 3. [10, Theorem 1.1] Let G be a split reductive group over C. Then there exists
kG ∈ N with following property: if λ, µ, ν are dominant integral weights such that λ∗ + µ + ν

is in the root lattice,

∃k ∈ N such that ckλ
kµ,kν(G) > 0 ⇒ ckGλ

kGµ,kGν(G) > 0. (1.8)

Conjecture 1. [11, Conjecture 1.4] If the root system of G is simply laced, then kG can be
chosen as 1.

In particular, we are interested in the cases when G = SO2n+1C, Sp2nC, SO2nC. In
[10, Theorem 1.1], M. Kapovich and J. J. Millson proved that kG = 4. Additionally,
P. Belkale and S. Kumar [1, Theorem 6, 7] proved that kG = 2 if G is SO2n+1C or Sp2nC.
S. V. Sam [18, Theorem 1.1] proved that kG = 2 when G = SO2n+1C, Sp2nC, SO2nC, by
using quiver representations, extending the proof of Theorem 1 given by H. Derksen and
J. Weyman [2].

The possibility that kG = 1 when G = SO2nC remains open. For recent work con-
cerning SO2nC and Spin2nC, see, e.g., [9, 12].

Let G = SO2n+1C, Sp2nC, SO2nC. For the classical Lie groups, irreducible representa-
tions are indexed by the set of partitions Parn; see, e.g., [3, 16]. l(λ) denotes the number
of non-zero components of λ = (λ1, · · · , λn). According to [15, Theorem 3.1],

l(µ) + l(ν) ≤ n ⇒ Nλ,µ,ν = cλ
µ,ν(G). (1.9)

The condition (1.9) imposed on µ, ν ∈ Parn is called the stable range. The next result is an
immediate consequence of Theorem 2:

Corollary 2. Let G = SO2n+1C, Sp2nC, SO2nC. Suppose λ, µ, ν ∈ Parn and l(µ) + l(ν) ≤ n.
If there exists k ∈ N such that ckλ

kµ,kν(G) > 0, then cλ
µ,ν(G) > 0.

Thus, kG from Conjecture 1 may be taken as 1 for G = SO2n+1C, Sp2nC, SO2nC if
(µ, ν) is in the stable range.
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2 Saturation of Littlewood–Richardson coeffcients

In this paper, B is fixed to be the two-dimensional real vector space

B := {(x, y, z) ∈ R3 | x + y + z = 0}. (2.1)

Let the lattice points of B be

BZ := {(x, y, z) ∈ Z3 | x + y + z = 0}. (2.2)

A. Knutson and T. Tao constructed a directed graph ∆n; see [14, Figure 3]. Write V∆n

as the set of vertices of ∆n. If h : V∆n → B satisfies conditions to be a configuration, h is
called a honeycomb; see [14, Section 2.1] for details. Also, see [14, Section 2.2] to check
how they read off three partitions λ, µ, ν ∈ Parn from a honeycomb h, which is boundary
condition of h denoted by ∂(h).

Theorem 4 ([14, Theorem 4]). Let λ, µ, ν ∈ Parn. Then cλ
µ,ν counts the number of honeycombs

h satisfying:

• ∂(h) = (λ, µ, ν), and

• ∀v ∈ V∆n , h(v) ∈ BZ.

Theorem 5 ([14, Theorem 2]). For any honeycomb h with ∂(h) ∈ Z3n, there exists a honeycomb
g such that:

• ∂(g) = ∂(h), and

• ∀v ∈ V∆n , g(v) ∈ BZ.

See [14, Section 5] to check the construction of honeycomb g in Theorem 5, named as
largest lift. As a corollary, we have Theorem 1.

Proof of Theorem 1. Suppose λ, µ, ν ∈ Parn and k ∈ N such that ckλ
kµ,kν > 0. By Theorem 4,

there exists a honeycomb h such that

∂(h) = (kλ, kµ, kν). (2.3)

Since k > 0, 1
k h is also a honeycomb; for instance, see [17, Lemma 2.1]. Then

∂

(
1
k

h
)
= (λ, µ, ν). (2.4)

Apply Theorem 5 to find a honeycomb g such that ∂(g) = ∂(1
k h) and g(v) ∈ BZ for all

v ∈ V∆n . By Theorem 4 once more, cλ
µ,ν > 0.
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Figure 1: The directed graph Γ̃5.

Figure 2: Identify Γ̃5 to have Γ5.

3 Graphs embedded in Möbius strips

Define a directed graph Γ̃n of which vertices and edges are

VΓ̃n
= {Ãi,j | i, j ∈ Z, 0 ≤ i ≤ n} ∪ {B̃i,j | i, j ∈ Z, 0 ≤ i ≤ n}, (3.1)

EΓ̃n
= {(Ãi,j, B̃i,j) | i, j ∈ Z, 0 ≤ i ≤ n} (3.2)

∪ {(Ãi,j, B̃i−1,j) | i, j ∈ Z, 1 ≤ i ≤ n} (3.3)

∪ {(Ãi,j, B̃i−1,j−1) | i, j ∈ Z, 1 ≤ i ≤ n}. (3.4)

Here, we denote a directed edge from U to W as (U, W). As in Figure 1, Γ̃n is an infinite
strip composed of (n − 1)-number of layers of hexagons. There are vertices connected
to exactly one edge in Figure 1, namely Ã0,j, B̃n,j for j ∈ Z. Such vertices of Γ̃n are the
boundary vertices in Γ̃n.

We now define a graph Γn, which will be a “quotient graph” of Γ̃n. Intuitively, “slice”
Γ̃n into pieces by using trapezoids as in Figure 2. We want to identify all trapezoids as
one, which corresponds to the quotient graph Γn. For instance, four bold vertices of Γ̃5
in Figure 2 are identified as a vertex of Γ5.
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Figure 3: The graph Γ5.

To be precise, identify the vertices of Γ̃n using the equivalence relation ∼ defined by

Ãi,j ∼ B̃−i+n,−i+j+2n, B̃i,j ∼ Ã−i+n,−i+j+2n. (i, j ∈ Z, 0 ≤ i ≤ n). (3.5)

The vertices of Γn are representatives of the equivalence classes [P̃] for each P̃ ∈ VΓ̃n
;

we have the quotient map induced by the equivalence relation:

pv : VΓ̃n
→ VΓn , P̃ 7→ [P̃]. (3.6)

Next, we define an equivalence relation ≡ on the edges in Γ̃n. Write a directed edge
ẽ = (tail(ẽ), head(ẽ)). For each ẽ = (Ã, B̃) and ẽ′ = (Ã′, B̃′), set

ẽ ≡ ẽ′ ⇐⇒ Ã ∼ Ã′, B̃ ∼ B̃′ or Ã ∼ B̃′, B̃ ∼ Ã′. (3.7)

The edges of Γn are representatives of equivalence classes [ẽ] for each ẽ ∈ EΓ̃n
. Here, [ẽ]

is a non-directed edge connecting pv(tail(ẽ)) and pv(head(ẽ)). We denote a non-directed
edge e = {A, B} if e connects vertices A and B. The quotient map is defined by

pe : EΓ̃n
→ EΓn , ẽ 7→ [ẽ]. (3.8)

From (3.5), Ãi,j ∼ Ãi,j+3n and B̃i,j ∼ B̃i,j+3n for all indices. Therefore, there are
3n(n + 1)-many equivalence classes in VΓ̃n

, each represented by Ãi,j for 0 ≤ i ≤ n, 1 ≤
j ≤ 3n. Set Ai,j := pv(Ãi,j) for 0 ≤ i ≤ n, 1 ≤ j ≤ 3n.

In summary, Γn is a finite graph embedded in a Möbius strip. For instance, con-
sider Γ5 in Figure 3. Each of the vertices A1,1, A2,1, A3,1, A4,1, A5,1 are connected to
A5,10, A4,9, A3,8, A2,7, A1,6, respectively.



NL saturation 7

Figure 4: The infinite strip B̃δ contained in B.

Figure 5: The Möbius strip Bδ and its covering space B̃δ.

4 Covering space of Möbius strips

Fix δ ∈ N. For each k ∈ Z, define subsets of B

D(2k)
δ := {(x, y, z) ∈ B | (k − 1)δ ≤ x ≤ kδ, (k − 1)δ ≤ y ≤ kδ}, (4.1)

D(2k+1)
δ := {(x, y, z) ∈ B | (k − 1)δ ≤ x ≤ kδ, kδ ≤ y ≤ (k + 1)δ}, (4.2)

B̃δ :=
⋃

k∈Z

D(k)
δ . (4.3)

B̃δ is depicted in Figure 4, as an infinite zigzag strip. Here, D(k)
δ is a rhombus. In Figure 4,

there are six rhombi, which are D(0)
δ , D(−1)

δ , · · · , · · · D(−5)
δ , from left to right.

We want to define a quotient space Bδ of B̃δ. Intuitively, we “slice” B̃δ into pieces
and identify them into one to construct Bδ. See Figure 5, where the four bold points are
identified as one element in Bδ.

To write a formal definition, define an equivalence relation on B, namely

(x, y, z) ∼ (y − 2δ, x − δ, z + 3δ). (4.4)

Denote the quotient map by q : B → B/ ∼. Define Bδ := q(B̃δ). B̃δ is an infinite strip
whereas Bδ is a Möbius strip; see Figure 5.
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Figure 6: Image of h̃ contained in B̃δ when n = 5.

By the equivalence relation on B, D(k)
δ is identified to D(k−3)

δ for all k ∈ Z. For

instance, D(0)
δ and D(−3)

δ , D(−1)
δ and D(−4)

δ , D(−2)
δ and D(−5)

δ are identified by the map q
in Figure 4.

5 Möbius honeycombs

Define a direction map d : EΓ̃n
→ B by mapping

(Ãi,j, B̃i−1,j−1) 7→ (0,−1, 1), (Ãi,j, B̃i−1,j) 7→ (1, 0,−1), (Ãi,j, B̃i,j) 7→ (−1, 1, 0). (5.1)

As in Figure 1, d maps each southeast edges to (0,−1, 1), southwest edges to (1, 0,−1),
and north edges to (−1, 1, 0). Define a function h̃ : VΓ̃n

→ B satisfying

h̃(head(ẽ))− h̃(tail(ẽ)) ∈ {a · v ∈ B | a ≥ 0, v = d(ẽ)}, ẽ ∈ EΓ̃n
. (5.2)

Consider Ã0,1, Ã0,2, · · · , Ã0,3n, which are representatives of equivalence classes of
boundary vertices. For instance, in Figure 1, these vertices are on the lowest level, from
right to left. Add conditions on h̃ so that it satisfies

h̃(Ã0,j) ∈ {(−2δ, 2δ − ξ, ξ) | 4δ ≤ ξ ≤ 5δ}, (1 ≤ j ≤ n) (5.3a)

h̃(Ã0,j) ∈ {(−δ, δ − ξ, ξ) | 2δ ≤ ξ ≤ 3δ}, (n + 1 ≤ j ≤ 2n) (5.3b)

h̃(Ã0,j) ∈ {(0,−ξ, ξ) | 0 ≤ ξ ≤ δ}, (2n + 1 ≤ j ≤ 3n). (5.3c)

When n = 5, for each 1 ≤ j ≤ 5, Ã0,j should be mapped to the line segment connect-

ing (−2δ,−3δ, 5δ) and (−2δ,−2δ, 4δ), which is in the boundary of D(−4)
δ ; see Figure 4.

The cases of 6 ≤ j ≤ 10 and 11 ≤ j ≤ 15 can be interpreted in similar fashion.
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Figure 7: Images of h̃ repeated due to identification.

The last condition on h̃ is

P̃1 ∼ P̃2 ∈ VΓ̃n
⇒ h̃(P̃1) ∼ h̃(P̃2) ∈ B. (5.4)

For fixed δ ∈ N, h̃ : VΓ̃n
→ B is a Möbius honeycomb of size δ if h̃ satisfies (5.2), (5.3)

and (5.4). In (5.3), write ξi as the z-coordinate of h̃(Ã0,i). Define the boundary condition
of h̃ as (ξ1, · · · , ξ3n) and denote it as ∂(h̃). See Figure 6 and 7 for illustrations of Möbius
honeycombs.

6 Saturation of Newell–Littlewood numbers

Our goal is to generalize Theorem 4 and Theorem 5 from Littlewood–Richardson coeffi-
cients to Newell–Littlewood numbers. As a result, we have Theorem 6 and Theorem 7,
leading to Theorem 2.

Theorem 6 ([17, Theorem 3.1]). Let λ, µ, ν ∈ Parn and δ ∈ N such that δ ≥ λ1, µ1, ν1. Then
Nλ,µ,ν counts the number of Möbius honeycombs h̃ of size δ satisfying:

• ∂(h̃) = (λ1 + 4δ, · · · , λn + 4δ, µ1 + 2δ, · · · , µn + 2δ, ν1, · · · , νn), and

• ∀W̃ ∈ VΓ̃n
, h̃(W̃) ∈ BZ.

Proof. By Theorem 4, cλ
β,γcµ

γ,αcν
α,β is the number of ordered triples (hλ, hµ, hν) of honey-

combs satisfying:

• ∂(hλ) = (λ, β, γ), ∂(hµ) = (µ, γ, α), ∂(hν) = (ν, α, β), and

• ∀v ∈ V∆n , hλ(v), hµ(v), hν(v) ∈ BZ.

If cλ
β,γcµ

γ,αcν
α,β ̸= 0, then δ ≥ α1, β1, γ1 follows from δ ≥ λ1, µ1, ν1. As a result,

∀v ∈ V∆n , hλ(v), hµ(v), hν(v) ∈ D(0)
δ . (6.1)

We have infinite copies of three different types of rhombi depicted in Figure 8. Each
type of rhombi is arranged in B as follows.
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Figure 8: Image of hλ, hµ, hν contained in D(0)
δ when n = 5.

Figure 9: n = 3, δ = 3, λ = µ = ν = (3, 2, 1). Then Nλ,µ,ν = 20.

• hλ rhombus: · · · , D(−4)
δ , D(−1)

δ , D(2)
δ , D(5)

δ , · · ·

• hµ rhombus: · · · , D(−5)
δ , D(−2)

δ , D(1)
δ , D(4)

δ , · · ·

• hν rhombus: · · · , D(−6)
δ , D(−3)

δ , D(0)
δ , D(3)

δ , · · ·

Gluing pieces along the line segments α∗, β∗ and γ∗, we have h̃ satisfying the given
conditions. Therefore, the number of h̃ satisfying the given conditions is greater than or
equal to Nλ,µ,ν.

Conversely, by slicing B̃δ into D(k)
δ , we can reverse the process above, proving the

other side of the inequality.

In short, cλ
β,γcν

γ,αcν
α,β leads to gluing three honeycombs, which is a Möbius strip. Here,

the boundary of Möbius strip is chosen as in Figure 7 so that gluing process can be
reversed.

For instance, let n = 3 and λ = µ = ν = (3, 2, 1). Since λ1 = µ1 = ν1 = 3, take
δ = 3. In Figure 9, the number of Möbius honeycombs satisfying the conditions is 20.
Therefore, Nλ,µ,ν = 20.
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Theorem 7 ([17, Theorem 3.2]). Let δ ∈ N and h̃ be a Möbius honeycomb of size δ such
that ∂(h̃) = (ξ1, · · · , ξ3n) in Z3n and ∑1≤j≤3n ξ j ≡ 0 (mod 2). Then there exists a Möbius
honeycomb g̃ of size δ with:

• ∂(g̃) = ∂(h̃), and

• ∀W̃ ∈ VΓ̃n
, g̃(W̃) ∈ BZ.

For the existence of g̃ in Theorem 7, see [17, Section 4] for the construction of largest
lifts of Möbius honeycombs and [17, Section 5] for readjustment. As a corollary, we have
Theorem 2.

Proof of Theorem 2. Suppose that Nkλ,kµ,kν > 0. Choose δ ∈ N such that δ ≥ λ1, µ1, ν1. By
Theorem 6, there exists a Möbius honeycomb h̃ of size kδ satisfying

∂(h̃) = (kλ1 + 4kδ, · · · , kλn + 4kδ, kµ1 + 2kδ, · · · , kµn + 2kδ, kν1, · · · , kνn). (6.2)

Due to [17, Lemma A.7], 1
k h̃ is a Möbius honeycomb of size δ and

∂

(
1
k

h̃
)
= (λ1 + 4δ, · · · , λn + 4δ, µ1 + 2δ, · · · , µn + 2δ, ν1, · · · , νn). (6.3)

In particular, ∂
(

1
k h̃
)
∈ Z3n and the sum of its components is |λ|+ |µ|+ |ν|+ 6nδ, which

is an even integer due to the condition |λ|+ |µ|+ |ν| ≡ 0 (mod 2). Apply Theorem 7 to
find a Möbius honeycomb g̃ of size δ such that

∂

(
1
k

h̃
)
= ∂(g̃) and ∀W̃ ∈ VΓ̃n

, g̃(W̃) ∈ BZ. (6.4)

Due to the existence of g̃, Nλ,µ,ν > 0 follows from Theorem 6.
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