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On some Grothendieck expansions
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Abstract. The complete flag variety admits a natural action by both the orthogonal
group and the symplectic group. Wyser and Yong defined orthogonal Grothendieck
polynomials GO

z and symplectic Grothendieck polynomials GSp
z as the K-theory classes

of the corresponding orbit closures. There is an explicit formula to expand GSp
z as

a nonnegative sum of Grothendieck polynomials G(β), which represent the K-theory
classes of Schubert varieties. Although the constructions of GSp

z and GO
z are similar,

finding the G(β)-expansion of GO
z or even computing GO

z is much harder. When z is
vexillary, it has been shown that GO

z has a nonnegative G(β)-expansion, but the G(β)-
coefficients are mostly unknown. This paper derives several new formulas for GO

z and
its G(β)-expansion when z is vexillary. In particular, we prove that the latter expansion
has a nontrivial stability property when z(1) = 1.

Keywords: K-theory, Grothendieck polynomials, matrix Schubert varieties

1 Introduction

This article is concerned with combinatorial formulas for expansions of three different
families of Grothendieck polynomials related to K-theory classes of Schubert varieties. We
first briefly introduce these polynomials in the context of matrix Schubert varieties. We
will then discuss the central problem of interest and some of our partial solutions.

1.1 Grothendieck polynomials

Let n be a positive integer. Write Sn for the group of permutations of the integers Z

with support in [n] := {1, . . . , n}. For w ∈ Sn, the matrix Schubert variety MXw is the set
of complex n × n matrices M ∈ Matn×n whose upper i × j submatrices M[i][j] all satisfy
rank(M[i][j]) ≤ |{t ∈ [i] : w(t) ≤ j}|. Results in [8] identify an equivariant K-theory class

[MXw] ∈ Z[a±1
1 , a±1

2 , . . . , a±1
n ] ∼= KT(Matn×n).
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The Grothendieck polynomial G(β)
w introduced in [4] can be formed from [MXw] by making

the variable substitutions ai 7→ 1 + βxi for all i ∈ [n] and dividing by (−β)codim(MXw).
This function always belongs to Z≥0[β][x1, x2, . . . , xn] and if w ∈ S∞ :=

⋃
n≥1 Sn then the

value of G(β)
w does not depend on the choice of n with w ∈ Sn. Moreover, it is well-known

[12, Corollary 3.3] that the family {G(β)
w : w ∈ S∞} is a Z[β]-basis for Z[β][x1, x2, . . . ].

1.2 Orthogonal Grothendieck polynomials

Let In = {z ∈ Sn : z = z−1} and I∞ = {z ∈ S∞ : z = z−1}. For z ∈ In define

MatOn×n =
{

X ∈ Matn×n : X⊤ = X
}

and MXO
z = MXz ∩MatOn×n.

Results in [11] identify an equivariant K-theory class

[MXO
z ] ∈ Z[a±1

1 , a±1
2 , . . . , a±1

n ] ∼= KT(MatOn×n).

The orthogonal Grothendieck polynomial GO
z introduced in [15] can be formed from [MXO

z ]

by substituting ai 7→ 1+ βxi for all i ∈ [n] and dividing by (−β)codim(MXO
z ). As with G(β)

w ,
this function always belongs to Z≥0[β][x1, x2, . . . , xn] and does not depend on the choice
of n with z ∈ In.

When z ∈ I∞ is vexillary in the sense of being 2143-avoiding, it is known [14, Propo-
sition 3.29] that GO

z ∈ Z≥0[β]-span{G(β)
w : w ∈ S∞}. It is an open problem to describe the

G(β)-expansion of GO
z explicitly. This problem is the focus of this article.

1.3 Symplectic Grothendieck polynomials

It is instructive to contrast this open problem with what is known about the formally
similar symplectic Grothendieck polynomials. Let Ifpfn be the set of fixed-point-free involu-
tions of Z sending i 7→ i − 1 for all even integers i /∈ [n]. For z ∈ Ifpfn define

MatSpn×n =
{

X ∈ Matn×n : X⊤ = −X
}

and MXSp
z = MXz ∩MatSpn×n.

Just as in the previous two cases, there is an equivariant K-theory class [11]

[MXSp
z ] ∈ Z[a±1

1 , a±1
2 , . . . , a±1

n ] ∼= KT(MatSpn×n).

The symplectic Grothendieck polynomial GSp
z introduced in [15] can be formed from [MXSp

z ]

by substituting ai 7→ 1 + βxi for all i ∈ [n] and dividing by (−β)codim(MXSp
z ). Once again

GSp
z ∈ Z≥0[β][x1, x2, . . . ] and if z ∈ Ifpf∞ :=

⋃
n≥1 Ifpfn then GSp

z does not depend on the
choice of n with z ∈ Ifpfn .
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Like GO
z (at least for vexillary z), there is a positive G(β)-expansion of each GSp

z . Unlike
GO

z , this expansion can be explicitly computed in the following way.
Write wi = w(i) for w ∈ S∞ and i ∈ Z. Let ≈ be the transitive closure of the relation

on S∞ that has v−1 ≈ w−1 if there is an even index i ∈ 2Z≥0 and integers a < b < c < d
such that vi+1vi+2vi+3vi+4 and wi+1wi+2wi+3wi+4 are both in {adbc, bcad, bdac}, while
vj = wj for all j /∈ {i + 1, i + 2, i + 3, i + 4}. For example, in one-line notation, we have

(152634 )−1 ≈ (153624 )−1 ≈ (153426 )−1 ≈ (341526 )−1 ≈ (351426 )−1.

Given z ∈ Ifpf∞ let a1 < a2 < a3 < . . . be the integers with 0 < ai < bi := z(ai)
and define αfpf(z) to be inverse of the one-line permutation a1b1a2b2a3b3 · · · . Then [11,
Theorem 3.12]

GSp
z = ∑w≈αfpf (z) βℓ(w)−ℓ(αfpf (z))G(β)

w .

1.4 Grothendieck expansions

For each z ∈ I∞ there exists a orthogonal Grothendieck coefficient function GCO
z : S∞ → Z

such that GO
z = ∑w∈S∞ GCO

z (w) · βℓ(w)−ℓinv(z) · G(β)
w . The support supp(GCO

z ) := {w ∈
S∞ : GCO

z (w) ̸= 0} must be a finite set of permutations. As noted earlier, when z ∈ I∞ is
vexillary, it is known that GCO

z : S∞ → Z≥0 takes all nonnegative values, but otherwise
little is known about this function in the literature to date.

We mention that if one sets β = 0 then G(β)
w , GO

y , and GSp
z turn into the (involution)

Schubert polynomials Sw, Ŝy, and Ŝfpf
z studied in [6, 10], for which the relevant expan-

sions are all much simpler: both Ŝy and Ŝfpf
z are equal to a constant (which is 1 in the

second case) times a multiplicity-free sum of Sw’s. Moreover, the terms that appear are
predicted by a general formula of Brion [1] and are described combinatorially in [3].

This work contains the first explicit results about the coefficient functions GCO
z . Our

main theorems can be summarized as follows. In Sections 3 and 4 we derive an exact,
though not obviously positive formula for GCO

z when z is any quasi-dominant involution
(see Theorem 4.3). Then we explain a new formula for GO

z when z is any vexillary
involution, which shows that GCO

z is shift invariant whenever z(1) = 1 (see Theorems 5.4
and 5.5). These results lead to a new proof of the existence of stable limits of orthogonal
Grothendieck polynomials. Finally, we compute GCO

z in some special cases in Section 6.

2 Product formulas and divided difference operators

So far we have not discussed any method of computing G(β)
w or GO

z as polynomials, let
alone the expansion of the latter in terms of the former. This section quickly reviews an
algebraic method to compute G(β)

w , which can be adapted to GO
z when z is vexillary.
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The group S∞ acts on Z[β][x1, x2, . . . ] by permuting the xi variables. For each i ∈ Z>0

the divided difference operators ∂i and ∂
(β)
i act on Z[β][x1, x2, . . . ] by the formulas

∂i f = f−si f
xi−xi+1

and ∂
(β)
i f = ∂i

(
(1 + βxi+1) f

)
= −β f + (1 + βxi)∂i f . (2.1)

These operators satisfy the Coxeter braid relations for S∞ along with ∂
(β)
i ∂

(β)
i = −β∂

(β)
i .

The Rothe diagram of w ∈ S∞ is the set D(w) of positive integer pairs (i, j) satisfying
both i < w−1(j) and j < w(i). A permutation w ∈ S∞ is dominant if there is a partition λ

such that D(w) coincides with the Young diagram Dλ := {(i, j) : 1 ≤ j ≤ λi}. In this case
we say that w is of shape λ.

There is a unique dominant w ∈ S∞ of each partition shape λ, and for this permu-
tation G(β)

w = ∏(i,j)∈Dλ
xi [4]. Moreover, for any w ∈ S∞, one has ∂

(β)
i G(β)

w = G(β)
wsi if

i ∈ DesR(w) := {i ∈ Z : w(i) > w(i + 1)} [4]. These formulas determine G(β)
w for all w.

Suppose z ∈ I∞ is dominant of shape λ. Then z is also vexillary and λ = λ⊤ is
necessarily a symmetric partition since D(z) = D(z−1) = D(z)⊤, and one has i < z(i) if
and only if (i, i) ∈ Dλ. For dominant involutions, one again has a product formula

GO
z = ∏(i,j)∈Dλ

i≤j
xi ⊕ xj where x ⊕ y := x + y + βxy [11, Theorem 3.8]. (2.2)

Moreover, if z ∈ I∞ is vexillary and i ∈ DesR(z) is such that sizsi ̸= z is also vexillary, then
the formula ∂

(β)
i GO

z = GO
sizsi

also holds [11, Proposition 3.23]. This recurrence, combined
with the product formula (2.2) can be used to calculate GO

z for any vexillary z ∈ I∞.
For involutions z ∈ I∞ that are not vexillary, no simple algebraic formula is known

for computing GO
z . In particular, these polynomials cannot be expressed using ∂

(β)
i ’s. We

mention that by contrast, the polynomials GSp
z are completely determined by a product

formula and a divided difference recurrence; see [11, Theorem 3.8 and Proposition 3.11].

3 Involution Grothendieck polynomials

There is another family of polynomials indexed by involutions z ∈ I∞ that share several
favorable algebraic properties with GSp

z , and will turn out to be closely related to GO
z .

Write ℓ : S∞ → Z≥0 for the usual Coxeter length function counting the number of
inversions of a permutation. The Demazure product is the unique associative operation
◦ : S∞ × S∞ → S∞ with u ◦ v = uv if and only if ℓ(uv) = ℓ(u) + ℓ(v), and with si ◦ si = si
for simple transpositions si := (i, i + 1) ∈ S∞. The formula w 7→ w−1 ◦ w is a surjective
map S∞ → I∞, so the set Binv(z) := {w ∈ S∞ : w−1 ◦ w = z} is nonempty for z ∈ I∞.
Define the involution Grothendieck polynomial of z to be

Ĝz := ∑w∈Binv(z) βℓ(w)−ℓinv(z)G(β)
w where ℓinv(z) := min{ℓ(w) : w ∈ Binv(z)}. (3.1)
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The set Binv(z) was extensively studied in [5] and can be generated using a certain
equivalence relation. Let ∼ be the transitive closure of the relation on S∞ that has v−1 ∼
w−1 if there is an index i ∈ Z>0 and integers a < b < c such that vivi+1vi+2 and
wiwi+1wi+2 are both in {cba, cab, bca}, while vj = wj for all j /∈ {i, i + 1, i + 2}.

For z ∈ I∞ let a1 < a2 < . . . be the positive integers with ai ≤ bi := z(ai). Define
αinv(z) to be inverse of the permutation whose one-line notation is formed by removing
the repeated letters from b1a1b2a2b3a3 · · · . Then by [5, Section 6.1] and [6, Section 3] we
have

Binv(z) = {w ∈ S∞ : w ∼ αinv(z)} and ℓinv(z) = ℓ(αinv(z)). (3.2)

For example, Binv(45312) = {αinv = 24513, 25413, 25314, 35214, 35124}. The poly-
nomials Ĝz were previously considered in [13, Section 4], but the following theorem is
new.

Theorem 3.1. Suppose z ∈ I∞. Then for any i ∈ Z>0 it holds that

∂
(β)
i Ĝz =


Ĝzsi if i ∈ DesR(z) and z(i) = i + 1
Ĝsizsi if i ∈ DesR(z) and z(i) ̸= i + 1
−βĜz if i /∈ DesR(z).

Moreover, if z is dominant of shape λ then Ĝz = ∏
(i,j)∈Dλ

i=j

xi ∏
(i,j)∈Dλ

i<j

xi ⊕ xj.

Example 3.2. If z = 45312 = (1, 4)(2, 5) ∈ I∞ then z is dominant of shape (3, 3, 2) and

Ĝz = G(β)
24513 + βG(β)

25413 + G(β)
25314 + βG(β)

35214 + G(β)
35124 = x1x2(x1 ⊕ x2)(x1 ⊕ x3)(x2 ⊕ x3).

4 Grothendieck expansions in the quasi-dominant case

We now explain how to leverage the G(β)-expansion of Ĝz to get information about GO
z .

Let Ivex∞ be the set of vexillary (i.e., 2143-avoiding) involutions in I∞. An element z ∈ Ivex∞
is quasi-dominant if i − 1 < z(i − 1) whenever 1 < i < z(i). Every dominant involution is
quasi-dominant. Define k(z) := min{i ∈ Z≥0 : (j, j) /∈ D(z) for all j > i} for z ∈ I∞.

Theorem 4.1. If z ∈ Ivex∞ is quasi-dominant with k = k(z) then GO
z = Ĝz ∏k

i=1(2 + βxi).

We can turn this theorem into an exact, though not manifestly positive, formula for
the coefficient function GCO

z : S∞ → Z≥0 with GO
z = ∑w∈S∞ GCO

z (w) · βℓ(w)−ℓinv(z) · G(β)
w .

Following the notation in [9], we write v
(a,b)−−→ w for v, w ∈ S∞ and positive integers

a < b to indicate that w = v(a, b) and ℓ(w) = ℓ(v) + 1, meaning that w covers v in the
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Bruhat order on S∞. The length condition holds precisely when v(a) < v(b) and no i
with a < i < b has v(a) < v(i) < v(b). Fix a positive integer k. The k-Bruhat order on S∞

is transitive closure of the relation with v <k w whenever v
(a,b)−−→ w and a ≤ k < b.

Definition 4.2. An unmarked k-Pieri chain between from v ∈ S∞ to w ∈ S∞ is a saturated

chain in k-Bruhat order of the form v = v0
(a1,b1)−−−→ v1

(a2,b2)−−−→ · · ·
(aq,bq)−−−→ vq = w satisfying

b1 ≥ b2 ≥ · · · ≥ bq and bi > bi+1 if aj = ai > ai+1 for some 1 ≤ j < i < q.

We write v
c(k)−−→ w if such a chain exists. An essential and non-obvious property of

this definition is that for any permutations v, w ∈ S∞ at most one unmarked k-Pieri chain
exists from v to w. See [9, Theorem 2.2], which also explains how to construct this chain.

Suppose v = v0
(a1,b1)−−−→ v1

(a2,b2)−−−→ · · ·
(aq,bq)−−−→ vq = w is the unique unmarked k-Pieri

chain from v ∈ S∞ to w ∈ S∞. Define Fk(v, w) to be the number of indices i ∈ [q] such
that either b1 = · · · = bi and a1 > · · · > ai, or bi = bi+1 and ai > ai+1. Also let Pk(v, w)
be the number of indices i ∈ [q] such that aj = ai for some 1 ≤ j < i.

Now, for v = w set ϵk(v, w) = 1 and ρk(v, w) = 2k, and for v
c(k)−−→ w ̸= v define

ϵk(v, w) = (−1)1+Fk(v,w) and ρk(v, w) = 2k+ℓ(v)−ℓ(w)+Pk(v,w). (4.1)

Set ϵk(v, w) = ρk(v, w) = 0 when we do not have v
c(k)−−→ w.

Theorem 4.3. Suppose z ∈ Ivex∞ is quasi-dominant and k = k(z). Then

GCO
z (w) = ∑v∈Binv(z) ϵk(v, w)ρk(v, w) ≥ 0 for all w ∈ S∞.

Fix 1 ̸= z ∈ I∞, define k = k(z) = min{i ∈ Z≥0 : (j, j) /∈ D(z) for all j > i} as above,
and let j = j(z) be the largest integer with z(i) = i for all 1 ≤ i ≤ j. For v, w ∈ S∞

we write v
[z]−→ w if there exists an unmarked k-Pieri chain as in Definition 4.2 that has

j ≤ ai ≤ k < bi and also either ai < z(ai) or z(bi) < bi for each i ∈ [q]. Finally, let

B+
inv(z) :=

{
w ∈ S∞ : v

[z]−→ w for some v ∈ Binv(z)
}

. (4.2)

Also define B+
inv(1) = Binv(1) = {1}. Based on computations and the preceding theorem,

the set B+
inv(z) appears to give a good approximation for supp(GCO

z ). In particular:

Corollary 4.4. If z ∈ Ivex∞ is quasi-dominant and k = k(z) then

supp(GCO
z ) ⊆ B+

inv(z) =
{

w ∈ S∞ : v
c(k)−−→ w for some v ∈ Binv(z)

}
.

We have used a computer to verify the following for all vexillary z ∈ I11:
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Conjecture 4.5. If z ∈ Ivex∞ then Binv(z) ⊆ supp(GCO
z ) ⊆ B+

inv(z).

Both containments in this conjecture can be strict, but in some notable cases we
actually have equality supp(GCO

z ) = B+
inv(z). Below are some relevant examples.

Example 4.6. Suppose t = tn := (1, n) ∈ In is a transposition. Then t is dominant of
shape λ = (n − 1, 1n−2) and Binv(t) consists of the permutations in Sn whose inverses in
one-line notation are the shuffles of n1 and 234 · · · (n− 1) with at most one letter between
n and 1. The larger set B+

inv(t) consists of the permutations in Sn+1 whose inverses in
one-line notation are the shuffles of the words n1 and 234 · · · (n − 1)(n + 1) with at most
two letters between n and 1, excluding the inverse of 234 · · · (n − 1)(n + 1)n1. In this
case it can be proved that supp(GCO

t ) = B+
inv(t).

It is useful to represent B+
inv(z) as the following directed graph. For v, w ∈ S∞ we

write v ⋖L w when ℓ(w) = ℓ(v) + 1 and w = siv for some i ∈ Z>0. We then turn B+
inv(z)

into a directed graph by adding edges v → w whenever v ⋖L w. Figure 1 shows some
instances of this graph corresponding to the previous and next two examples.

Example 4.7. Suppose g = gn := (1, n + 1)(2, n + 2) · · · (n, 2n) ∈ I2n. Then g is dominant
of shape λ = (nn) and the set Binv(g) consists of the single element whose inverse is
(n + 1)1(n + 2)2 · · · (2n)n ∈ S2n. The larger set B+

inv(g1,n) consists of the 2n permutations
whose inverses have the form (n + 1)a1b1a2b2 · · · anbn ∈ S2n+1 where {ai, bi} = {i, n +
1 + i} for each i ∈ [n]. It again can be proved that supp(GCO

g ) = B+
inv(g).

Example 4.8. Finally let w0 = n · · · 321 ∈ In be the longest element of Sn. Then w0 is
dominant of shape λ = (n− 1, . . . , 3, 2, 1). The set Binv(w0) does not have any description
simpler than (3.2). One can show that B+

inv(w0) is the set of the permutations in Sn+1
whose inverses in one-line notation have the form u1 · · · ui(n + 1)ui+1 · · · un where u =
u1u2 . . . un is the inverse of an element of Binv(w0) and i ∈ [n] has n ≥ 2uj for each
i < j ≤ n. We conjecture, but do not know how to prove, that supp(GCO

w0
) = B+

inv(w0)
for all n. This has been checked by computer for n ≤ 11.

Extending this example, let wij := (i, j)(i + 1, j − 1)(i + 2, j − 2) · · · (i + k, j − k) ∈ Ivex∞

for any integers 1 ≤ i < j where k = ⌊ j−i−1
2 ⌋. Computations support the following:

Conjecture 4.9. It holds that supp(GCO
wij
) = B+

inv(wij) if and only if i = 1 or j − i is odd.

5 Shift invariance and stable limits

This section contains a new formula for GO
z that holds for all vexillary z ∈ Ivex∞ and which

will lead to a nontrivial shift invariance property of the coefficient function GCO
z .
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4231−1 : 1 24351−1 : 1

4213−1 : 3 2431−1 : 3 23451−1 : 1

4123−1 : 2 2413−1 : 2 2341−1 : 2

4516273−1 : 1

4156273−1 : 2 451623−1 : 2 4512673−1 : 2

415623−1 : 4 4152673−1 : 4 451263−1 : 4

415263−1 : 8

43521−1 : 1

43251−1 : 3 34521−1 : 1 43512−1 : 1

42351−1 : 2 34251−1 : 3 4321−1 : 6 34512−1 : 1 43152−1 : 3

4231−1 : 4 32451−1 : 2 3421−1 : 6 34152−1 : 2 4312−1 : 6 41352−1 : 2

3241−1 : 4 3412−1 : 4 4132−1 : 4

Figure 1: The directed graphs B+
inv(z) when z is t4 = (1, 4) (left), g3 = (1, 4)(2, 5)(3, 6)

(middle), or w0 = 4321 (right). The data in each box is w : GCO
z (w) , with w given in

(inverse) one-line notation. The blue vertices correspond to elements of Binv(z).

A generic vexillary involution z ∈ Ivex∞ := {z ∈ I∞ : z is 2143-avoiding} has cycle no-
tation z = (a1, b1)(a2, b2) · · · (aq, bq) where 1 ≤ a1 < a2 < · · · < aq < min{b1, b2, . . . , bq}.
We refer to the numbers ai as left endpoints, to the numbers bi as right endpoints, and to
the ordered pairs (ai, bi) as cycles.

The left segments of z are the maximal subsets of consecutive left endpoints, that is,
the equivalence classes in {a1, a2, . . . , aq} under the transitive closure of the relation with
ai ∼ aj if |aj − ai| ≤ 1. There is at most one left segment containing 1, which we refer to
as the immobile segment. All other left segments are mobile.

Suppose L is a mobile left segment of z and define c0 = min(L)− 1. Notice that we
must have c0 = z(c0) ∈ Z>0. Now, for any subset S ⊆ {a1, a2, . . . , aq} define σS,L ∈ S∞ to
be the cyclic permutation σS,L = (c0, c1, c2, . . . , ck) where S ∩ L = {c1 < c2 < · · · < ck}.
This is the identity element when S ∩ L is empty. Also define σS = ∏L σS,L where the
product is over all mobile left segments of z in any order.

Example 5.1. We often draw z ∈ In as an arc diagram, that is, as the graph with vertex set
[n] having edges {i, z(i)} for i ∈ supp(z). Suppose our vexillary involution is

z = (2, 7)(3, 8)(4, 6)(5, 9) = • • • • • • • • •
1 2 3 4 5 6 7 8 9

.

This involution has a unique left segment L = {2, 3, 4, 5}, which is mobile. For the subset
S = {2, 4, 5} we have σS,L = (1, 2, 4, 5) and

(σS,L)
−1 · z · σS,L = (1, 7)(2, 6)(3, 8)(4, 9) = • • • • • • • • •

1 2 3 4 5 6 7 8 9
.

Suppose ai and aj are left endpoints of z in the same left segment with i < j. We say
that aj is a crossing bound of ai if {i} = {t : i ≤ t < j and bt < bj}. Now, given a subset

S ⊆ {a1, a2, . . . , aq} we define ϖz,S = ∏i∈[q] ϖ
(ai)
z,S where

ϖ
(a)
z,S =


−1 if S contains any crossing bound of a
2 + βxa if a /∈ S
1 + βxa otherwise.

(5.1)
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Example 5.2. If z = (2, 7)(3, 8)(4, 6)(5, 9) is as in Example 5.1 then

ϖz,∅ = (2 + βx2)(2 + βx3)(2 + βx4)(2 + βx5),
ϖz,{2,4,5} = −(1 + βx2)(2 + βx3)(1 + βx5).

Finally, we define S ⊆ {a1, a2, . . . , aq} to be shiftable if (1) no element of S is in the left
segment of z containing 1, if this exists, and (2) if some ai /∈ S then S does not contain
any crossing bound of ai. Given such a subset, write Ĝz,S = Ĝv where v = (σS)

−1 · z · σS.

Example 5.3. When z = (2, 7)(3, 8)(4, 6)(5, 9) there are 9 shiftable subsets of left end-
points, given by ∅, {2}, {4}, {2, 3}, {2, 4}, {4, 5}, {2, 3, 4}, {2, 4, 5}, and {2, 3, 4, 5}.

The following theorem significantly generalizes Theorem 4.1:

Theorem 5.4. If z ∈ Ivex∞ is any vexillary involution then GO
z = ∑S β|S| · ϖz,S · Ĝz,S where

the sum is over all shiftable subsets of left endpoints of z.

Recall that our permutations w ∈ S∞ are maps w : Z → Z with w(i) = i for i ≤ 0.
Given any integer n ∈ Z, define w ↓ n to be the permutation of Z with the formula

(w ↓ n)(i) = w(i + n)− n for i ∈ Z. (5.2)

Notice that if n ≤ 0 then w ↓ n ∈ S∞, but if w(m) ̸= m then w ↓ n /∈ S∞ for all n ≥ m.
Define 1n × w := w ↓ (−n) for n ∈ Z≥0.

Now for z ∈ I∞ we extend the domain of the Grothendieck coefficient function GCO
z

by setting GCO
z (w) = 0 if w /∈ S∞. Our main application of Theorem 5.4 is the following:

Theorem 5.5. Suppose n ∈ Z≥0 and z ∈ Ivex∞ .

(a) If z(1) = 1 then GC1n×z(w) = GCO
z (w ↓ n) for all w ∈ S∞.

(b) If z ↓ n ∈ S∞ then GCO
z↓n(w) = GCO

z (1n × w) for all w ∈ S∞.

The hypothesis z(1) = 1 is necessary for the first identity. For example, GO
(1,2) =

2G(β)
21 + βG(β)

312 but the G(β)-expansion of G(β)
(n+1,n+2) = G(β)

1n×(1,2) has 4 terms if n > 0.

Corollary 5.6. If z ∈ Ivex∞ then GCO
z (w) = GCO

1n×z(1
n × w) for all n ∈ Z≥0 and w ∈ S∞.

These shift invariance properties of GCO
z are consistent with Conjecture 4.5 since one

can show that if n ∈ Z and z ∈ Ivex∞ are such that z(1) = 1 and 1n × z ∈ S∞ then

Binv(1n × z) = {w ∈ S∞ : w ↓ n ∈ Binv(z)} , B+
inv(1

n × z) =
{

w ∈ S∞ : w ↓ n ∈ B+
inv(z)

}
.

Theorem 5.5 has an application concerning the stable limit of GO
z . The symmetric

Grothendieck function of w ∈ S∞ is Gw := limn→∞ G(β)
1n×w where the limit is taken in the
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sense of formal power series. This means the limit exists precisely when the coefficients
of any fixed monomial in G(β)

1n×w is eventually a constant sequence. It is known [2] that
Gw always exists and is a formal power series that is symmetric in the xi variables.

For z ∈ I∞ let GQz := limn→∞ GO
1n×z. When z ∈ Ivex∞ , it is known that GQz also exists

and is a symmetric formal power series; in fact, it is equal to the K-theoretic Schur Q-
function of Ikeda and Naruse [7] indexed by the involution shape of z [11, Theorem 4.11].

This was proved in [11] by a difficult geometric argument. Theorem 5.5 leads to a
much simpler derivation of the fact that GQz is a symmetric formal power series. We
also get a new formula relating the G-expansion of GQz to the G(β)-expansion of GO

z :

Corollary 5.7. If z ∈ Ivex∞ has z(1) = 1 then GQz = ∑w∈S∞ GCO
z (w) · βℓ(w)−ℓinv(z) · Gw.

6 Special cases

We can compute GCO
z explicitly in a few special cases—namely, when z is any transpo-

sition tij = (i, j) or the element gij := (i, j + 1)(i + 1, j + 2)(i + 3, j + 4) · · · (j, 2j − i + 1)
where i and j are any positive integers with i < j. These involutions are always vexillary,
and in the notation of Example 4.6 and 4.7 we have tn = t1,n and gn = g1,n.

Define t+n := t2,n and g+n := g2,n. By Theorem 5.5, to compute GCO
tij

and GCO
gij

for all

positive integers i < j, it suffices just to determine GCO
z when z is t+n and g+n . We explain

these calculations in the following sections.

6.1 Transpositions

Let Sh(n) denote the set of words obtained by shuffling

n2 and 1345 · · · (n − 3)(n − 2)(n − 1)(n + 1).

Define X (n) to be the subset of words in Sh(n) for which

• the first letter is 1 while the last letter is n + 1; and

• at most one letter appears between n and 2.

Define Y(n) ⊂ Sh(n) be the set of words with exactly one or exactly two letters between
n and 2. The sets X (n) and Y(n) are not disjoint, but the following holds:

Proposition 6.1. Let z = t+n = (2, n). Then Binv(z) =
{

w−1 : w ∈ X (n)
}

. Define c ∈ Sn
to be the cycle c = (1, 2, 5, 4) when n ≤ 4 and c = (1, 2, 5, 6, 7, · · · , n) if n ≥ 5. Then

B+
inv(z) =

{
w−1 : w ∈ X (n) ∪ Y(n)

}
⊔
{
∅ if n ≤ 3
{c} if n ≥ 4.

Finally, one has GO
z = 2 ∑w−1∈X (n) βw(2)−w(n)−1G(β)

w + ∑w−1∈Y(n) βw(2)−w(n)−1G(β)
w .
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See Figure 2 for an illustration of this proposition.

6.2 Vexillary involutions that are fully commutative

The involutions gij are the only elements of I∞ that are both 2143- and 321-avoiding [6,
Theorem 3.35 and Corollary 3.36], that is, both vexillary and fully commutative.

Proposition 6.2. Let z = g+n = (2, n + 1)(3, n + 2) · · · (n, 2n − 1) where n > 2. Then:

(a) Binv(z) consists of the inverse of 1(n + 1)2(n + 2)3 · · · (2n − 1)n(2n) ∈ S2n−1.

(b) B+
inv(z) consists of the 2n permutations whose inverses in one-line notation have

the form a1b1a2b2 · · · anbn ∈ S2n where {ai, bi} = {i, n + i} for each i ∈ [n].

(c) If we define ODesL(w) = {i ∈ DesR(w−1) : i is odd} then

GO
z = ∑w∈B+

inv(z)
2n−1−|ODesL(w)|β|ODesL(w)|G(β)

w + 1
2(−β)nG(β)

wmax

where wmax ∈ B+
inv(z) is the inverse of (n + 1)1(n + 2)2 · · · (2n)n.

See Figure 2 for an illustration of this proposition.

415263−1 : 0

145263−1 : 1 412563−1 : 1 41523−1 : 1

142563−1 : 2 14523−1 : 2 41253−1 : 2

14253−1 : 4

51627384−1 : 1

51623784−1 : 1 51267384−1 : 1 15627384−1 : 1 5162734−1 : 1

51263784−1 : 2 15623784−1 : 2 5162374−1 : 2 15267384−1 : 2 5126734−1 : 2 1562734−1 : 2

15263784−1 : 4 5126374−1 : 4 1562374−1 : 4 1526734−1 : 4

1526374−1 : 8

Figure 2: The directed graphs B+
inv(z) when z is t+5 = (2, 5) (left) and g+3 = (2, 4)(3, 5)

(right), presented using the conventions as in Figure 1. Here the grey boxes indicate
the (in these cases, unique) elements of B+

inv(z) that are not in supp(GCO
z ).
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