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Abstract. We consider the descent and flag major index statistics on the colored per-
mutation groups Sn,r = Zr ≀Sn and their conjugacy classes. We show that the k-th
moments of these statistics on Sn,r will coincide with the corresponding moments on
all conjugacy classes with no cycles of lengths 1, 2, . . . , 2k. Using this, we establish
the asymptotic normality of the descent and flag major index statistics on conjugacy
classes of Sn,r with sufficiently long cycles. Our results generalize prior work of Ful-
man involving the descent and major index statistics on the symmetric group Sn. Our
methods involve an intricate extension of Fulman’s work on Sn combined with the
theory of degrees for colored permutation statistics, as introduced by Campion Loth,
Levet, Liu, Sundaram, and Yin.
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1 Introduction

Statistics on the symmetric group Sn and its generalizations are a major area of study
in combinatorics. We consider statistics defined over the colored permutation groups,
which are wreath products Sn,r = Zr ≀Sn. Colored permutation groups play an es-
sential role in the classification of complex reflection groups [17], and they contain the
symmetric groups Sn ∼= Sn,1 and the signed symmetric groups Bn ∼= Sn,2 as special
cases.

Numerous statistics on Sn,r have been studied, many of which generalize corre-
sponding ones on Sn and Bn. See [18] and [7] for examples. We will focus on the
descent and flag major index statistics on Sn,r, which respectively generalize the descent
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and major index statistics on Sn. The descent statistic desn,r on Sn,r was introduced
by Steingrímsson [18], who showed that desn,r is equidistributed with the excedance
statistic on Sn,r, and its generating function satisfies

1
(1 − q)n+1 ∑

(ω,τ)∈Sn,r

qdesn,r(ω,τ) =
∞

∑
i=0

(ir + 1)nqi. (1.1)

The flag major index statistic fmajn,r was introduced by Adin and Roichman [1] in the
study of stable algebras. They showed that fmajn,2 on the signed symmetric group Bn ∼=
Sn,2 is equidistributed with the length statistic on Bn. Subsequent work by Haglund,
Loehr, and Remmel [12] established that the general distribution of fmajn,r is given by

∑
(ω,τ)∈Sn,r

qfmajn,r(ω,τ) = [r]q[2r]q · · · [nr]q, (1.2)

where [ir]q = 1 + q + q2 + · · ·+ qir−1 is the q-integer. This coincides with the Poincáre
polynomial of Sn,r as a complex reflection group [10, Theorem 1.4 and Table 1].

Main results

We study the statistics desn,r and fmajn,r on conjugacy classes of Sn,r with sufficiently
long cycles. Recall that a conjugacy class in Sn is uniquely determined by the common
cycle type of the permutations in the class, and this cycle type is recorded using a par-
tition λ of n. Elements in Sn,r can also be expressed in cycle notation, and this leads to
a generalized notion of cycle type that determines conjugacy classes of Sn,r. Similar to
the usage of Cλ for conjugacy classes of Sn, we use Cλ to denote the conjugacy classes
of Sn,r indexed by λ.

Though there is some prior work involving statistics on conjugacy classes of Sn [5, 8,
11] and Bn ∼= Sn,2 [9, 16], statistics on conjugacy classes of general colored permutation
groups have not been explored heavily. The main theoretical advance appears in recent
work by Campion Loth, Levet, Liu, Sundaram, and Yin [3]. Our main result strengthens
[3, Theorem 1.1] for the statistics desn,r and fmajn,r.

Theorem 1.1. Let Cλ be a conjugacy class of Sn,r. If Cλ has no cycles of lengths 1, 2, . . . , 2k,
then the k-th moments of desn,r and fmajn,r on Cλ match the respective k-th moments on Sn,r.

The descent and flag major index statistics are known to be asymptotically normal
on Sn,r [4]. Combining this fact with the Method of Moments and Theorem 1.1, we
obtain the following corollary, which shows asymptotic normality of desn,r and fmajn,r
on conjugacy classes with sufficiently long cycles.

Corollary 1.2. For every n ≥ 1, let Cλn be a conjugacy class of Sn,r such that for all i, the
number of cycles of length i in λn approaches 0 as n → ∞. Let statn for n ≥ 1 be either the
descent or flag major index statistic on Cλn with mean µn and variance σ2

n. Then as n → ∞, the
random variable (statn −µn)/σn converges in distribution to the standard normal distribution.
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2 Preliminaries

We begin with preliminaries on the colored permutation groups Sn,r, their conjugacy
classes, and the specific statistics considered in this paper. Our definitions are primarily
based on what is given in [18] and [4]. For properties of the conjugacy classes of Sn,r,
we use [14] as a reference, which contains a more general treatment of wreath products.

2.1 Colored permutation groups and statistics

Let Zr be the group of integers modulo r and Sn be the symmetric group on [n] =
{1, 2, . . . , n}. The colored permutation group Sn,r is the wreath product Zr ≀Sn, which
is the semidirect product Zn

r ⋊Sn formed from the permutation action of Sn on Zn
r .

An element in Sn,r is called a colored permutation, and it will be denoted (ω, τ), where
ω ∈ Sn and τ : [n] → Zr is a function referred to as a coloring. For brevity, we will
usually express τ in the form (τ(1), . . . τ(n)). From its construction as a wreath product,
the group operation on Sn,r is defined as

(ω1, τ1)(ω2, τ2) = (ω1ω2, (τ1 ◦ ω2) + τ2).

The colored permutation group Sn,r can be embedded as a subgroup of the symmet-
ric group Srn, which we describe explicitly. Let [n]r denote the set of rn elements

{ic : i ∈ [n], c ∈ Zr},

where the superscript indicates the color of an element in [n]. One can view the colored
permutation (ω, τ) as a bijection on [n]r. We abuse notation and also denote this bijection
(ω, τ), and it is defined by (ω, τ)(ic) = ω(i)τ(i)+c for all i ∈ [n] and c ∈ Zr. Since the
images of i0 for i ∈ [n] are sufficient for determining (ω, τ) ∈ Sn,r, one can use these to
form the two-line and one-line notations of (ω, τ).

Example 2.1. Consider ω = [3, 8, 5, 6, 2, 1, 4, 7] ∈ S8 and τ = (1, 0, 0, 1, 2, 2, 0, 1) ∈ Z8
3.

This defines an element in S8,3 whose two-line and one-line notations are

(ω, τ) =

[
10 20 30 40 50 60 70 80

31 80 50 61 22 12 40 71

]
=

[
31 80 50 61 22 12 40 71] . (2.1)

We now define the statistics relevant for our work. For any (ω, τ) ∈ Sn,r, an index
i ∈ [n] is a descent of (ω, τ) if τ(i) > τ(i + 1), or τ(i) = τ(i + 1) and ω(i) > ω(i + 1),
where we use the convention τ(n + 1) = 0 and ω(n + 1) = n + 1. One can alternatively
fix the total order on [n]r

10 < 20 < 30 < · · · < 11 < 21 < 31 < · · · < 1r−1 < 2r−1 < 3r−1 < · · · (2.2)
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and define a descent to be any i ∈ [n] such that (ω, τ)(i0) > (ω, τ)((i + 1)0), with the
convention that (ω, τ)((n + 1)0) = (n + 1)0.

Letting Des(ω, τ) denote the set of descents of (ω, τ) ∈ Sn,r, the descent and major
index statistics on Sn,r are respectively defined as

desn,r(ω, τ) = |Desn,r(ω, τ)| and majn,r(ω, τ) = ∑
i∈Desn,r(ω,τ)∩[n−1]

i.

The color and flag major index statistics on Sn,r are the nonnegative integers defined by

coln,r(ω, τ) =
n

∑
i=1

τ(i) and fmajn,r(ω, τ) = r · majn,r(ω, τ) + coln,r(ω, τ).

Note that the coln,r statistic uses {0, 1, . . . , r − 1} as representative elements in Zr and
adds them in Z. In the case when r = 1, the statistics desn,r and fmajn,r align with the
usual descent and major index statistics on Sn.

Example 2.2. Consider the permutation (ω, τ) ∈ S8,3 from Example 2.1. The descent set
of (ω, τ) is {1, 2, 5, 6, 8}, and the sum of the colors that appear is 7. Then

des8,3(ω, τ) = 5, maj8,3(ω, τ) = 14, and fmaj8,3(ω, τ) = 3 · 14 + 7 = 49.

For any statistic X : Sn,r → R, we can consider it as a random variable by equipping
Sn,r with the uniform distribution. The corresponding probability distribution is

PrSn,r [X = i] = |X−1(i)|/|Sn,r|.

For each positive integer k, the k-th moment of X will be denoted ESn,r [X
k]. For the

descent and flag major index statistics, Chow and Mansour established the following
results involving their asymptotic distributions.

Theorem 2.3. [4] For any positive integers n and r, desn,r has mean µn,r =
rn+r−2

2r and variance
σ2

n,r =
n+1
12 , and as n → ∞, the standardized random variable desn,r −µn,r

σn,r
converges to a standard

normal distribution.

Theorem 2.4. [4] For any positive integers n and r, fmajn,r has mean µn,r = n(rn+r−2)
4 and

variance σ2
n,r =

2r2n3+3r2n2+(r2−6)n
72 , and as n → ∞, the standardized random variable

fmajn,r −µn,r
σn,r

converges to a standard normal distribution.

Our results will utilize a tool called the Method of Moments, as described in [2, Sec-
tion 30]. In general, two different probability distributions can share the same moments.
We will be primarily interested in normal distributions, which are uniquely determined
by their moments. This allows us to apply the following theorem.

Theorem 2.5 (Method of Moments). Suppose {Xn}n≥1 and Y are real-valued random vari-
ables with finite k-th moments for all k. If Y is uniquely determined by its moments and

lim
n→∞

E[Xk
n] = E[Yk],

for all k, then Xn converges in distribution to Y.
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2.2 Conjugacy classes of colored permutation groups

Our work will focus on conjugacy classes of Sn,r, which we now describe. Similar to
permutations in Sn, colored permutations also have a cycle notation. Starting with
(ω, τ), one can express ω in the usual cycle notation with color 0 on all elements and
then insert ω(i)τ(i) under i0 for each i ∈ [n]. We will refer to this as the two-line cycle
notation. Removing the first row in every cycle then results in the cycle notation for (ω, τ).

Example 2.6. Consider the permutation given in Example 2.1. The two-line and one-line
cycle notations are given by

(ω, τ) =

(
10 30 50 20 80 70 40 60

31 50 22 80 71 40 61 12

)
= (3150228071406112).

The cycle notation leads to a notion of cycle type for colored permutations. An r-
partition of n ∈ Z+ is an r-tuple of partitions λ = (λj)r−1

j=0 where each λj is a partition of

some nonnegative integer nj such that ∑r−1
j=0 nj = n. For any cycle in the cycle notation

of (ω, τ) ∈ Sn,r, its length is the number of elements in it, and its color is the sum of the
colors that appear (as an element in Zr). The cycle type of (ω, τ) ∈ Sn,r is the r-partition
λ where λj records the cycle lengths for the cycles with color j.

Example 2.7. Consider the colored permutation in S9,3 with cycle notation

(ω, τ) = (10327160)(21)(4250)(80)(91).

Since r = 3, the cycle type of this colored permutation is

λ = (λ0, λ1, λ2) = ((1, 4), (12), (2)),

where each partition has been expressed in multiplicative notion (1a1 , 2a2 , . . . , nan).

As in Sn, the conjugacy classes of Sn,r are determined by cycle type.

Proposition 2.8. [14, Theorem 4.2.8 and Lemmas 4.2.9-4.2.10] Two elements (ω, τ), (ω′, τ′) ∈
Sn,r are conjugate if and only if they share the same cycle type.

Throughout, we use Cλ for the conjugacy class consisting of all colored permutations
with cycle type λ. For a statistic X on Sn,r, we can restrict X to Cλ and equip Cλ with
the uniform distribution to consider X as a random variable. X then has a discrete
probability distribution

PrCλ
[X = i] = |X−1(i) ∩ Cλ|/|Cλ|.

Note that this is equivalent to the conditional distribution PrSn,r [X = i | Cλ], and the
above notation is introduced for brevity. For each positive integer k, the corresponding
notation for the k-th moment of X on Cλ will be ECλ

[Xk].
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2.3 Statistics on conjugacy classes with sufficiently long cycles

The paper [3] analyzes moments of statistics on conjugacy classes of Sn,r with sufficiently
long cycles. We will describe the parts of this work relevant to our results and refer the
reader to [3] for a detailed account. See also [13] for additional results specific to the
symmetric group.

A partial colored permutation on Sn,r is a pair (K, κ) where K = {(ih, jh)}m
h=1 consists

of distinct ordered pairs of elements in [n] and κ : {i1, . . . , im} → Zr is any function. We
call m the size of (K, κ), and also denote this as |(K, κ)|. One can alternatively express
(K, κ) using a single set of ordered pairs of elements in [n]r as

(K, κ) =
{(

i0
h, jκ(ih)h

)}m

h=1
.

Indeed, the correspondence between these notations is clear.
A permutation ω ∈ Sn satisfies K if ω(ih) = jh for all h ∈ [m]. A coloring τ : [n] → Zr

satisfies κ if τ(ih) = κ(ih) for all h ∈ [m]. A colored permutation (ω, τ) ∈ Sn,r satisfies
(K, κ) if ω satisfies K and τ satisfies κ. Viewing (ω, τ) as a bijection on [n]r, this is
equivalent to (ω, τ) mapping i0

h to jκ(ih)h for all h ∈ [m]. We use I(K,κ) : Sn,r → {0, 1} to
denote the indicator function for a colored permutation satisfying (K, κ).

One can view each I(K,κ) as locally checking certain values in a colored permutation,
and one key insight of [3] is that these indicator functions I(K,κ) can be viewed as building
blocks for colored permutation statistics. Formally, a colored permutation statistic X :
Sn,r → R has degree m if it is in the R-vector space spanned by {I(K,κ) : |(K, κ)| ≤ m} and
not in the vector-space spanned by {I(K,κ) : |(K, κ)| ≤ m − 1}. We give examples below
using the statistics relevant to this paper.

Example 2.9. The statistics desn,r and fmajn,r have degree at most 2, as

desn,r =
n−1

∑
i=1

∑
j
c1
1 <jc2

2

I{(i0, jc2
2 ),((i+1)0, j

c1
1 )} +

n

∑
j=1

r−1

∑
c=1

I{(n0, jc)},

fmajn,r = r ·
n−1

∑
i=1

∑
j
c1
1 <jc2

2

i · I{(i0, jc2
2 ),((i+1)0, j

c1
1 )} +

n

∑
i=1

n

∑
j=1

r−1

∑
c=0

c · I{(i0, jc)}.

The condition jc1
1 < jc2

2 is with respect to the total order given in (2.2). One can show that
in general, desn,r and fmajn,r have degree exactly 2, but this is not needed for our work.

We will utilize the following result involving degree. Notice that our Theorem 1.1
strengthens the following result for desn,r and fmajn,r, as Example 2.9 shows these statis-
tics have degree at most 2.

Theorem 2.10. [3, Theorem 1.1] Suppose X : Sn,r → R has degree at most m. For any k ≥ 1,
the k-th moment ECλ

[Xk] coincides on all conjugacy classes Cλ of Sn,r with no cycles of lengths
1, 2, . . . , mk.
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3 Descents

In this section, we consider Theorem 1.1 and Corollary 1.2 for desn,r. Throughout, define
Xi to be the indicator function for a descent at position i,

Xi(ω, τ) =

{
1 if i ∈ Desn,r(ω, τ)

0 otherwise.

The descent statistic can be expressed as desn,r = ∑n
i=1 Xi, so

desk
n,r = ∑

a1,...,ak∈[n]
Xa1 · · · Xak . (3.1)

Since expectation is linear, an understanding of the mean of Xa1 · · · Xak on Sn,r or Cλ

informs us of the k-th moments of desn,r on these sets. We begin by considering the
mean of Xa1 . . . Xak on Sn,r, starting with the following definitions based on [8]. Our
modifications account for the possibility of a descent at position n in Sn,r, which cannot
occur in Sn.

Definition 3.1. The Young subgroup generated by a1, . . . , ak ∈ [n] is the subgroup J of Sn
generated by the adjacent transpositions

{(a1, a1 + 1), . . . , (ak, ak + 1)} \ {(n, n + 1)}.

The blocks induced by a1, . . . , ak ∈ [n] are the equivalence classes B1, . . . , Bt ⊆ [n] gener-
ated by the following property: i, j ∈ [n] are in the same equivalence class if some ω ∈ J
maps i to j. Observe that one can alternatively express J = SB1 × · · · ×SBt , where SBi

is the group of permutations on the elements in Bi.

Fulman [8, Proof of Theorem 3] gives an explicit formula for ESn [Xa1 Xa2 · · · Xak ] when
a1, . . . , ak ∈ [n − 1]. In Sn,r, we will derive the corresponding formulas, and there will be
two cases depending on whether or not a1, . . . , ak contains n.

Lemma 3.2. Let a1, . . . , ak ∈ [n] with induced blocks B1, . . . , Bt, where Bt contains n. If
n /∈ {a1, . . . , ak}, then

ESn,r [Xa1 Xa2 · · · Xak ] =
t

∏
i=1

1
|Bi|!

. (3.2)

If n ∈ {a1, . . . , ak}, then

ESn,r [Xa1 · · · Xak ] =

(
r − 1

r

)|Bt|
·

t

∏
i=1

1
|Bi|!

.
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We now consider Xa1 · · · Xak on any Cλ without cycles of lengths 1, 2, . . . , 2k. Fix
a1, . . . , ak ∈ [n], let B1, . . . , Bt ⊆ [n] be the blocks induced by a1, . . . , ak, and let J =
SB1 × · · · ×SBt be the Young subgroup of Sn generated by a1, . . . , ak. Define an action
of J on Sn,r as follows: for all π ∈ J and (ω, τ) ∈ Sn,r,

π · (ω, τ) = (π, 0)(ω, τ)(π, 0)−1, (3.3)

where 0 is the zero coloring. Alternatively, this is the conjugation action of J on Sn,r
after identifying J with the subgroup J × 0. The following result describes orbits under
the action given in (3.3).

Lemma 3.3. Let (ω, τ) ∈ Sn,r. Let π ∈ Sn and 0 be the zero coloring. If (ic1
1 , ic2

2 , . . . , icℓ
ℓ ) is a

cycle in (ω, τ), then (π(i1)c1 , π(i2)c2 , . . . , π(iℓ)cℓ) is a cycle in (π, 0)(ω, τ)(π, 0)−1.

Lemma 3.3 implies that the orbit of any (ω, τ) ∈ Sn,r under the action in (3.3) con-
sists of colored permutations that can be obtained by fixing a cycle notation of (ω, τ)
and permuting elements within each block B1, . . . , Bt without changing the location of
colors. On conjugacy classes Cλ without cycles of lengths 1, 2, . . . , 2k, we will show that
these orbits are particularly well-behaved.

Lemma 3.4. Let a1, . . . , ak ∈ [n − 1] with induced blocks B1, . . . , Bt, and let J = SB1 × · · · ×
SBt act on a conjugacy class Cλ of Sn,r by (3.3). If Cλ contains no cycles of lengths 1, 2, . . . , 2k,
then each orbit under this action has size |J| = ∏t

i=1 |Bi|!. Furthermore, there is a unique
element in each orbit that has descents at a1, . . . , ak.

Our method of proving Lemma 3.4 involves an algorithm that identifies the unique
element in the J-orbit that has descents at a1, . . . , ak. This algorithm will extend the one
used by Fulman in [8, Proof of Theorem 3] to general colored permutation groups. Since
our algorithm is very technical, we provide an extended example.

Example 3.5. Consider indices 1, 2, 4, 5 ∈ [9] and the 9-cycle with color 2

(ω, τ) = (103182522070419062) ∈ S9,3.

The blocks induced by 1, 2, 4, 5 are B1 = {1, 2, 3}, B2 = {4, 5, 6}, B3 = {7}, B4 = {8}
and B5 = {9}. We wish to find an element in the orbit of (ω, τ) under the action in (3.3)
that has descents at positions 1, 2, 4, and 5. We start by replacing all elements with the
smallest number in its corresponding block, resulting in (101182421070419042).

We must now find an appropriate way to replace the instances of 1 and 4 with ele-
ments in the same block. Ignoring colors for the moment, we observe that the elements
7, 8, and 9 appear exactly once, and they are respectively preceded by 1, 1, and 4. For
simplicity, we focus on the largest element 9, which is preceded by a 4 that appears mul-
tiple times. The elements directly after appearances of 4’s are 10, 90, and 10. Regardless
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of how these two appearances of 1 are replaced with other elements in B1 = {1, 2, 3},
the element 90 will still be the largest. Then for descents at positions 4 and 5 to occur,
the element 40 must map to 90. Using this, we next consider (101182521070419052), as we
have determined the image of 40, but we have not determined the images of 50 or 60.

Continuing, the next iterations of this algorithm result in (201182523070419052) and
then (201182523070419062). Observe that this is in the orbit of (ω, τ) under the action in
(3.3), and it has descents at positions 1, 2, 4, and 5.

Algorithm 1: ColoredDescents
Input: (ω, τ) ∈ Sn,r with no cycles of lengths 1, 2, . . . , 2k; indices a1, . . . , ak ∈ [n]
Output: a colored permutation (ω′, τ′) ∈ Sn,r in the orbit of (ω, τ) under (3.3)

1 B1, . . . , Bt := blocks induced by a1, . . . , ak
2 σ1, . . . , σm := cycles of (ω, τ)
3 σ′

1, . . . , σ′
m := cycles obtained by starting with σ1, . . . , σm and replacing each

i ∈ [n] with the smallest number from the block that contains it
4 while σ′

1, . . . , σ′
m contains repeated integers from [n] do

5 S := subset of [n] consisting of elements that appear exactly once in σ′
1, . . . , σ′

m
6 j := largest element in S whose preceding element i in σ′

1, . . . , σ′
m appears

multiple times
7 B := block containing i
8 i1, . . . , iℓ := elements in σ′

1, . . . , σ′
m that are in the block B

9 jc1
1 , . . . , jcℓ

ℓ := elements respectively following i1, . . . , iℓ in σ′
1, . . . , σ′

m
10 ≤:= partial order on jc1

1 , . . . , jcℓ
ℓ given by (2.2) with repeated elements treated

as distinct, incomparable elements
11 ⪯ := partial order on i1, . . . , iℓ formed by starting with ≤, replacing each jch

h
with ih, and reversing the relation in ≤

12 σ′
1, . . . , σ′

m := σ′
1, . . . , σ′

m after replacing instances of i1, . . . , iℓ with minimal
elements in B in a manner that respects ⪯

13 return σ′
1, . . . , σ′

m

Using the ColoredDescents algorithm, we establish Lemma 3.4. This in turn allows
us to establish an analog of Lemma 3.2 on conjugacy classes without short cycles.

Lemma 3.6. Let a1, . . . , ak ∈ [n] with induced blocks B1, . . . , Bt, where Bt contains n. Let Cλ

be a conjugacy class of Sn,r with no cycles of lengths 1, 2, . . . , 2k. If a1, . . . , ak ∈ [n − 1], then

ECλ
[Xa1 Xa2 · · · Xak ] =

t

∏
i=1

1
|Bi|!

. (3.4)

If n ∈ {a1, . . . , ak}, then

ECλ
[Xa1 Xa2 · · · Xak ] =

(
r − 1

r

)|Bt|
·

t

∏
i=1

1
|Bi|!

. (3.5)
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Theorem 1.1 and Corollary 1.2 for desn,r can now be established using (3.1), the
results of this section, Theorem 2.5, and Theorem 2.3.

4 Flag major index

In this section, we consider Theorem 1.1 and Corollary 1.2 for the flag major index
statistic fmajn,r. Our general approach combines our work for desn,r and the theory of
degrees for colored permutation statistics, as described in Section 2.3.

Throughout this section, we define Yi,c to be the indicator function for the color of
i ∈ [n] being c ∈ Zr,

Yi,c(ω, τ) =

{
1 if τ(i) = c
0 otherwise.

Using the same Xi indicator functions for descents, this allows us to express fmajn,r as

fmajn,r = r ·
n−1

∑
i=1

iXi +
n

∑
i=1

r−1

∑
c=0

cYi,c. (4.1)

In particular, fmajkn,r can be expressed as linear combinations of the random variables

Xa1 · · · XajYaj+1,cj+1 · · ·Yak,ck (4.2)

where a1, . . . , aj ∈ [n − 1], aj+1, . . . , ak ∈ [n], and cj+1, . . . , ck ∈ Zr. We will show the
expectation of (4.2) aligns on Sn,r and all Cλ with no cycles of lengths 1, 2, . . . , 2k. We
start with a definition.

Definition 4.1. Let a1, . . . , aj ∈ [n − 1], aj+1, . . . , ak ∈ [n], and cj+1, . . . , ck ∈ Zr. The
essential set of the statistic Xa1 · · · XajYaj+1,cj+1 · · ·Yak,ck is

Ess(Xa1 · · · XajYaj+1,cj+1 · · ·Yak,ck) =

 j⋃
i=1

{ai, ai + 1}

⋃ k⋃
i=j+1

{ai}

 .

In (4.2), there can be numerous scenarios involving descents at positions a1, . . . , aj
and the colors at aj+1, . . . , ak. Consequently, analyzing the expectation of (4.2) on Sn,r
and Cλ can be difficult. The following two results allow us to reduce to the case where
Ess(Xa1 · · · Xaj) = Ess(Yaj+1,cj+1 · · ·Yak,ck).

Lemma 4.2. Let a1, . . . , aj ∈ [n − 1], aj+1, . . . , ak ∈ [n], and cj+1, . . . , ck ∈ Zr. Then Z =
Xa1 · · · XajYaj+1,cj+1 · · ·Yak,ck has degree at most j + k. Consequently, its mean coincides on all
conjugacy classes Cλ of Sn,r without cycles of lengths 1, 2, . . . , j + k. The same holds for ZYi,c
when i ∈ Ess(Z) and c ∈ Zr is arbitrary.



Descents and flag major index on conjugacy classes without short cycles 11

Lemma 4.3. Let a1, . . . , aj ∈ [n − 1], aj+1, . . . , ak ∈ [n], and cj+1, . . . , ck ∈ Zr. If ak /∈
Ess(Xa1 · · · XajYaj+1,cj+1 · · ·Yak−1,ck−1), then

ESn,r [Xa1 · · · XajYaj+1,cj+1 · · ·Yak−1,ck−1Yak,ck ] =
1
r
· ESn,r [Xa1 · · · XajYaj+1,cj+1 · · ·Yak−1,ck−1 ].

The same holds on any Cλ with no cycles of lengths 1, 2, . . . , j + k.

Repeated application of the preceding lemmas allows us to consider the expecta-
tion of (4.2) on Sn,r and Cλ only when Ess(Xa1 · · · Xaj) = Ess(Yaj+1,cj+1 · · ·Yak,ck). Our
ColoredDescents algorithm can be used in this case to establish the following result.

Lemma 4.4. Let a1, . . . , aj ∈ [n − 1], aj+1, . . . , ak ∈ [n], and cj+1, . . . , ck ∈ Zr. Then on any
conjugacy class Cλ of Sn,r with no cycles of lengths 1, 2, . . . , j + k, we have

ESn,r [Xa1 · · · XajYaj+1,cj+1 · · ·Yak,ck ] = ECλ
[Xa1 · · · XajYaj+1,cj+1 · · ·Yak,ck ].

Theorem 1.1 and Corollary 1.2 for fmajn,r can now be established through technical
arguments that apply the results of this section, Theorem 2.5, and Theorem 2.3.

5 Conclusion

In this paper, we analyzed the moments and asymptotic distributions of desn,r and
fmajn,r on conjugacy classes Cλ of Sn,r with sufficiently long cycles. Our methods
showed that the moments and asymptotic distributions of these statistics on Cλ coin-
cide with those on Sn,r. Two natural problems arise from our work. Several prior results
on Sn and Bn may be relevant for these open problems, e.g., see [3, 6, 15, 16].

Problem 5.1. Study the distributions of desn,r and fmajn,r on conjugacy classes of Sn,r.

Problem 5.2. Determine the asymptotic distribution for desn,r on arbitrary conjugacy
classes of Sn,r.
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