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Abstract. The equivariant Ehrhart theory of lattice polytopes has been introduced
by Stapledon, developed by many researchers, and the study of the equivariant h∗-
polynomials is getting one of the trends in the theory of lattice polytopes. On the other
hand, the h∗-polynomials of order polytopes of sign-graded posets are known to be
γ-nonnegative by Brändén. In this manuscript, we prove that order polytopes of sign-
graded posets are always equivariant γ-nonnegative. Namely, the γ-polynomials of the
equivariant h∗-polynomials of order polytopes of graded posets have its coefficients
with actual characters.
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1 Introduction

1.1 Introduction to equivariant Ehrhart theory

First, let us briefly recall the classical Ehrhart theory before explaining the equivariant
version. See [1] for the introduction to Ehrhart theory. Let P ⊂ Rd be a lattice (resp.
rational) polytope, i.e., a convex polytope all of whose vertices belong to Zd (resp. Qd),
of dimension d. Consider the Ehrhart series of P, which is the generating function 1 +

∑m≥1 |mP ∩Zd|tm, where mP = {mα : α ∈ P}. Then it is known that if P is a lattice
polytope, then this Ehrhart series becomes of the form:

1 + ∑
m≥1
|mP ∩Zd|tm =

h∗0 + h∗1t + · · ·+ h∗dtd

(1− t)d+1 .

In this case, we call the polynomial h∗0 + h∗1t + · · ·+ h∗dtd of degree at most d appearing
in the numerator the h∗-polynomial of P, denoted by h∗(P; t).

In [10], the equivariant Ehrhart series is introduced. Next, we recall what the equiv-
ariant Ehrhart theory is. See, e.g., [4] and [11] for more recent developments on the
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equivariant Ehrhart theory. Let G be a finite group linearly acting on Zd. Then the ac-
tion of G can be extended to the lattice Zd+1 = Zd ⊕Z by fixing the second summand.
Let ρ : G → GLd(C) be the G-representation defined by this action. Let P ⊂ Rd be
a lattice polytope of dimension d and assume that P is G-invariant. Then the dilated
polytope mP is also G-invariant for any m ∈ Z>0. In particular, G acts on mP ∩Zd as a
permutation. Let χmP ∈ R(G) be the character of this permutation representation, where
R(G) denotes the representation ring of G and we identify each representation with its
character.

Definition 1.1. With the notation above, the equivariant Ehrhart series of a G-invariant
lattice polytope P is given by

EE(P, ρ; t) := 1 + ∑
m≥1

χmPtm ∈ R(G)[[t]].

Then we write EE(P, ρ; t) as follows:

EE(P, ρ; t) =
h∗(P, ρ; t)

(1− t)det(Id−ρt)
,

where h∗(P, ρ; t) is a power series in R(G)[[t]] and Id is the identity matrix. Note
that ((1− t)det(Id−ρt))−1 is an element in R(G)[[t]] (cf. [10, Lemma 3.1]), and so is
h∗(P, ρ; t) which is not necessarily a polynomial. We call h∗(P, ρ; t) the equivariant h∗-
series (or equivariant h∗-polynomial if it is a polynomial) of P with respect to ρ.

By evaluating EE(P, ρ; t) with g ∈ G, we obtain the Ehrhart series of Pg := {x ∈ P :
g · x = x} by definition. In particular, we recover the Ehrhart series of P by evaluating
EE(P, ρ; t) with the unit e of G.

Note that each coefficient of the equivariant h∗-series is a virtual character of G. We
say that h∗(P, ρ; t) is effective if each coefficient is an actual character, i.e., each coeffi-
cient has a unique expression ∑ aχχ by irreducible characters χ and nonnegative integer
coefficients aχ ∈ Z≥0.

The following conjecture is one of the main topics in the equivariant Ehrhart theory:

Conjecture 1.2 ([10, Conjecture 12.1]). With the above setting, if h∗(P, ρ; t) is a polyno-
mial, then h∗(P, ρ; t) is effective.

This conjecture is known as the effectiveness conjecture. Note that the effectiveness of
h∗(P, ρ; t) always implies its polynomiality. This conjecture has been verified in several
cases. See, e.g., [3], [5] and [11]. In the non-equivariant setting, the nonnegativity of the
h∗-polynomial is well known ([1, Theorem 3.12]). The effectiveness of the equivariant
h∗-polynomial corresponds to the nonnegativity in the equivariant setting.
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1.2 Equivariant γ-nonnegativity

Let f (t) = ∑s
i=0 aiti be a polynomial of degree s with ai ∈ Z≥0.

• We say that f (t) is real-rooted if all of the roots of f (t) are real numbers.
• We say that f (t) is unimodal if there is 0 ≤ k ≤ s with a0 ≤ · · · ≤ ak ≥ · · · ≥ as.
• We say that f (t) is palidromic if ai = as−i for i = 0, . . . , s.
• Assume that f (t) is palindromic. Then there exist coefficients γ0, γ1, . . . , γ⌊s/2⌋ such

that f (t) = ∑⌊s/2⌋
i=0 γiti(t + 1)s−2i. We call γ(t) = ∑⌊s/2⌋

i=0 γiti the γ-polynomial of f (t).
We say that f (t) is γ-nonnegative (sometimes, γ-positive) if all γi’s are nonnegative.

For a palindromic polynomial, the following implications hold:

f (t) is real-rooted =⇒ f (t) is γ-nonnegative =⇒ f (t) is unimodal.

The real-rootedness and γ-nonnegativity of the h∗-polynomials of lattice polytopes are
one of the main topics in Ehrhart theory and many results are known. Some of them are
collected in [6] as a survey paper.

Now, it is quite natural to think of the equivariant version of γ-nonnegativity. For a
given palindromic polynomial f (t) = ∑s

i=0 χiti ∈ R(G)[t] of degree s whose coefficients
are virtual characters of a finite group G, we say that f (t) is equivariant γ-nonnegative
(or γ-effective) if the γ-polynomial of f (t) is effective. Namely, we call f (t) equivariant
γ-nonnegative if it can be written as

f (t) =
⌊s/2⌋

∑
i=0

γiti(1 + t)s−2i ∈ R(G)[t]

and each γi ∈ R(G) is an actual character. Then the following question naturally arises:

Question 1.3. Let G be a finite group and let P be a G-invariant lattice polytope. As-
sume that h∗(P; t) is palindromic and γ-nonnegative. Then, is h∗(P, ρ; t) equivariant
γ-nonnegative?

1.3 Order polytopes of labeled posets

Order polytopes were introduced in [9] by Stanley. Let us recall what order polytopes of
labeled posets are. Let (P, ω) be a labeled poset, i.e., P = {p1, . . . , pd} is a poset equipped
with a partial order ≺ and a bijection ω : P → {1, . . . , d}. We define the “half-open”
order polytope of (P, ω) as follows:

O(P, ω) = {(x1, . . . , xd) ∈ [0, 1]d : xi ≥ xj if pi ⪯ pj,

xi > xj if pi ≺ pj and ω(pi) > ω(pj)}.
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Note that O(P, ω) is a usual polytope if ω is order-preserving (a.k.a. a natural labeling),
i.e., ω(p) < ω(p′) whenever p ≺ p′. We naturally define the Ehrhart series of the
half-open polytope O(P, ω) by setting

∑
n≥0
|nO(P, ω) ∩Zd|tn =

h∗(O(P, ω); t)
(1− t)d+1 .

Here, we regard |nO(P, ω) ∩ Zd| = 1 for n = 0 if ω is a natural labeling, while
|nO(P, ω) ∩ Zd| = 0, otherwise. The h∗-polynomial h∗(O(P, ω); t) of (P, ω) is also
known as the W-polynomial of (P, ω).

We say that a poset P is graded if each maximal chain in P has the same length. Then
we can associate the rank function ρ : P → Z≥0 by letting ρ(p) be the maximal length
of the chain starting from a minimal element to p. The rank of a graded poset is the
maximum of the lengths among all maximal chains.

Let (P, ω) be a labeled poset and let E(P) = {(p, p′) ∈ P× P : p′ covers p}, where
we say that p′ covers p if p ≺ p′ and there is no p′′ with p ≺ p′′ ≺ p′. Then we can also
associate the labeling ω to E(P) defined by

ω(p, p′) =

{
1 if ω(p) < ω(p′),
−1 if ω(p) > ω(p′).

A labeled poset (P, ω) is called sign-graded (or a poset P is ω-graded) if for every maximal
chain p1 ≺ p2 ≺ · · · ≺ ps+1 in P, the sum ∑s

i=1 ω(pi, pi+1) is constant. The common value
of this sum is called the rank of a sign-graded poset (P, ω), denoted by r(ω). Note that
a poset P is graded if and only if P is ω-graded for some natural labeling ω.

We say that a poset P is ω-consistent if for each p ∈ P, Λp := {q ∈ P : q ⪯ p} is
ωp-graded, where ωp is the restriction of ω to E(Λp). Notice that if P is ω-graded, then
P is ω-consistent. The rank function ρ : P → Z of an ω-consistent poset P is defined by
ρ(p) = r(ωp). This agrees with the (usual) rank function on P as above if P is graded,
i.e., ω-graded for some natural labeling ω.

It is known that h∗(O(P, ω); t) is palindromic if and only if (P, ω) is sign-graded.
Moreover, the following is proved by Brändén:

Theorem 1.4 ([2, Theorem 4.2]). For a sign-graded poset (P, ω), the h∗-polynomial of
O(P, ω) is γ-nonnegative.

1.4 Main Result

An automorphism of a labeled poset (P, ω) is a bijection φ on P satisfying that p ⪯
p′ ⇐⇒ φ(p) ⪯ φ(p′) and ω(p) > ω(p′) ⇐⇒ ω(φ(p)) > ω(φ(p′)). Let Aut(P, ω)
denote the automorphism group of (P, ω). Then Aut(P, ω) naturally acts on O(P, ω)
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as a linear action by permuting the corresponding coordinates. Hence, we can discuss
the equivariant h∗-series of O(P, ω). In view of Question 1.3 and Theorem 1.4, we are
tempted to discuss the equivariant γ-nonnegativity of order polytopes of sign-graded
posets. The main result of this manuscript is the following:

Theorem 1.5 (Main Result). Let (P, ω) be a sign-graded poset admitting an action by
a finite group G. Then the equivariant h∗-polynomial of O(P, ω) is equivariant γ-
nonnegative.

2 The γ-polynomials of the equivariant h∗-polynomials of
order polytopes

The purpose of this section is to explain how to prove Theorem 1.5. To this end, we first
recall an idea of the proof of Theorem 1.4, and we perform our proof by an example.

2.1 Fundamental facts on labeled posets

For the explanation of the proof of Theorem 1.4, we have to recall some notions and
lemmas on labeled posets from [2].

Lemma 2.1 ([2, Corollary 2.4]). Let P be sign-graded with respect to different labelings
ω and ω′. Then h∗(O(P, ω′); t) = t(r(ω)−r(ω′))/2h∗(O(P, ω); t).

Remark 1. We say that ω is canonical if (P, ω) has a rank function ρ with ρ(P) ⊂ {0, 1},
and ρ(p) < ρ(p′) implies ω(p) < ω(p′). It is known by [2, Theorem 2.5] that P ad-
mits a canonical labeling if P is ω-graded for some labeling ω. Therefore, for a sign-
graded poset (P, ω), we may assume that ω is canonical for the computation of the
h∗-polynomial of O(P, ω) thanks to Lemma 2.1.

Let (P, ω) and (P′, ω′) be labeled posets equipped with partial orders ≺P and ≺P′ ,
respectively. The ordinal sum P⊕ P′ is the poset P ⊔ P′ equipped with the partial order
defined by x ≺ y if x ≺P y in P or x ≺P′ y in P′ or x ∈ P, y ∈ P′. We define two kinds of
labelings ω⊕±1 ω′ of E(P⊕ P′) as follows:

(ω⊕1 ω′)(x, y) =


ω(x, y) if (x, y) ∈ E(P),
ω′(x, y) if (x, y) ∈ E(P′),
1 if x ∈ P, y ∈ P′,

and

(ω⊕−1 ω′)(x, y) =


ω(x, y) if (x, y) ∈ E(P),
ω′(x, y) if (x, y) ∈ E(P′),
−1 if x ∈ P, y ∈ P′.
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By abuse the notation, we write P⊕±1 P′ when the labeling is given by ω⊕±1 ω′.
Regarding the h∗-polynomials in the case of the ordinal sums, we have the following:

Lemma 2.2 ([2, Proposition 3.3]). Let (P, ω) and (P′, ω′) be labeled posets. Then

h∗(O(P⊕ P′, ω⊕1 ω′); t) = h∗(O(P, ω); t)h∗(O(P′, ω′); t) and
h∗(O(P⊕ P′, ω⊕−1 ω′); t) = t · h∗(O(P, ω); t)h∗(O(P′, ω′); t).

Let (P, ω) be a sign-graded poset. We say that (P, ω) is saturated if p and p′ are
comparable for all p, p′ ∈ P whenever ρ(p) and ρ(p′) differ by 1. For two posets P and
P̃ with P = P̃ as sets, we say that P̃ extends P if p ≺ p′ in P̃ whenever p ≺ p′ in P. We
call P̃ a saturation of P if a saturated poset P̃ has the same rank function as (P, ω) and P̃
extends P.

Lemma 2.3 (cf. [2, Theorem 3.2]). Let (P, ω) be a sign-graded poset. Then we have

h∗(O(P, ω); t) = ∑
P̃

h∗(O(P̃, ω); t), (2.1)

where the union runs over all saturations of (P, ω).

2.2 An idea of the proof of Theorem 1.4

Let (P, ω) be a sign-graded poset and assume that ω is canonical (see Remark 1).
The proof of Theorem 1.4 roughly consists of the following three steps.

The first step: By Lemma 2.3, it suffices to prove the γ-nonnegativity of h∗(O(P̃, ω); t)
for each saturation P̃ of P.
The second step: For each saturation (P̃, ω), we know by [2, Proposition 3.4] that

(P̃, ω) = A0 ⊕1 A1 ⊕−1 A2 ⊕1 · · · ⊕±1 Ak

holds, where each Ai is an anti-chain. Hence, we can directly compute h∗(O(P̃, ω); t)
from h∗(O(Ai, ω); t) by applying Lemma 2.2 and the γ-nonnegativity follows from that
of each h∗(O(Ai, ω); t).
The third step: The h∗-polynomial of the order polytope of an anti-chain corresponds to
the h∗-polynomial of the unit cube [0, 1]a. It is known that the h∗-polynomial of [0, 1]a is
γ-nonnegative in general. See Subsection 2.3 for more details.

2.3 Equivariant Ehrhart series of cubes

For the extension of the proof of Theorem 1.4 to Theorem 1.5, the crucial part is the
third step of Subsection 2.2. (We can see that the discussions of the first and second
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steps straightforwardly work also in the equivariant setting, but we omit the detail due
to space limitations.) So, we discuss how to see the equivariant γ-nonnegativity of [0, 1]d

under the Sd-action. Although the group action in Theorem 1.5 is not necessarily the
Sd-action, this action will play the essential role in our setting.

Let P = [0, 1]d be the d-dimensional unit cube and consider the equivariant Ehrhart
series of P with respect to the action of Sd. Then it is known that the equivariant h∗-
polynomial is equivariant γ-nonnegative. See, e.g., [8]. In fact, we know that

h∗(P, ρ; t) =
⌊ d−1

2 ⌋
∑
j=0

χd,jtj(1 + t)d−1−2j (2.2)

by using actual characters χd,j of Sd. In [7], an explicit way how to describe each of χd,j
is given. For example, we see the following:

χ3,0 = 1, χ3,1 = χ ; χ4,0 = 1, χ4,1 = χ + 2χ ;

χ5,0 = 1, χ5,1 = 2χ + 3χ , χ5,2 = χ + χ + χ ,
(2.3)

where “1” is the trivial character and χλ stands for the irreducible character of the Specht
module Sλ corresponding to a partition λ (a Young diagram) of d (i.e., a certain conju-
gacy class of Sd). See [7, Theorem 1.1] for more details.

For the calculations later, we collect the character tables of S3 and S4:

S3 1 χ χ

e 1 1 2
(1 2) 1 −1 0
(1 2 3) 1 1 −1

S4 1 χ χ χ χ

e 1 1 2 3 3
(1 2) 1 −1 0 1 −1
(1 2 3) 1 1 −1 0 0
(1 2 3 4) 1 −1 0 −1 1
(1 2)(3 4) 1 1 2 −1 −1

2.4 Example: how to prove Theorem 1.5

Let us describe how to see the equivariant γ-nonnegativity of h∗(O(P, ω), ρ; t) with an
example. Throughout this subsection, we consider the labeled poset P = {p1, . . . , p8} as
in Figure 1 whose canonical and natural labeling ω is given by ω(pi) = i for each i.

Let G = D4 = ⟨σ, τ : σ4 = τ2 = e, στσ = τ⟩ be the dihedral group of order 8. Then G
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p1 p2 p3 p4

p5 p6 p7 p8

Figure 1: An example of a poset

acts on P as follows:

σ · pi =


pi+1 for i = 1, 2, 3, 5, 6, 7;
p1 for i = 4;
p5 for i = 8;

and τ · pi =



pi for i = 1, 3;
p4 for i = 2;
p2 for i = 4;
pi+1 for i = 5, 7;
pi−1 for i = 6, 8.

p1 p2 p3 p4

p5 p6 p7 p8

Figure 2: The action by σ

p1 p2 p3 p4

p5 p6 p7 p8

Figure 3: The action by τ

Note that this preserves the naturality of the labeling ω. Hence, G is isomorphic to a
subgroup of Aut(P, ω).

We describe the character table of D4:

D4 1 χ1 χ2 χ3 χ4
e 1 1 1 1 2
{σ, σ3} 1 1 −1 −1 0
σ2 1 1 1 1 −2
{τ, τσ2} 1 −1 1 −1 0
{τσ, τσ3} 1 −1 −1 1 0

We also describe all saturations of P as follows:

P̃1
−1P̃2

×8
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P̃3

−1 −1

×4

P̃4

−1 −1

×4

−1

−1

P̃5

×8

Here, “−1” indicates the labeling of E(P) and the labeling “1” is omitted. Note that each
of Hasse diagrams gives a G-orbit. For example, regarding P̃2, “×8” means that there
are 8 copies of the same poset with different labelings, which form a G-orbit. (The others
are similar.) In fact, the labelings of the poset P̃2 are the following:

−1

p2 p3 p4

p5 p6 p8

p7

p1

−1

p2 p3 p4

p5 p6 p7

p8

p1

−1

p1 p3 p4

p6 p7 p8

p5

p2

−1

p1 p3 p4

p5 p6 p7

p8

p2

−1

p1 p2 p4

p6 p7 p8

p5

p3

−1

p1 p2 p4

p5 p7 p8

p6

p3

−1

p1 p2 p3

p5 p7 p8

p6

p4

−1

p1 p2 p3

p5 p6 p8

p7

p4

Below, we compute the γ-polynomial of the equivariant h∗-polynomial for each orbit.
For later use, let Sa1,...,as := Sa1 × · · · ×Sas .

P̃1 Note that this class forms a single G-orbit. We see that this saturation is of the form
A1 ⊕1 A2, where |A1| = |A2| = 4. As described in (2.2), we know that the equivariant
h∗-polynomial of [0, 1]a with respect to the Sa-action is equivariant γ-nonnegative. Since
A1 ⊕1 A2 naturally admits the S4,4-action and h∗(O(A1 ⊕1 A2, ω); t) is just the product
of h∗(O(A1, ω); t) and h∗(O(A2, ω); t), we obtain the γ-polynomial of the equivariant
h∗-polynomial of O(A1 ⊕1 A2, ω) as follows:

R(S4,4)[t] ∋ (1 + χ1,A1t)(1 + χ1,A2t) =: 1 + γ
(1)
1 t + γ

(1)
2 t2,

where χ1,A1 and χ1,A2 are certain characters of S4 arising from its action to the cubes
O(A1, ω) and O(A2, ω), respectively. (We know χ1,A1 = χ1,A2 = χ + 2χ by (2.3).)

Note that γ
(1)
1 is a direct sum of two characters of S4 and γ

(1)
2 corresponds to the tensor

product, so both of γ
(1)
1 and γ

(1)
2 correspond to certain characters of S4,4. Here, in this
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case, we see that G is a subgroup of S4,4. Hence, we can regard each of the characters
γ
(1)
1 and γ

(1)
2 as a character of G by restriction.

Therefore, we conclude that each coefficient of the γ-polynomial of h∗(O(P̃1), ρ; t) is
an actual character of G. The explicit descriptions of γ

(1)
1 , γ

(1)
2 ∈ R(G) are as follows:

γ
(1)
1 = 2 + 3χ2 + 3χ3 + 4χ4; γ

(1)
2 = 9 + 9χ1 + 7χ2 + 7χ3 + 16χ4.

We briefly explain how to get them. For γ
(1)
1 (γ(1)

2 is similar), since each conjugacy class
of G can be interpreted as that of S4,4 by

e ∈ G←→ (e, e) ∈ S4,4;

σ, σ3 ∈ G←→ ((1 2 3 4), (1 2 3 4)) ∈ S4,4;

σ2 ∈ G←→ ((1 2)(3 4), (1 2)(3 4)) ∈ S4,4;

τ, τσ2 ∈ G←→ ((1 2), (1 2)(3 4)) ∈ S4,4;

τσ, τσ3 ∈ G←→ ((1 2)(3 4), (1 2)) ∈ S4,4,

we see that (χ1,A1 + χ1,A2)(g) is equal to

(
(χ + 2χ )|A1 + (χ + 2χ )|A2

)
(g) =



16 if g = e,
−4 if g = σ, σ3,
0 if g = σ2,
2 if g = τ, τσ2,
2 if g = τσ, τσ3.

P̃2 There are 8 copies of the same poset P̃2 which is of the form A1⊕1 A2⊕−1 A3⊕1 A4,
where |A1| = |A4| = 3 and |A2| = |A3| = 1. Let P̃2 be this G-orbit. Regarding the
γ-polynomial of the equivariant h∗-polynomial of O(P̃2, ω) with respect to the S3,1,1,3-
action, we have

R(S3,1,1,3)[t] ∋ t · (1 + χ1,A1t)(1 + χ1,A4t) =: t(1 + γ
(2)
1 t + γ

(2)
2 t2),

where χ1,A1 and χ1,A4 are certain characters of S3 arising from its action to O(A1, ω)

and O(A4, ω), respectively. Actually, we know χ1,A1 = χ1,A4 = χ by (2.3).
Unlike P̃1, we notice that G is not a subgroup of S3,1,1,3. Let H = G ∩S3,1,1,3. In

this case, we have H = {e}. By considering the induced character from H to G of the
restrictions of the characters γ

(2)
1 , γ

(2)
2 ∈ R(S3,1,1,3) to H, we obtain the description of the

γ-polynomial of the sum of the equivariant h∗-polynomials of this G-orbit. Therefore,
the equivariant γ-nonnegativity follows. More precisely, we see the following:the γ-polynomial of ∑

P̃∈P̃2

h∗(O(P̃, ω), ρ; t)

 = χpermt(1 + 4t + 4t2),
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where χperm = 1 + χ1 + χ2 + χ3 + 2χ4. In fact, the restriction of γ
(2)
1 , γ

(2)
2 to H is just the

trivial character up to scalar, so the character χperm of the regular representation of G
appears as the induced character.

P̃3 There are 4 copies of the poset P̃3 which is of the form A1 ⊕1 A2 ⊕−1 A3 ⊕1 A4,
where |A1| = |A3| = 2, |A2| = 1 and |A4| = 3. Let P̃3 be this G-orbit.

The γ-polynomial of the equivariant h∗-polynomial of O(P̃3, ω) with respect to the
S2,1,2,3-action is t · (1 + χ1,A4t) ∈ R(S2,1,2,3)[t], where χ1,A4 = χ ∈ R(S3).

Here, we notice that G is not a subgroup of S2,1,2,3, while the intersection H =
G ∩S2,1,2,3 becomes non-trivial. In this case, we have H = {e, τσ} or {e, τσ3}. Thus, we
can regard the orbit P̃3 as a coset representative of H, so we think of the permutation
action on P̃3 by G. By considering the induced character from H to G of the restrictions
of the character χ1,A4 ∈ R(S2,1,2,3) to H, we obtain the following explicit description of
the γ-polynomial:the γ-polynomial of ∑

P̃∈P̃3

h∗(O(P̃, ω), ρ; t)

 = t(1 + χ3 + χ4 + χpermt).

Note that 1 + χ3 + χ4 corresponds to the character of the permutation representation of
the action of G on G/H.
P̃4 Similarly to the case of P̃3, we obtain thatthe γ-polynomial of ∑

P̃∈P̃4

h∗(O(P̃, ω), ρ; t)

 = t(1 + χ2 + χ4 + χpermt),

where 1 + χ2 + χ4 corresponds to the character of the permutation representation of the
action of G on G/H with H = G ∩S3,2,1,2 = {e, τ} or {e, τσ2}.
P̃5 There are 8 copies of the same poset P̃5 which is of the form A1 ⊕1 A2 ⊕−1 A3 ⊕1

A4 ⊕−1 A5 ⊕1 A6, where |A1| = |A6| = 2, and |A2| = |A3| = |A4| = |A5| = 1. Let P̃5 be
this G-orbit. Since the γ-polynomial of O(P̃5, ω) with respect to the S2,1,1,1,1,2-action is
just t2, we get the γ-polynomial of ∑

P̃∈P̃5

h∗(O(P̃, ω), ρ; t)

 = χpermt2.
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By summarizing those computations, we conclude that

γ(O(P, ω), ρ; t) = 1 + (2 + 3χ2 + 3χ3 + 4χ4)t + (9 + 9χ1 + 7χ2 + 7χ3 + 16χ4)t2

+ t(χperm + 4χpermt + 4χpermt2)

+ t(1 + χ3 + χ4 + χpermt) + t(1 + χ2 + χ4 + χpermt) + χpermt2

= 1 + (5 + χ1 + 5χ2 + 5χ3 + 8χ4)t

+ (16 + 16χ1 + 14χ2 + 14χ3 + 30χ4)t2 + 4(1 + χ1 + χ2 + χ3 + 2χ4)t3.
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