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Abstract. A celebrated result of Bousquet-Mélou and Jehanne (2006) states that the
bivariate power series solutions of so-called combinatorial polynomial equations with one
catalytic variable (or catalytic equations) are algebraic series. We give a purely combina-
torial derivation of this result in the case of order one catalytic equations (those involving
only one univariate unknown series). In particular our approach provides a tool to pro-
duce context-free specifications or bijections with simple multi-type families of trees
for the derivation trees of combinatorial structures that are directly governed by an
order one catalytic decomposition.

This provides a simple unified framework to deal with various combinatorial interpre-
tation problems that were solved or raised over the last 50 years since the first such
catalytic equation was written by W. T. Tutte in the 60’s to enumerate planar maps.
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1 Introduction

An order one catalytic equation is an equation of the form

F(t, u) = t ·Q
(

F(t, u),
1
u
(F(t, u)− F(t, 0)), u

)
, (1.1)

where Q(v, w, u) is a given formal power series in the variables v, w and u with non-
negative coefficients, and we are interested power series solutions F(t, u) in the variables
t and u. We refer to [2, 10] for the relevance of these equations in the combinatorial
literature, and examples of their many occurrences.

In [2], Bousquet-Mélou and Jehanne proved that a very general family of polynomial
equations with one catalytic variable have algebraic power series solutions. More precisely,
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as discussed in [18], in the case of a order one catalytic equation like (1.1) above, the
univariate part of the solution, f ≡ f (t) = F(t, 0), is given, if it exists, in terms of the
formal power series Q(v, w, u), by

f = C□ − C♦ · C▲ or d
dt f = (1 + C•) ·Q(C□, C▲, C♦), (1.2)

where C□ ≡ C□(t), C• ≡ C•(t), C♦ ≡ C♦(t) and C▲ ≡ C▲(t) are the unique power series
that satisfy the companion system

C□ = t ·Q(C□, C▲, C♦),
C• = t · (1 + C•) ·Q′v(C□, C▲, C♦),
C♦ = t · (1 + C•) ·Q′w(C□, C▲, C♦),
C▲ = t · (1 + C•) ·Q′u(C□, C▲, C♦).

(1.3)

On the one hand, when Q(v, w, u) is a polynomial with non-negative integer coeffi-
cients, it is not difficult to give a combinatorial interpretation to Equation (1.1) in terms
of labeled trees with non-negativity conditions on labels. This was done for instance in
[9] for a closely related family of equations, in terms of some description trees, or more
recently in [5] for a special case of Equation (1.1) in terms of some fully parked trees. On
the other hand, under the same hypotheses on Q(v, w, u), System (1.3) is a so-called N-
algebraic system, and the power series C□, C•, C♦ and C▲ admit natural interpretations
as generating functions (gf) of simple varieties of multi-type trees, as discussed in [1], or
[14, Chapter I, ex. I.53, p. 82]. However, by default there is no clear relations between
the first and second types of interpretations.

Our contribution1 is to fill in this gap by providing a general interpretation of Equa-
tion (1.1) in terms of a family of non-negative Q-trees (Section 2) and a bijection (Theo-
rem 3.1) between these trees and a related family of Q-companion trees (Section 3) that
provide simple interpretations of Equation (1.2) and System (1.3) (Theorems 3.2 and 3.4).

2 Non-negative Q-trees
2.1 Necklaces and non-negative Q-trees

Let Q denote a set of words on an alphabet {•, ♦, ▲} of pearls: we identify each element
w = w1 . . . wk of Q with a clockwise oriented necklace carrying one □-pearl followed
by the pearls w1, . . . , wk. In the rest of the article the set Q will be viewed as the set
of allowed vertex types for various families of plane trees. Accordingly, to a set Q of

1In this extended abstract all proofs are omitted, see full text [11] for proofs.
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w = Qall =

{
, , ,, , , , , . . . , , . . .

}
Qλ =

{
, ,

}

Figure 1: The graphical representation of the necklace w = •♦▲••♦, and the necklace
sets Qall = {•, ♦, ▲}∗ and Qλ = {••, ▲, ♦}.
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Figure 2: Three rooted Qall-trees with their excess labels, and with root indicated by a
# around the root □-pearl. The third one is also a Qλ-tree. The second and third ones
are non-negative while the first one is not.

necklaces we associate2 the vertex type generating function Q(v, w, u) as

Q(v, w, u) = ∑
s∈Q

v|s|•w|s|♦u|s|▲ . (2.1)

The necklace associated to the word w = •♦▲••♦ is represented on Figure 1, together
with our two running examples of necklace sets: Qall = {•, ♦, ▲}∗, the set of all neck-
laces, and Qλ = {••, ▲, ♦}, with only three allowed necklaces, with respective vertex
generating functions Qall(v, w, u) = 1/(1− (v + w + u)) and Qλ(v, w, u) = v2 + w + u.

As illustrated by Figure 2, a rooted Q-tree is a □-rooted plane tree with black and red
edges such that

• each vertex is a copy of a necklace of Q,
• each black edge connects a •-pearl to a □-pearl, i.e., takes the form • □,
• each red edge connects a ♦-pearl to a □-pearl, i.e., takes the form ♦ □,
• each pearl is incident to one edge except the □-root and the ▲-pearls which are free,

that is, incident to no edge.
The size |τ| of a Q-tree τ is the number of its vertices. By construction it is also the
number |τ|□ of □-pearls, and the number of edges plus one: |τ| = |τ|□ = |τ|•+ |τ|♦+ 1.

2For simplicity we state our results in this extended abstract for the unweighted case, but all of them
hold in fact unchanged in the weighted case Q(v, w, u) = ∑s∈Qall

qsv|s|•w|s|♦u|s|▲ .
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We are only interested in finite trees, so we shall assume from now on that Q contains
at least one vertex with no child, hence without •- or ♦-pearls.

The subtree τx of a rooted Q-tree τ at a pearl x consists of x and all the vertices,
edges and pearls that are on the other side of x with respect to the root of τ. The excess
of a pearl x in the Q-tree τ is the difference between the number of ▲- and ♦-pearls in
the subtree planted at x, x included: exc(x) = |τx|▲ − |τx|♦. The excess of a vertex v is
the excess of its local root (the only □-pearl on v), and the excess of τ is the excess of
its root, that is exc(τ) = |τ|▲ − |τ|♦. A non-negative Q-tree is a Q-tree whose excess is
non-negative at each pearl. These definitions are illustrated by Figure 2. Observe that
the non-negativity condition at each pearl in the definition of non-negative Q-trees is in
general more restrictive than just saying that the excess is non-negative at each vertex: for
instance this latter condition would be satisfied by the leftmost tree in Figure 2 whereas
it is not non-negative due to its ♦-pearl with excess −1.

Proposition 2.1. Let Q be as in (2.1) and Fk denote the set of non-negative Q-trees with excess
k and F =

⋃
k≥0Fk. Then the family F of non-negative Q-trees admits a catalytic specification:

F ≡ Q(• F , ♦ F+, ▲), (2.2)

meaning that each tree of F can be uniquely obtained from a necklace s ∈ Q upon attaching
• a black edge carrying a tree of F to each •-pearl of s,
• and a red edge carrying a tree of F+ = F \ F0 to each ♦-pearl of s.

In particular the gf F(u) ≡ F(t, u) = ∑τ∈F t|τ|uexc(τ) is the unique formal power series solution
of Equation (1.1), with F(u)− F(0) = F+(u) = ∑τ∈F+ t|τ|uexc(τ).

2.2 The closure and rewiring of a non-negative Q-tree

A plane map (resp. planar map) is an embedding of a connected graph in the plane (resp.
sphere), considered up to orientation-preserving homeomorphisms of the plane (resp.
sphere). Observe that the choice of unbounded face yields a bijection between planar
maps with n edges and a distinguished face and plane maps with n edges. It proves
convenient to describe our bijections graphically, in terms of spanning trees of plane
maps and non-crossing arc systems built around plane trees. These are very standard
combinatorial concepts, the basic definitions and results we rely upon can be found for
instance in [17]. From now on we view Q-trees as plane maps with one face and deco-
rated edges, in which necklaces are viewed as vertices and pearls as colored endpoints
of edges, and we consider more generally plane maps with such decorated vertices and
edges. In particular a plane map is rooted if one of its pearl is distinguished as the
root pearl. Observe that the root pearl is in general not required to be incident to the
unbounded face. Around a non-negative Q-tree τ, as illustrated by Figures 3 and 4, let

• a left ♦-corner refer to the exterior angular sector following a red edge in counter-
clockwise direction around a ♦-pearl,
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Figure 3: The left ♦-corners and ▲-corners of a non-negative Q-tree, and the matching
of a left ♦-corner with the next available ▲-corner in clockwise direction.

Figure 4: The matchings after first iteration and final result of the ♦-to-▲ clockwise
closure of the tree of Figure 3.

• a ▲-corner refer to the exterior angular sector around a ▲-pearl,
and define the (♦-to-▲ clockwise) closure c(τ) of τ as the plane map obtained by itera-
tively matching unmatched left ♦-corners that are followed by an unmatched ▲-corner in
clockwise direction around the tree, to form a planar system of non-crossing ♦-to-▲ clock-
wise edges, hereafter called blue edges (♦ ▲). This construction is a standard ingredient
of many bijections between plane maps and trees (see e.g. [17, Theorem 6]).

Proposition 2.2. The closure c(τ) of a non-negative Q-tree τ is a □-rooted plane maps with
vertices in Q, and black edges (• □), red edges (♦ □) and blue edges (♦ ▲) such that: (i) The
black and red edges of the spanning tree τ of c(τ) are such that all blue edges are ♦-to-▲ clockwise
around τ. (ii) The clockwise walk around each bounded face of c(τ) visits exactly one blue edge
in ♦-to-▲ direction and one red edge in □-to-♦ direction, and these two edges share their ♦-pearl.
(iii) Each ♦-pearl x of τ is matched with a ▲-pearl in its subtree τx. (iv) All unmatched ▲-pearls
in c(τ) lie in the unbounded face. The closure is injective and its inverse is the opening that
consists in deleting blue edges.

The rewiring ϕ(τ) of a Q-tree τ consists in its closure followed by the removal of red
edges, as illustrated by Figure 5.

Proposition 2.3. The rewiring ϕ(τ) of a non-negativeQ-tree τ is a tree with the same necklaces.
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ϕ

−→
←−

ϕ̄

Figure 5: The tree τ of Figure 3 (red and black edges) with its closure edges (dashed
blue lines), and its rewiring, ϕ(τ) (blue and black edges), with the inverse closure edges
(dashed red lines). Observe that as plane maps, the two only differ by the dashing of
blue versus red edges.

3 Q-companion trees and their decomposition
3.1 Q-companion trees and the main bijection

By construction, rewiring replaces each red edge of the form ♦ □ by a blue edge of the
form ♦ ▲ originating from the same ♦-pearl, as illustrated by Figure 5. Let us define
rooted Q-companion trees as pearl rooted plane trees with black and blue edges such that

• each vertex is a copy of a necklace of Q,
• each black edge connects a •-pearl to a □-pearl, i.e., takes the form • □.
• each blue edge connects a ♦-pearl to a ▲-pearl, i.e., takes the form ♦ ▲.
• each non-root •- or ♦-pearl is incident to exactly one edge, the root pearl is free

(i.e., incident to no edge) and each □- or ▲-pearl is incident to at most one edge.
The root pearl of a Q-companion tree can be of any type □, •, ♦, or ▲. By convention an
unrooted Q-companion tree is an equivalence class of □-rooted (or ▲-rooted) Q-companion
trees up to rerooting: in other terms it is an unrooted plane tree satisfying the conditions
above and without free •- or ♦-pearl (as it arises from □-rooted trees).

In any tree the number of vertices equals the number of edges plus one, so by defi-
nition, in a □- or ▲-rooted Q-companion tree τ′, |τ′|□ = |τ′|• + |τ′|♦ + 1. In particular
this implies that the number of □-pearls that are free is equal to the number of ♦-pearls
plus one. Like in Section 2.2, we then define the inverse (♦-to-□ counterclockwise) clo-
sure c̄(τ′) of a □-rooted, ▲-rooted or unrooted Q-companion tree τ′ as the plane map
obtained by matching iteratively right ♦-corners that are followed by an unmatched □-
corner in counterclockwise direction around the tree to form a planar system of red
edges: in particular c̄(τ′) is a plane map with exactly one unmatched □-pearl, and c̄(τ′)
is rooted if τ′ is, by keeping the same root pearl. If τ′ = ϕ(τ) then c̄(τ′) = c(τ).
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Figure 6: Three rooted Q-companion trees (root pearl indicated by #) with their in-
verse closure edges (dashed red lines), and sharing the same underlying unrooted tree.
The leftmost tree is □-rooted and unbalanced, the middle one is □-rooted and balanced,
they both have one internal and one external defects. The rightmost one is ▲-rooted
and unbalanced, without internal defects (root ▲-pearls do not count).

Figure 7: An unbalanced Q-companion tree without defect and the corresponding pair
of ♦- and ▲-rooted Q-companion trees without defects.

A □-rooted Q-companion tree is balanced if it is rooted on the unique □-pearl that
remains free in its closure, unbalanced otherwise. Similarly a ▲-rooted Q-companion tree
is balanced if its root pearl remains in the outer face after its closure, unbalanced otherwise.
These definitions are illustrated by Figure 6. The inverse rewiring ϕ̄(τ′) of a balanced □-
rooted Q-companion tree τ′ is obtained from c̄(τ′) by removing the blue edges. Finally
the non-root free ▲-pearls of a Q-companion tree are referred to as defects. A defect in a
□-rooted Q-companion tree τ′ is said to be external (resp. internal) if it lies in the outer
face (resp. in an inner face) of the inverse closure c̄(τ′) of τ′.

Theorem 3.1. Rewiring and inverse rewiring are necklace-preserving bijections between
• non-negative Q-trees with excess k ≥ 0,
• and balanced □-rooted Q-companion trees with k external defects and no internal defects.

3.2 Unrooted and rooted Q-companion trees without defects

Let C denote the family of unrootedQ-companion trees without defects, and C□, C•, C♦
and C▲ denote respectively □-, •-, ♦- and ▲-rooted Q-companion trees without defects
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(without the requirement of being balanced).

Theorem 3.2. There are necklace-preserving bijections between
• balanced □-rooted Q-companion trees without defects,
• and unrooted Q-companion trees without defects,

and, as illustrated by Figure 7, between
• unbalanced □-rooted Q-companion trees without defects,
• and pairs made of a ♦-rooted Q-companion tree and a ▲-rooted Q-companion tree, both

without defects.

Theorems 3.1 and 3.2 reduce the enumeration of non-negative Q-trees with excess 0
to that of rooted Q-companion trees without defects.

Corollary 3.3. There is a necklace-preserving bijection between C□ and C ∪ (C♦ × C▲), or in
other terms, between non-negative Q-trees with excess 0, and □-rooted Q-companion trees that
are not unbalanced:

F0 ≡ C ≡ C□ \ (C♦ × C▲).

In particular this yields our combinatorial interpretation of the first equation in (1.2) with f ≡
F(t, 0) = ∑τ∈F0

t|τ| the gf of non-negative Q-trees with excess 0, C ≡ C(t) = ∑τ∈C t|τ| that
of unrooted Q-companion trees, and C□, C•, C♦, and C▲ of □-rooted, •-rooted, ♦-rooted, and
▲-rooted Q-companion trees.

3.3 The decomposition of Q-companion trees without defects

The analysis of possible root necklaces in Q-companion trees is illustrated by Figure 8:
• the set of root vertex types of □-rooted Q-companion trees is Q, since each necklace

s ∈ Q has exactly one □-pearl,
• the set Q′• of root vertex types of •-rooted Q-companion trees is the union for all

necklaces s ∈ Q of the |s|• different rerootings of s on a •-pearl,
• the set Q′♦ of ♦-rooted Q-companion trees and Q′▲ of ▲-rooted Q-companion trees

are obtained similarly.
Any □-rooted Q-companion tree without defects can thus be uniquely produced by
selecting a necklace s ∈ Q together with |s|• subtrees from Q□, |s|♦ subtrees from Q▲

and |s|▲ subtrees from Q♦, and attaching these subtrees to the pearls of s. This operation
is summarized as C□ ≡ Q(• C□, ♦ C▲, ▲ C♦).

The same approach allows us to deal with •-rooted Q-companion trees without de-
fects, upon taking s ∈ Q′• and adding a possibly empty extra subtree in Q• to attach to
the □-pearl of s. The other classes C♦ and C▲ admit similar decompositions.

Theorem 3.4. The standard root vertex decomposition of multi-type rooted trees yields the fol-
lowing context-free specification of rooted Q-companion trees without defects:
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Figure 8: On the left hand side, the decompositions of rooted Q-companion trees,
illustrated in the case of a root vertex with necklace type •▲▲•▲♦♦. On the right hand
side, the corresponding derived necklaces types and contribution to the necklace gf.
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Figure 9: A closed planar λ-term (bottom left), the corresponding non-negative Qλ-
tree (blue closing edges) and its balanced Qλ-companion tree (red closure edges). On
the right the decomposition of □- and •-rooted Qλ-companion trees without excess.
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C□ ≡ Q(• C□, ♦ C▲, ▲ C♦),
C• ≡ (□+ □ C•)×Q′•(• C□, ♦ C▲, ▲ C♦),
C♦ ≡ (□+ □ C•)×Q′♦(• C□, ♦ C▲, ▲ C♦),
C▲ ≡ (□+ □ C•)×Q′▲(• C□, ♦ C▲, ▲ C♦),
C# ≡ (□+ □ C•)×Q(• C□, ♦ C▲, ▲ C♦),

(3.1)

where Q(• C□, ♦ C▲, • C♦) denotes the set of trees obtained from a necklace of Q by attaching
to each •-pearl a subtree of the form • C□, to each ▲-pearl a subtree of the form ▲ C♦, and to
each ♦-pearl a subtree of the form ♦ C▲, and similarly for the other equations, and where C#

denotes the set of unrooted Q-companion trees without defects with a marked necklace.
The first four equations yield our interpretation of System (1.3). Since marking a necklace

in an unrooted Q-companion tree amounts to marking the same necklace in the corresponding
non-negative Q-tree, the fifth equation yields our interpretation of the second equation in (1.2).

4 The example of λ-terms and parking functions

The planar λ-terms of [19] can be described as unary-binary trees with three types of
vertices corresponding to variables (leaves), abstractions (unary nodes), and applications
(binary nodes), such that each abstraction can be matched to a distinct variable in its
subtree. A planar λ-term is closed if the matching leaves no unmached variables.

As illustrated by Figure 9, these structures can immediately be interpreted as non-
negative Qλ-trees, with vertex type generating function Qλ(v, w, u) = u + v2 + w (recall
Figure 1). In particular, their gf is governed by the corresponding catalytic equation:
F(u) = tQλ(F(u), 1

u (F(u)− F(0)), u) = tu+ tF(u)2 + t
u (F(u)− F(0)). Theorem 3.1 yields

a direct bijection between closed planar λ-terms with n abstractions (and n variables and
n− 1 applications) and unrooted Qλ-companion trees with 3n− 1 necklaces. According
to Theorem 3.4, the corresponding □-rooted Qλ-companion trees are governed by the
N-algebraic system of Figure 9, with in particular C□ = tC2

□ + 2t2(1 + C•), and C• =
2tC□(1 + C•). This decomposition can be wrapped up in a single equation, i.e. □-rooted
Qλ-companion trees form a simple variety of trees [14]: C□ = tC2

□ + 2t2/(1− 2tC□). As
far as we know this is the first direct bijection between λ-terms and simple trees.

Non-negative Q-trees also encompass the parking trees of [16], also studied in [5, 7, 6].
In this context, non-negative Q-trees can be viewed as a generalization of parking trees
where the ▲-pearls play the role of cars and the ♦-pearls that of parking spots, and non-
negative trees with excess 0 correspond to fully parked trees, in which all cars are parked
at the end of the process. Our rewiring bijection can in particular be understood as a
combinatorial straightening of the coupling introduced independently in [7] to relate the
properties of a specific type of such random fully parked trees to random Galton-Watson
trees.
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5 Conclusion

In many instances, e.g. [4, 3, 5, 9, 12, 15, 19], Equation (1.1) arises from the transla-
tion for the gf F(t, u) of a catalytic specification of the form (2.2) for a bigraded com-
binatorial class F with objects γ equipped with an additive size |γ| with positive in-
crements (marked by t), and an additive catalytic parameter c(γ) with signed incre-
ments but a non-negativity constraint (marked by u): the series f = F(t, 0) is the gf of
F0 = {γ ∈ F | c(γ) = 0} and d

dt f is a gf for marked F0-structures.
Following the Schützenberger methodology [1], the fact that d

dt f can be expressed
positively in terms of the solutions of System (1.3) raises the question of giving a context-
free specification of the form (3.1) for marked F0-structures. To do this some knowledge
of the actual recursive decomposition of the F -structures is needed, which is typically
encoded by a family of derivation trees describing the way the recursion unfolds. Our
model of non-negative Q-trees includes naturally many (most?) of the derivation trees
associated to first order catalytic decompositions in the literature. Hence our result
yields a generic recipe to convert a catalytic specification governed by Equation (1.1) into
a bijection between the associated derivation trees for F0 and simple varieties of multi-
type trees governed by Equation (1.2)–(1.3). Depending on the actual relation between
the underlying combinatorial structures and their derivation trees, this can then also
lead to a direct context-free specification of the marked F0-structures counted by d

dt f .
A natural followup of this work is to make explicit the direct context-free specifica-

tions that derives from our result for the many known families of combinatorial struc-
tures governed by order-one catalytic equations. With the exception of [13], the only
results of this type we are aware of are for planar maps: they go back to work of Cori
prompted by Schützenberger [8], with a rich series of subsequent works [17] with on-
going offsprings. Hopefully the present extension of these ideas to arbitrary structures
governed by order one catalytic equations can lead to further interesting developments.
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