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Abstract. A celebrated result of Bousquet-Mélou and Jehanne (2006) states that the
bivariate power series solutions of so-called combinatorial polynomial equations with one
catalytic variable (or catalytic equations) are algebraic series. We give a purely combina-
torial derivation of this result in the case of order one catalytic equations (those involv-
ing only one univariate unknown series). In particular our approach provides a tool
to produce context-free specifications or bijections with simple multi-type families of
trees for the derivation trees of combinatorial structures that are directly governed
by an order one catalytic decomposition.

This provides a simple unified framework to deal with various combinatorial in-
terpretation problems that were solved or raised over the last 50 years since the first
such catalytic equation was written by W. T. Tutte in the late 60’s to enumerate rooted
planar maps.

Résumé. Un résultat célèbre de Bousquet-Mélou et Jehanne (2006) dit que les solu-
tions séries formelles bivariées des équations dites polynomiales à une variable cataly-
tique sont des séries algébriques. Nous donnons une preuve purement combinatoire
de ce résultat dans le cas des équations catalytiques d’ordre 1 (celles qui ne font inter-
venir que des dérivées discrètes d’ordre 1). En particulier notre approche fournit
un outil pour produire des décompositions algébriques ou des bijections avec des
familles simples d’arbres multi-types pour les arbres de dérivations associées aux
objects combinatoires gouvernés par une décomposition catalytique d’ordre 1.

Ceci donne un cadre unifié et simple pour traiter divers problèmes d’interprétation
combinatoire soulevés ou traités durant ces dernières 50 années depuis que la pre-
mière équation de ce type a été écrite par W.T. Tutte à la fin des années 60 pour
compter des cartes planaires enracinées.
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1 Introduction

An order one catalytic equation is an equation of the form

F(t, u) = t ·Q
(

F(t, u),
1
u
(F(t, u)− F(t, 0)), u

)
, (1.1)

where Q(v, w, u) is a given formal power series in the variables v, w and u with non-
negative coefficients, and we are interested power series solutions F(t, u) in the vari-
ables t and u. We refer to [1, 3, 12] for the relevance of these equations in the combina-
torial literature, and examples of their many occurrences.

In [3], Bousquet-Mélou and Jehanne proved that a very general family of polynomial
equations with one catalytic variable have algebraic power series solutions. More precisely,
as discussed in [20], in the case of a order one catalytic equation like (1.1) above, the
univariate part of the solution, f ≡ f (t) = F(t, 0), is given, if it exists, in terms of the
formal power series Q(v, w, u), by

f = C□ − C♦ · C▲ or d
dt f = (1 + C•) ·Q(C□, C▲, C♦), (1.2)

where C□ ≡ C□(t), C• ≡ C•(t), C♦ ≡ C♦(t) and C▲ ≡ C▲(t) are the unique power
series that satisfy the companion system

C□ = t ·Q(C□, C▲, C♦),
C• = t · (1 + C•) ·Q′v(C□, C▲, C♦),
C♦ = t · (1 + C•) ·Q′w(C□, C▲, C♦),
C▲ = t · (1 + C•) ·Q′u(C□, C▲, C♦).

(1.3)

The purpose of this article is to give a combinatorial derivation of this result.

On the one hand, when Q(v, w, u) is a polynomial with non-negative integer coeffi-
cients, it is not difficult to give a combinatorial interpretation to Equation (1.1) in terms
of labeled trees with non-negativity conditions on labels. This was done for instance
in [11] for a closely related family of equations, in terms of some description trees, or
more recently in [7] for a special case of Equation (1.1) in terms of some fully parked
trees. On the other hand, under the same hypotheses on Q(v, w, u), System (1.3) is a
so-called N-algebraic system, and the power series C□, C•, C♦ and C▲ admit natural
interpretations as generating functions (gf) of simple varieties of multi-type trees, as
discussed in [2], or [16, Chapter I, ex. I.53, p82]. However, by default there is no clear
relations between the first and second types of interpretations.

Our main contribution is to fill in this gap by providing a general interpretation of
Equation (1.1) in terms of a family of non-negative Q-trees (Section 2) and a bijection
(Theorem 4) between these trees and a related family of Q-companion trees (Section 3)
that provide simple interpretations of Equation (1.2) and System (1.3) (Theorems 5
and 7).

In this extended abstract all proofs are omitted, see full text [13] for proofs.
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w = Qall =
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Qλ =
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}

Figure 1: The graphical representation of the necklace w = •♦▲••♦, and the necklace
sets Qall = {•, ♦, ▲}∗ and Qλ = {••, ▲, ♦}.

2 Non-negative Q-trees
2.1 Necklaces and non-negative Q-trees

Let Q denote a set of words on an alphabet {•, ♦, ▲} of pearls: we identify each element
w = w1 . . . wk of Q with a clockwise oriented necklace carrying one □-pearl followed
by the pearls w1, . . . , wk. In the rest of the article the set Q will be viewed as the set
of allowed vertex types for various families of plane trees. Accordingly, to a set Q of
necklaces we associate1 the vertex type generating function Q(v, w, u) as

Q(v, w, u) = ∑
s∈Q

v|s|•w|s|♦u|s|▲ . (2.1)

The necklace associated to the word w = •♦▲••♦ is represented on Figure 1, together
with our two running examples of necklace sets: Qall = {•, ♦, ▲}∗, the set of all neck-
laces, and Qλ = {••, ▲, ♦}, with only three allowed necklaces, with respective vertex
generating functions Qall(v, w, u) = 1/(1− (v + w + u)) and Qλ(v, w, u) = v2 + w + u.

As illustrated by Figure 2, a rooted Q-tree is a □-rooted plane tree with black and
red edges such that

• each vertex is a copy of a necklace of Q,
• each black edge connects a •-pearl to a □-pearl, i.e., takes the form • □,
• each red edge connects a ♦-pearl to a □-pearl, i.e., takes the form ♦ □,
• each pearl is incident to one edge except the □-root and the ▲-pearls which are

free, that is, incident to no edge.
The size |τ| of a Q-tree τ is the number of its vertices. By construction it is also the
number |τ|□ of □-pearls, and the number of edges plus one: |τ| = |τ|□ = |τ|• +
|τ|♦ + 1. We are only interested in finite trees, so we shall assume from now on that Q
contains at least one vertex with no child, hence without •- or ♦-pearls.

The subtree τx of a rooted Q-tree τ at a pearl x consists of x and all the vertices,
edges and pearls that are on the other side of x with respect to the root of τ. The excess
of a pearl x in the Q-tree τ is the difference between the number of ▲- and ♦-pearls in
the subtree planted at x, x included: exc(x) = |τx|▲ − |τx|♦. The excess of a vertex v is
the excess of its local root (the only □-pearl on v), and the excess of τ is the excess of its

1For simplicity we state our results in this extended abstract for the unweighted case, but all of them
hold in fact unchanged in the weighted case Q(v, w, u) = ∑s∈Qall

qsv|s|•w|s|♦u|s|▲ .
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Figure 2: Three rooted Qall-trees with their excess labels, and with root indicated by
a # around the root □-pearl. The third one is also a Qλ-tree. The second and third
ones are non-negative while the first one is not.

root, that is exc(τ) = |τ|▲− |τ|♦. A non-negative Q-tree is a Q-tree whose excess is non-
negative at each pearl. These definitions are illustrated by Figure 2. Observe that the
non-negativity condition at each pearl in the definition of non-negative Q-trees is in
general more restrictive than just saying that the excess is non-negative at each vertex:
for instance this latter condition would be satisfied by the leftmost tree in Figure 2
whereas it is not non-negative due to its ♦-pearl with excess −1.

The following alternative recursive characterization of non-negative Q-trees follows
immediately from the standard root vertex decomposition of ordered:

Proposition 1. Let Q be as in (2.1) and Fk denote the set of non-negative Q-trees with excess
k and F =

⋃
k≥0Fk. Then the family F of non-negative Q-trees admits the following catalytic

specification:

F ≡ Q(• F , ♦ F+, ▲), (2.2)

meaning that each tree of F can be uniquely obtained from a necklace s ∈ Q upon attaching
• a black edge carrying a tree of F to each •-pearl of s,
• and a red edge carrying a tree of F+ = F \ F0 to each ♦-pearl of s.

In particular the gf F(u) ≡ F(t, u) = ∑τ∈F t|τ|uexc(τ) is the unique formal power series
solution of Equation (1.1), with F(u)− F(0) = F+(u) = ∑τ∈F+ t|τ|uexc(τ).

2.2 The closure and rewiring of a non-negative Q-tree

A plane map (resp. planar map) is an embedding of a connected graph in the plane
(resp. sphere), considered up to orientation-preserving homeomorphisms of the plane
(resp. sphere). Observe that the choice of unbounded face yields a bijection between
planar maps with n edges and a distinguished face and plane maps with n edges. It
proves convenient to describe our bijections graphically, in terms of spanning trees of
plane maps and non-crossing arc systems built around plane trees. These are very
standard combinatorial concepts, the basic definitions and results we rely upon can be
found for instance in [19]. From now on we view Q-trees as plane maps with one face
and decorated edges, in which necklaces are viewed as vertices and pearls as colored
endpoints of edges, and we consider more generally plane maps with such decorated
vertices and edges. In particular a plane map is rooted if one of its pearl is distinguished
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Figure 3: The left ♦-corners and ▲-corners of a non-negativeQ-tree, and the matching
of a left ♦-corner with the next available ▲-corner in clockwise direction.

Figure 4: The matchings after first iteration and final result of the ♦-to-▲ clockwise
closure of the tree of Figure 3.

as the root pearl. Observe that the root pearl is in general not required to be incident
to the unbounded face, although this will often be an interesting case.

Around a non-negative Q-tree τ, as illustrated by Figure 3, let
• a left ♦-corner refer to the exterior angular sector following a red edge in counter-

clockwise direction around a ♦-pearl,
• a ▲-corner refer to the exterior angular sector around a ▲-pearl,

and define the (♦-to-▲ clockwise) closure c(τ) of τ as the plane map obtained by itera-
tively matching unmatched left ♦-corners that are followed by an unmatched ▲-corner
in clockwise direction around the tree, to form a planar system of non-crossing ♦-to-
▲ clockwise edges, hereafter called blue edges (♦ ▲). This construction, illustrated by
Figures 3 and 4, is a standard ingredient of many bijections between plane maps and
trees (see e.g. [19, Thm 6]).

The following proposition directly arises from the definition of the closure:

Proposition 2. The closure c(τ) of a non-negative Q-tree τ is a □-rooted plane maps with
vertices in Q, and black edges (• □), red edges (♦ □) and blue edges (♦ ▲) such that:

(i) The black and red edges of the spanning tree τ of c(τ) are such that all blue edges are
♦-to-▲ clockwise around τ,

(ii) The clockwise walk around each bounded face of c(τ) visits exactly one blue edge in ♦-to-▲
direction and one red edge in □-to-♦ direction, and these two edges share their ♦-pearl.

(iii) Each ♦-pearl x of τ is matched with a ▲-pearl in its subtree τx.
(iv) All unmatched ▲-pearls in c(τ) lie in the unbounded face.

The closure is injective and its inverse is the opening that consists in deleting blue edges.
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ϕ

−→
←−

ϕ̄

Figure 5: The tree τ of Figure 3 (red and black edges) with its closure edges (dashed
blue lines), and its rewiring, ϕ(τ) (blue and black edges), with the inverse closure
edges (dashed red lines). Observe that as plane maps, the two only differ by the
dashing of blue versus red edges.

The rewiring ϕ(τ) of a Q-tree τ consists in its closure followed by the removal of
red edges, as illustrated by Figure 5. Using Property (iii) above and induction:

Proposition 3. The rewiring ϕ(τ) of a non-negativeQ-tree τ is a tree with the same necklaces.

3 Q-companion trees and their decomposition
3.1 Q-companion trees and the main bijection

By construction, rewiring replaces each red edge of the form ♦ □ by a blue edge of the
form ♦ ▲ originating from the same ♦-pearl, as illustrated by Figure 5. Let us define
rootedQ-companion trees as pearl rooted plane trees with black and blue edges such that

• each vertex is a copy of a necklace of Q,
• each black edge connects a •-pearl to a □-pearl, i.e., takes the form • □.
• each blue edge connects a ♦-pearl to a ▲-pearl, i.e., takes the form ♦ ▲.
• each non-root •- or ♦-pearl is incident to exactly one edge, the root pearl is free

(i.e., incident to no edge) and each □- or ▲-pearl is incident to at most one edge.
The root pearl of a Q-companion tree can be of any type □, •, ♦, or ▲. By conven-
tion an unrooted Q-companion tree is an equivalence class of □-rooted (or ▲-rooted) Q-
companion trees up to rerooting: in other terms it is an unrooted plane tree satisfying
the conditions above and without free •- or ♦-pearl (as it arises from □-rooted trees).

In any tree the number of vertices equals the number of edges plus one, so by defi-
nition, in a □- or ▲-rooted Q-companion tree τ′, |τ′|□ = |τ′|• + |τ′|♦ + 1. In particular
this implies that the number of □-pearls that are free is equal to the number of ♦-pearls
plus one. Like in Section 2.2, we then define the inverse (♦-to-□ counterclockwise) clo-
sure c̄(τ′) of a □-rooted, ▲-rooted or unrooted Q-companion tree τ′ as the plane map
obtained by matching iteratively right ♦-corners that are followed by an unmatched
□-corner in counterclockwise direction around the tree to form a planar system of red
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Figure 6: Three rooted Q-companion trees (root pearl indicated by #) with their
inverse closure edges (dashed red lines), and sharing the same underlying unrooted
tree. The leftmost tree is □-rooted and unbalanced, the middle one is □-rooted and
balanced, they both have one internal and one external defects. The rightmost one is
▲-rooted and unbalanced, without internal defects (root ▲-pearls do not count).

edges: in particular c̄(τ′) is a plane map with exactly one unmatched □-pearl, and c̄(τ′)
is rooted if τ′ is, by keeping the same root pearl. If τ′ = ϕ(τ) then c̄(τ′) = c(τ).

A □-rooted Q-companion tree is balanced if it is rooted on the unique □-pearl that
remains free in its closure, unbalanced otherwise. Similarly a ▲-rooted Q-companion
tree is balanced if its root pearl remains in the outer face after its closure, unbalanced
otherwise. These definitions are illustrated by Figure 6. The inverse rewiring ϕ̄(τ′)
of a balanced □-rooted Q-companion tree τ′ is obtained from c̄(τ′) by removing the
blue edges. Finally the non-root free ▲-pearls of a Q-companion tree are referred to as
defects. A defect in a □-rooted Q-companion tree τ′ is said to be external (resp. internal)
if it lies in the outer face (resp. in an inner face) of the inverse closure c̄(τ′) of τ′.

Theorem 4. Rewiring and inverse rewiring are necklace-preserving bijections between
• non-negative Q-trees with excess k ≥ 0,
• and balanced □-rooted Q-companion trees with k external defects and no internal defects.

3.2 Unrooted and rooted Q-companion trees without defects

Let us now relate bijectively the family of balanced □-rooted Q-companion trees with-
out defects to the family C of unrooted Q-companion trees without defects, and to
the various families C□, C•, C♦ and C▲ of □-, •-, ♦- and ▲-rooted Q-companion trees
without defects (without the requirement of being balanced).

Theorem 5. There are necklace-preserving bijections between
• balanced □-rooted Q-companion trees without defects,
• and unrooted Q-companion trees without defects,

and, as illustrated by Figure 7, between
• unbalanced □-rooted Q-companion trees without defects,
• and pairs made of a ♦-rooted Q-companion tree and a ▲-rooted Q-companion tree, both

without defects.

Theorems 4 and 5 reduce the enumeration of non-negative Q-trees with excess 0 to
that of rooted Q-companion trees without defects.
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Figure 7: An unbalanced Q-companion tree without defect and the corresponding
pair of ♦- and ▲-rooted Q-companion trees without defects.

Corollary 6. There is a necklace-preserving bijection between C□ and C ∪ (C♦ × C▲), or in
other terms, between non-negative Q-trees with excess 0, and □-rooted Q-companion trees that
are not unbalanced:

F0 ≡ C ≡ C□ \ (C♦ × C▲).

In particular this yields our combinatorial interpretation of the first equation in (1.2) with
f ≡ F(t, 0) = ∑τ∈F0

t|τ| the gf of non-negative Q-trees with excess 0, C ≡ C(t) = ∑τ∈C t|τ|

that of unrooted Q-companion trees, and C□, C•, C♦, and C▲ of □-rooted, •-rooted, ♦-rooted,
and ▲-rooted Q-companion trees.

3.3 The decomposition of Q-companion trees without defects

The analysis of possible root necklaces in Q-companion trees is illustrated by Figure 8:
• the set of root vertex types of □-rooted Q-companion trees is Q, since each neck-

lace s ∈ Q has exactly one □-pearl,
• the set Q′• of root vertex types of •-rooted Q-companion trees is the union for all

necklaces s ∈ Q of the |s|• different rerootings of s on a •-pearl,
• the setQ′♦ of ♦-rootedQ-companion trees andQ′▲ of ▲-rootedQ-companion trees

are obtained similarly.
Any □-rooted Q-companion tree without defects can thus be uniquely produced by
selecting a necklace s ∈ Q together with |s|• subtrees from Q□, |s|♦ subtrees from
Q▲ and |s|▲ subtrees from Q♦, and attaching these subtrees to the pearls of s. This
operation is summarized as C□ ≡ Q(• C□, ♦ C▲, ▲ C♦).

The same approach allows us to deal with •-rooted Q-companion trees without
defects, upon taking s ∈ Q′• and adding a possibly empty extra subtree in Q• to attach
to the □-pearl of s. The other classes C♦ and C▲ admit similar decompositions.

Theorem 7. The standard root vertex decomposition of multi-type rooted trees yields the fol-
lowing context-free specification of rooted Q-companion trees without defects:

C□ ≡ Q(• C□, ♦ C▲, ▲ C♦),
C• ≡ (□+ □ C•)×Q′•(• C□, ♦ C▲, ▲ C♦),
C♦ ≡ (□+ □ C•)×Q′♦(• C□, ♦ C▲, ▲ C♦),
C▲ ≡ (□+ □ C•)×Q′▲(• C□, ♦ C▲, ▲ C♦),
C# ≡ (□+ □ C•)×Q(• C□, ♦ C▲, ▲ C♦),

(3.1)
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Figure 8: On the left hand side, the decompositions of rooted Q-companion trees,
illustrated in the case of a root vertex with necklace type •▲▲•▲♦♦. On the right hand
side, the corresponding derived necklaces types and contribution to the necklace
gf. Observe that if the set of allowed necklaces Q is finite, this specification is N-
algebraic in the sense of [2, 16].

whereQ(• C□, ♦ C▲, • C♦) denotes the set of trees obtained from a necklace ofQ by attaching
to each •-pearl a subtree of the form • C□, to each ▲-pearl a subtree of the form ▲ C♦, and to
each ♦-pearl a subtree of the form ♦ C▲, and similarly for the other equations, and where C#

denotes the set of unrooted Q-companion trees without defects with a marked necklace.
The first four equations yield our interpretation of System (1.3). Since marking a necklace

in an unrooted Q-companion tree amounts to marking the same necklace in the corresponding
non-negative Q-tree, the fifth equation yields our interpretation of the second equation in (1.2).

4 The example of λ-terms and parking functions

The planar λ-terms of [21] can be described as unary-binary trees with three types of
vertices corresponding to variables (leaves), abstractions (unary nodes), and applica-
tions (binary nodes), such that each abstraction can be matched to a distinct variable
in its subtree. A planar λ-term is closed if the matching leaves no unmached variables.
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Figure 9: A closed planar λ-term (bottom left), the corresponding non-negative Qλ-
tree (blue closing edges) and its balancedQλ-companion tree (red closure edges). On
the right the decomposition of □- and •-rooted Qλ-companion trees without excess.

As illustrated by Figure 9, these structures can immediately be interpreted as non-
negative Qλ-trees, with vertex type generating function Qλ(v, w, u) = u+ v2 +w (recall
Figure 1). In particular, their gf is governed by the corresponding catalytic equation:

F(u) = tQλ(F(u), 1
u (F(u)− F(0)), u) = tu + tF(u)2 + t

u (F(u)− F(0)).

Theorem 4 yields a direct bijection between closed planar λ-terms with n abstractions
(and n variables and n− 1 applications) and unrooted Qλ-companion trees with 3n− 1
necklaces. According to Theorem 7, the corresponding □-rooted Qλ-companion trees
are governed by the N-algebraic system of Figure 9, with equations{

C□ = tC2
□ + 2t2(1 + C•),

C• = 2tC□(1 + C•).

Equivalently, the decomposition can be wrapped up in a single equation, so that □-
rooted Qλ-companion trees form a simple variety of trees in the sense of [16]:

C□ = tC2
□ +

2t2

1− 2tC□
=

2t2

(1− tC□)(1− 2tC□)
.

As far as we know this is the first direct bijection between λ-terms and simple trees.
Non-negative Q-trees also encompass the parking trees introduced in [18] and stud-

ied in [7, 8, 9]. In this context, non-negative Q-trees can be viewed as a generalization
of parking trees where the ▲-pearls play the role of cars and the ♦-pearls that of parking
spots, and non-negative trees with excess 0 correspond to so-called fully parked trees,
in which all cars are parked at the end of the process: these trees play a distinguished
role in the study of the parking processes on random trees.

Our rewiring bijection can in particular be understood as a combinatorial straight-
ening of the coupling introduced independently in [8] to relate the properties of a
specific type of such random fully parked trees to random Galton-Watson trees.



Order One Catalytic Equations and context-free specifications 11

5 Conclusion

In many instances, e.g. [5, 6, 7, 11, 14, 17, 21], Equation (1.1) arises from the direct
translation for the gf F(t, u) of a catalytic specification i.e., a combinatorial recursive
decomposition that can be put in the form (2.2) for a bigraded combinatorial class
F whose objects γ are equipped with an additive size |γ| with positive increments
(marked by t), and an additive catalytic parameter c(γ) with signed increments but a
non-negativity constraint (marked by u): the series f = F(t, 0) is the gf of the subclass
F0 = {γ ∈ F | c(γ) = 0} and d

dt f is a gf for marked F0-structures.
Following the Schützenberger methodology as described for instance in [2], the fact

that d
dt f can be expressed positively in terms of the solutions of System (1.3) raises

the question of giving a context-free specification of the form (3.1) for marked F0-
structures. To answer this question some knowledge of the actual recursive decompo-
sition of the F -structures is needed, which is typically encoded by a family of derivation
trees describing the way the recursion unfolds.

The strength of our model of non-negative Q-trees is that it includes naturally
many (most?) of the derivation trees associated to first order catalytic decompositions
in the literature. As a consequence, our result can be considered as a generic recipe
to convert a catalytic specification governed by Equation (1.1) into a bijection between
the associated derivation trees for F0 and simple varieties of multi-type trees governed
by Equations (1.2)–(1.3). Depending on the actual relation between the underlying
combinatorial structures and their derivation trees, this can then also lead to direct
context-free specification of the marked F0-structures counted by d

dt f .
A natural followup of this work is to make explicit the direct context-free specifica-

tions and bijections with simple varieties of trees that can be derived from our result for
the various above mentioned families of combinatorial structures governed by order-
one catalytic equations. The only results of this type we are aware of are for planar
maps, with the notable exception of [15]. The search for context-free specifications for
planar maps can be traced back to early work of Cori prompted by Schützenberger [10]
and has led to a long and rich series of work [19] with ongoing offsprings [4]. Hope-
fully the extension of these ideas to arbitrary structures governed by order one catalytic
equations that we have proposed here can lead to further interesting developments.

Acknowledgments. To W. Fang, Y. Kahane and C. Henriet for interesting discussions.
To the referees for useful comments and suggestions of improvement of the text.
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