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Combinatorial invariants of finite metric spaces
and the Wasserstein arrangement
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Abstract. In 2010, Vershik proposed a new combinatorial invariant of metric spaces
given by a class of polytopes that arise in the theory of optimal transport and are called
“Wasserstein polytopes” or “Kantorovich–Rubinstein polytopes” in the literature. An-
swering a question posed by Vershik, we describe the stratification of the metric cone
induced by the combinatorial type of these polytopes through a hyperplane arrange-
ment. Moreover, we study its relationships with the stratification by combinatorial
type of the injective hull (i.e., the tight span) and, in particular, with certain types of
metrics arising in phylogenetic analysis. We also compute enumerative invariants in
the case of metrics on up to six points.
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1 Introduction

This article is centered around the study of finite metric spaces through the lens of
polytopes and hyperplane arrangements. Finite metric spaces arise in several applied
contexts. Let us mention for instance mathematical biology, where finite metrics model
genetic dissimilarities between different species [27]. In this setting, a main research
direction is to identify suitable classes of metric spaces and study the combinatorics and
geometry of the associated subset of the metric cone, e.g., for geometric statistics. This
field of research goes back to the study of phylogenetic trees [1, 4], has grown to include
more general phylogenetic networks [19] and is presently very active (see e.g., [12, 15,
14]).

One of the combinatorial invariants of metric spaces that are widely used in the
aforementioned applications as well as for theoretical considerations is their injective
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hull, introduced by Isbell [20] and rediscovered by Dress [13] under the name tight span.
The stratification of the metric cone by combinatorial type of tight spans is equivalent to
the one determined by the subdivisions of the second hypersimplex studied by Sturmfels
and Yu [28] and recently by Casabella, Joswig, and Kastner [6].

Motivated by the theory of optimal transport, Vershik described a correspondence
between finite metric spaces and a class of symmetric convex polytopes, the so-called
Kantorovich–Rubinstein–Wasserstein (KRW) polytopes or fundamental polytopes [29].

Definition 1.1. The KRW polytope of an n-metric ρ is a polytope in Rn defined as the
convex hull:

KRW(ρ) = conv

{
ei − ej

ρij

∣∣∣∣∣ 1 ≤ i, j ≤ n

}
,

where ei is the i-th standard basis vector of Rn. From now on, we abbreviate

pij :=
ei − ej

ρij
for i ̸= j.

The metric is called generic if it is strict and the KRW polytope is simplicial.

If ρ is the n-metric with ρij = 1 for all i ̸= j, then KRW(ρ) is the type An root polytope.
The dual of a KRW polytope is the so-called Lipschitz polytope [29]. This is a sym-

metric alcoved polytope [22]; a class of polytopes that recently gained significant attention
due to its connections to theoretical physics in the form of positive geometries and poly-
positroids [23].

The problem of understanding the combinatorial structure (e.g., computing face
numbers) of KRW and Lipschitz polytopes is open and significant for applications, see
e.g., [3, 7]. In this article, we focus on a related problem that goes back to a question by
Vershik.

Problem 1.2 ([29, “General Problem”, §1]). Study and classify finite metric spaces ac-
cording to the combinatorial properties of their KRW polytopes.

The first progress on this question was achieved by Gordon and Petrov who gave a
description of the face poset of KRW polytopes via linear inequalities on the values of
the metric [17], see Section 1.3 for further details. This is the starting point for an in-
depth study of KRW polytopes using the theory of hyperplane arrangements initiated
in this paper.

1.1 The main results

We now summarize the main contributions of this article:
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1. In Section 2 we introduce a Wasserstein arrangement whose cells correspond to
the combinatorial types of KRW polytopes. This arrangement builds upon the
Gordon–Petrov description of the faces of KRW polytopes and could be of inde-
pendent interest.

2. Using the computer algebra system OSCAR [9] together with the Julia package
CountingChambers.jl [5] and the software TOPCOM [25] we obtain an enumeration
of the combinatorial types of KRW polytopes of generic metrics on n = 4, 5, 6
points. This is displayed in Table 1, where the number of combinatorial types of
generic KRW polytopes – i.e., the number of chambers of the Wasserstein arrange-
ment – is shown in the column titled “Labeled”. The column “Unlabeled” shows
the number of combinatorial types up to combinatorial isomorphisms , which is
the number of chambers of the Wasserstein arrangement modulo the natural action
of the symmetric group Sn via coordinate permutation.

n Unlabeled Labeled

3 1 1
4 1 6
5 12 882
6 25,224

Table 1: Combinatorial types of KRW polytopes of generic n-metrics.

3. We clarify the relation between KRW polytopes and tight spans in Section 3 by
providing examples of five-point metrics with isomorphic tight spans and combi-
natorially different KRW polytopes and vice versa. Hence, the two fan structures of
the metric fan induced by the tight spans or the KRW polytopes are not refinements
of each other.

4. We derive formulae for the number of faces of the KRW polytopes of non-generic
strict metrics in Section 4.

Remark 1.3. This extended abstract corresponds to an article that is published as preprint
on the arXiv [10].

1.2 The metric cone

We begin by defining finite metric spaces and setting up some terminology.

Definition 1.4. An n-metric is a real symmetric n × n matrix ρ with entries ρij for 1 ≤
i, j ≤ n satisfying
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1. ρii = 0 for all 1 ≤ i ≤ n,

2. ρij > 0 for all 1 ≤ i ̸= j ≤ n and

3. ρij + ρjk ≥ ρik for all 1 ≤ i, j, k ≤ n.

The metric ρ is called strict if ρij + ρjk > ρik for all j ∈ [n] \ {i, k}.

Every n-metric ρ is given as a symmetric n × n matrix with zero diagonal, thus it is
determined by the (n

2) values ρij with i < j.

Definition 1.5. Consider the vector space R(n
2) with coordinates x{i,j} indexed by pairs

of elements of [n]. The metric cone on n elements is the subset Mn ⊆ R(n
2) defined by

x{i,j} > 0, x{i,j} + x{j,k} ≥ x{i,k}, for all pairwise distinct i, j, k ∈ [n].

We denote by Mn the (topological) closure of Mn.

Remark 1.6. The space Mn is a polyhedral cone. It contains points that do not correspond
to metrics but rather to pseudometrics (where ρij = 0 can be allowed). The set of all strict
metrics on n elements is the interior of Mn.

1.3 Admissible graphs and strict metrics

Let ρ be an n-metric and F any face of the polytope KRW(ρ). We associate with the
face F a directed graph G(F) on the vertex set [n] which contains the edge (i, j) if the
point pij lies on F. Following [17], the collection of graphs of the form G(F) is called the
combinatorial structure of KRW(ρ).

Theorem 1.7 ([17, Theorem 3]). Let ρ be an n-metric and G = ([n], E) be a directed graph
with the set of vertices [n]. The following are equivalent:

1. There exists a facet F of the polytope KRW(ρ) containing every vertex pij for (i, j) ∈ E.

2. For any array of directed edges (xi, yi), 1 ≤ i ≤ k of G with all xi pairwise distinct and all
yi pairwise distinct:

k

∑
i=1

ρxiyi ≤
k

∑
i=1

ρxiyi+1 , (1.8)

where yk+1 = y1.

Definition 1.9. A directed graph G on the vertex set [n] is called admissible for an n-metric
ρ if it satisfies one of the two equivalent conditions of Equation (1.7).
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Lemma 1.10. If ρ be a strict metric, the condition in Equation (1.7).(2) can only be satisfied if
x1, . . . , xk, y1, . . . , yk are pairwise distinct.

We close this section with a characterization of generic metric spaces (in the sense of
Equation (1.1)).

Theorem 1.11 ([17, Theorem 5]). A strict n-metric ρ is generic if and only if for arbitrary 2k
distinct points x1, . . . , xk, y1, . . . , yk in [n] the minimum of the terms

k

∑
i=1

ρxi,yπ(i)

is attained by a unique permutation π ∈ Sk.

2 The Wasserstein arrangement and the Wasserstein fan

We now define an arrangement of hyperplanes whose faces encode the combinatorial
structures of KRW polytopes.

Definition 2.1 (Wasserstein arrangement). Let n be a positive integer. We define a hy-
perplane arrangement in R(n

2) as follows. Given 1 < k and k-tuples a = (a1, . . . , ak),
b = (b1, . . . , bk) with ai, bi ∈ [n] for all i = 1, . . . , k, define a hyperplane

Ha,b :=

{
x ∈ R(n

2)

∣∣∣∣∣ k

∑
i=1

x{ai,bi} =
k

∑
i=1

x{ai,bi+1}

}
where bk+1 = b1.

The “positive side” of Ha,b is

H+
a,b :=

{
x ∈ R(n

2)

∣∣∣∣∣ ∑
i=1,...,k

x{ai,bi} ≤ ∑
i=1,...,k

x{ai,bi+1}

}
.

The Wasserstein arrangement is then the set of hyperplanes

Wn :=
{

Ha,b

∣∣∣∣ 1 < k ≤ n, a, b ∈ [n]k

a1, . . . , ak, b1, . . . , bk mutually distinct

}
.

The hyperplanes Ha,b in Wn were already mentioned as “exceptional planes” in the
proof of Theorem 7 in [17].

Remark 2.2. In the case k = 2, the tuple (a1, a2) forms the same hyperplane when
combined with either of the tuples (b1, b2) or (b2, b1). In order for the notion of positive
side to be well-defined, we establish the convention that we choose the tuple starting
with min{b1, b2}.
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Definition 2.3 (Wasserstein fan). Let Fn denote the fan determined by the intersections
of the Wasserstein arrangement Wn with the metric cone Mn. We call Fn the Wasser-
stein fan. Moreover, write F n for the (polyhedral) fan of pseudometrics, defined by the
intersections of Wn with the cone Mn.

Remark 2.4. The arrangement Wn and the fan Fn have the same number of i-cells for
any i. In particular, we can count the number of maximal cells of the fan Fn by counting
the number of chambers of the arrangement Wn.

Remark 2.5. Each hyperplane Ha,b corresponds to a cycle CHa,b of the complete graph
Kn determined by the sequence of vertices a1, b1, ak, bk, . . . , a2, b2.

Proposition 2.6. The arrangement Wn consists of

|Wn| =
1
2

⌊ n
2 ⌋

∑
k=2

(
n
2k

)
(2k − 1)!

many hyperplanes.

The proof of this proposition uses the aforementioned cycle characterization of the hy-
perplanes.
The next proposition relates the combinatorial structure of KRW polytopes with the face
structure of the Wasserstein fan.

Proposition 2.7. Let n ≥ 2 be an integer and consider two n-metrics ρ(1), ρ(2). The following
two statements are equivalent:

1. The metrics ρ(1), ρ(2) are in the open part of one cone σ of the Wasserstein fan Fn.

2. The combinatorial structures of the polytopes KRW(ρ(1)) and KRW(ρ(2)) are the same,
i.e., both polytopes have the same set of admissible directed graphs.

3 Relationship to tight spans and injective hulls

We now want to relate the stratification of the metric cone by combinatorial type of KRW
polytopes with the one in terms of the combinatorial type of a well-known polyhedral
complex associated to metric spaces: the injective hull defined by Isbell [20] and rediscov-
ered by Dress [13] with the name tight span. We start by outlining the construction and
some key facts, and refer to [24] for a more detailed account and for a thorough analysis
of the structure of injective hulls of general metric spaces.

Given an n-metric ρ we consider the (unbounded) polyhedron

P(ρ) := {x ∈ Rn | xi + xj ≥ ρij for all i, j ∈ [n]}.
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Definition 3.1 ([24, §3], [13, Theorem 3.(v)]). The injective hull, or tight span E(ρ) of ρ is
the set of coordinate-wise minimal elements of P(ρ).

Now recall the second hypersimplex ∆2,n := conv{ei + ej | i, j ∈ [n], i ̸= j} ⊆ Rn.
Following, e.g., [18], every n-metric ρ defines a lift of ∆2,n:

L(ρ) := conv{(ei + ej, ρij) | i, j ∈ [n], i ̸= j}+ R≥0 en+1 ⊆ Rn+1.

The projection of the bounded faces of L(ρ) onto Rn defines the regular subdivision
∆2,n(ρ). As was shown by Herrmann and Joswig [18], there is a linear equivalence
between P(ρ) and the polar dual of the polyhedron L(ρ) that induces a combinatorial
isomorphism between the face poset of E(ρ) and the face poset of ∆2,n(ρ).

Thus, the combinatorial type of the tight span of an n-metric ρ is dual to that of the
induced regular subdivision of the second hypersimplex. In particular, the subdivision
of the metric cone by combinatorial type of tight spans coincides with the intersection
of the metric cone and the secondary fan of ∆2,n, the latter being a well-studied object in
its own right (see, e.g., [8]).

Theorem 3.2. The fan Fn is neither a coarsening nor a refinement of the subdivision of the
metric cone induced by secondary fan of ∆2,n for n ≥ 5.

3.1 Split decomposition

We now turn to the class of totally split-decomposable spaces, as introduced by Dress
and studied by Bandelt and Dress [2].

Definition 3.3. Let ρ be a symmetric function on a set X and let A, B ⊆ X. Define the
isolation index α

ρ
A,B as

α
ρ
A,B =

1
2
· min

a,a′∈A
b,b′∈B

(
max{a′b + b′a, a′b′ + ab, aa′ + bb′} − (aa′ + bb′)

)
,

where uv = ρ(u, v).

Remark 3.4. As noted in [2], α
ρ
A,B ≥ 0, α

ρ
A,B = 0 whenever A ∩ B ̸= ∅. Moreover, if ρ

is a metric and both A and B have at least 2 elements, then α
ρ
A,B = α

ρ

{a,a′},{b,b′} for some
points a, a′ ∈ A, b, b′ ∈ B with a ̸= a′, b ̸= b′.

In the following, when writing expressions such as α
ρ

{a,a′},{b,b′} we will assume that
a, a′, b, b′ are pairwise distinct points.

A bipartition A⊎ B = [n] is called a ρ-split if α
ρ
A,B > 0. A symmetric function ρ which

does not admit any ρ-splits is called split-prime.
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Theorem 3.5. [[2, Theorem 2 and Corollary 2]] Every symmetric function ρ : X × X → R on a
finite set X can be expressed as

ρ = ρ0 + ∑ α
ρ
A,B · δA,B

with ρ0 split-prime. The metric ρ0 is uniquely determined.

Definition 3.6. A metric ρ is called totally split-decomposable if it can be written as a
positively weighted sum of split metrics. Equivalently, ρ0 = 0 in the above expression.

The following is a criterion for checking whether a metric is totally split-decomposable:

Theorem 3.7 ([2, Theorem 6]). Let ρ : X ×X → R be a symmetric function with zero diagonal.
The following conditions are equivalent:

1. ρ is a totally split-decomposable metric.

2. For all t, u, v, w, x ∈ X it holds that α{t,u},{v,w} ≤ α{t,x},{v,w} + α{t,u},{v,x}.

Remark 3.8. From Equation (3.7) it is clear that all metrics on 4 points are split-decom-
posable. For |X| ≥ 5 we can ask the question whether two metrics in the same cone
of the Wasserstein arrangement are either both split-decomposable or both not split-
decomposable. The next example answers this question in the negative.

Example 3.9. Consider the two metrics (ρ1, ρ2) on five points given by the following
matrices:

ρ1 =


0 125 48 149 84

125 0 149 48 99
48 149 0 125 77

149 48 125 0 92
84 99 77 92 0

 , ρ2 =


0 7447 4316 10083 5584

7447 0 10083 4316 5199
4316 10083 0 7447 7560

10083 4316 7447 0 6179
5584 5199 7560 6179 0

 .

These metrics lie in the same cone of the Wasserstein arrangement W5, and therefore the
associated KRW polytopes have the same combinatorial structure.

The metric ρ1 is split-decomposable but for the metric ρ2 we find

α
ρ2
{5,2},{1,3} > α

ρ2
{2,4},{1,3} + α

ρ2
{5,2},{1,4}.

By Equation (3.7), this certifies that ρ2 is not split-decomposable, which in turn implies
that the split-decomposable metrics do not form a subfan of the Wasserstein fan.

Example 3.10. Consider the following two 4-metrics.

ρ1 :=


0 3 3 4
3 0 4 3
3 4 0 3
4 3 3 0

 ρ2 :=


0 4 3 5
4 0 5 3
3 5 0 4
5 3 4 0
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These metrics have combinatorially isomorphic tight spans, but non-isomorphic KRW
polytopes. The polytopes are not combinatorially isomorphic as KRW(d1) has two
square faces whereas KRW(d2) is simplicial.

4 The f -vector in the strict case

In this section, we recall results for the number of faces of KRW-polytopes in dimensions
0 and 1 and give a formula for the number of 2-dimensional faces.

The starting point of this section is the following result by Gordon and Petrov. Recall
from Equation (1.1) the definition of a generic metric.

Theorem 4.1 ([17, Theorem 1]). Let X, |X| = n + 1 be a metric space with generic metric ρ.
Then for 0 ≤ m ≤ n, the number of (n − m)-dimensional faces of the Lipschitz polytope of ρ is(

n + m
m, m, n − m

)
.

The strict, non generic case is somewhat more complicated, but general formulae for
faces of dimension 0 and 1 can be stated by using the graphic characterization of the
faces.

Corollary 4.2 ([17, Corollary 1.(2)]). Let ρ be a strict metric, then f0(KRW(ρ)) = n · (n + 1).

For k ∈ N, denote by

W k
n :=

{
Ha,b

∣∣∣∣ a, b ∈ [n]k

a1, . . . , ak, b1, . . . , bk mutually distinct

}
the set of hyperplanes in Wn corresponding to cycles of length 2k in Kn.

Definition 4.3. Let ρ be a strict metric on l points and define Xρ :=
⋂

H∈Wl
ρ∈H

H and rk(ρ) :=

|{H ∈ W k
l | Xρ ⊆ H}|.

Lemma 4.4. Let ρ be a strict metric which is not contained in any hyperplane of W2
l . Then

for each quadruple x1, y1, x2, y2 of vertices, if the edge set {(x1, y1), (x2, y2)} is admissible, it is
face-defining.

With this, we can obtain the following general statement.

Proposition 4.5. Let ρ be a strict metric on l = n + 1 points. Then

f1(KRW(ρ)) =

(
n + 2

2, 2, n − 2

)
− 2 · r2(ρ).

Note that the multinomial coefficient is the number of faces in the generic case, where
Xρ is the empty intersection.
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5 Explicit computations

In this section, we explicitly study the KRW polytopes of metrics on 4, 5, and 6 points.
We published an accompanying data set of one generic metric of each combinatorial
type of these sizes on Zenodo [11].

5.1 The case n = 4.

There is only one generic KRW polytope up to symmetry.
In this case, the arrangement agrees with the braid arrangement A3 up to the lineality

space and thus has 6 chambers.
There are three different types of strict, not generic metrics, two of which have the

same f -vector, but different combinatorial type. The f -vector only depends on the rank
of the intersection of the corresponding hyperplanes while their tight spans differ.

5.2 The case n = 5.

The characteristic polynomial of the Wasserstein arrangement W5 is χW5(t) = t10 −
15t9 + 90t8 − 260t7 + 350t6 − 166t5 which does not factor over the integers. Thus by Za-
slavsky’s theorem, the arrangement W5 has 882 chambers which agrees with the number
of maximal cones of the fan F5 [30]. There are 12 generic KRW polytopes up to symme-
try with f -vector (20 90 140 70) that are pairwise not isomorphic.

Moreover, there are 65 combinatorial types of strict but not generic KRW polytopes.
We computed these using the polymake [16] hyperplane arrangement package [21] by
enumerating all cells of the Wasserstein arrangement.

The symmetric group S5 acts on the chambers by coordinate permutation.
Two chambers yield combinatorially equivalent polytopes if and only if there is σ ∈

S5 mapping one chamber to the other.

5.3 The case n = 6.

For 6-point metrics, W6 is an arrangement in R15 with a 6-dimensional lineality space
consisting of 105 hyperplanes, see Equation (2.6).

The generic KRW polytopes correspond exactly to certain regular triangulations of
RP0

n , the (full) root polytope together with the origin. Jörg Rambau computed all sym-
metric regular triangulations of RP0

6 up to symmetry using the latest version of his
software TOPCOM [26]. There are exactly 25, 224 such triangulations.

Theorem 5.1. There are 25, 224 generic KRW polytopes up to symmetry (action of S6) that are
pairwise not isomorphic.
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