
Séminaire Lotharingien de Combinatoire 93B (2025) Proceedings of the 37th Conference on Formal Power
Article #50, 12 pp. Series and Algebraic Combinatorics (Sapporo)

Principal minors of tree distance matrices
(extended abstract)

Harry Richman*1, Farbod Shokrieh2, and Chenxi Wu3

1Mathematics Division, National Center for Theoretical Sciences, Taipei, Taiwan
2Department of Mathematics, University of Washington, Seattle, USA
3Department of Mathematics, University of Wisconsin, Madison, USA

Abstract. Suppose D is the distance matrix of a tree. Graham and Pollack showed that
the determinant of D satisfies a surprising identity that depends only on the number
of vertices in the given tree. We generalize this result to a combinatorial identity for
the determinant of any principal submatrix of D. This new identity involves counts of
spanning forests and is proved by use of potential-theoretic concepts on graphs.
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1 Introduction

For two vertices u, v in a connected graph G, the path distance d(u, v) is the number
of edges on a shortest path from u to v. For brevity, we will use “distance” to mean
path distance in this article. The distance matrix of G is the matrix D ∈ RV×V whose
(u, v)-entry is the distance d(u, v).

As a combinatorialist, perhaps inspired by the matrix-tree theorem, one may ask:

Question 1.1. Is there any combinatorial information encoded in the determinant of the
distance matrix of a graph?

Example 1.2. Suppose that G is the tree shown below in Figure 1.

v4 v5 v6 v7

v1 v2 v3

Figure 1: Tree with seven vertices and four leaves.
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Using the ordering indicated by the vertex labels, the tree G has distance matrix

D =



0 1 2 1 1 2 3
1 0 1 2 2 1 2
2 1 0 3 3 2 1
1 2 3 0 2 3 4
1 2 3 2 0 3 4
2 1 2 3 3 0 3
3 2 1 4 4 3 0


.

By direct computation, this matrix has determinant det D = 192. ⋄

A result of Graham and Pollak [11] states that if G is a tree with n vertices, then its
distance matrix D satisfies

det D = (−1)n−12n−2(n − 1). (1.1)

This remarkable identity says that when G is a tree, essentially no combinatorial infor-
mation from G is retained in det D. Thus in this case, the answer to Question 1.1 is an
emphatic “no”!

1.1 Distance submatrices

If we are optimistic that there is interesting combinatorics hidden somewhere within the
distance matrix D, despite the Graham–Pollak identity (1.1), then we could next consider
its minors, i.e., determinants of submatrices. For a vertex subset S ⊂ V(G) of a graph G,
let D[S] denote the submatrix consisting of the S-indexed rows and columns of D.

Question 1.3. Is there any combinatorial information encoded in the determinant of the
distance submatrix D[S] of a graph?

Our main contribution answers “yes” to Question 1.3 when the graph is a tree, in the
form of the following theorem.

Theorem 1.4 ([14, Theorem A]). Suppose G is a tree with n vertices, and distance matrix D.
Let S ⊂ V(G) be a nonempty subset of vertices. Then

det D[S] = (−1)|S|−12|S|−2

(n − 1) κ1(G; S)− ∑
F2(G;S)

(dego(F, ∗)− 2)2

 , (1.2)

where κ1(G; S) is the number of S-rooted spanning forests of G, F2(G; S) is the set of (S, ∗)-
rooted spanning forests of G, and dego(F, ∗) is the outdegree of the floating component of F.
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Here, an S-rooted spanning forest of G means a spanning forest in which each con-
nected component has exactly one vertex of S. An (S, ∗)-rooted spanning forest of G is a
spanning forest which has |S|+ 1 components, where |S| components each contain one
vertex of S, and the additional component is disjoint from S. We call the component
disjoint from S the floating component, following terminology in [13]. We let F(∗) denote
the floating component of an (S, ∗)-rooted spanning forest. If G is the tree in Figure 1
and S is the set of four leaf vertices, then the S-rooted spanning forests are shown in
Figure 2, and the (S, ∗)-rooted spanning forests are shown in Figure 3.

Figure 2: All forests in F1(G; S), with vertices in S bolded.

Given a connected subgraph H ⊂ G, the outdegree dego(H) of H is the number of
edges which have one endpoint in H and the other endpoint outside H. (The outdegree
does not depend on edge orientation.) In Figure 3, the forests are grouped according to
the outdegree of the floating component; the floating component may have outdegree
two (top row), outdegree three (lower left), or outdegree four (lower right).

Figure 3: All forests in F2(G; S), with floating component highlighted red. The outde-
gree dego(F(∗)) is either 2, 3, or 4.

Example 1.5. If G is the tree in Figure 1, and S = {v4, v5, v6, v7} is the set of leaf vertices,
then the corresponding distance submatrix is

D[S] =


0 2 3 4
2 0 3 4
3 3 0 3
4 4 3 0

 . (1.3)
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In this case, the submatrix has determinant det D[S] = −252.
The tree G has 6 edges and 13 S-rooted spanning forests. There are 14 (S, ∗)-rooted

spanning forests; of the floating components in these forests, 5 have outdegree two, 7
have outdegree three, and 2 have outdegree four. See Figures 2 and 3. One checks that

det D[S] = −252 = (−1)322
(

6 · 13 − (5 · 01 + 7 · 12 + 2 · 22)
)

,

in agreement with Theorem 1.4. ⋄

We omit the full proof of Theorem 1.4 in this extended abstract, deferring it to our
paper [14], but provide the main steps of the argument in Section 2. In Section 1.2 we
mention some subsequent results related to Theorem 1.4.

Remark 1.6. When S = V is the full vertex set, the set of V-rooted spanning forests is a
singleton, consisting of the subgraph with no edges, so κ1(G; V) = 1; and moreover the
set F2(G; V) is empty. Thus (1.2) recovers the Graham–Pollak identity (1.1) when S = V.

Remark 1.7. It is worth observing that depending on the chosen subset S ⊂ V, the
distances appearing in the submatrix D[S] may ignore a large part of the ambient tree G.
To apply formula (1.2) “efficiently,” we could replace G on the right-hand side with the
subtree conv(S, G) consisting of all edges on paths between vertices in S. However, the
formulas as stated are true even without this replacement due to cancellation of terms.

1.2 Cofactor sums

In [5], Bapat and Sivasubramanian answered “yes” to a slight modification of Ques-
tion 1.3 on trees, without using determinants. They showed that the sum of cofactors of a
distance submatrix D[S] of a tree satisfies the following identity [5, Theorem 9]:

cof D[S] = (−2)|S|−1κ1(G; S). (1.4)

Recall that κ1(G; S) is the number of S-rooted spanning forests of G. Given a matrix A,
the sum of cofactors of A is defined as

cof A =
|S|

∑
i=1

|S|

∑
j=1

(−1)i+j det Ai,j

where Ai,j is the submatrix of A that removes the i-th row and the j-th column. If A
is invertible, then cof A is the sum of entries of the matrix inverse A−1 multiplied by a
factor of det A, i.e. cof A = (det A)(1⊺A−11). Here 1 denotes the all-ones vector.

Using the Bapat–Sivasubramanian identity (1.4), Theorem 1.4 immediately yields:

det D[S]
cof D[S]

=
1
2

(
(n − 1)−

∑F∈F2(G;S)(dego(F, ∗)− 2)2

κ1(G; S)

)
. (1.5)
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Surprisingly, the expression (1.5) satisfies a monotonicity condition as we fix a tree G
and vary the vertex subset S ⊂ V(G).

Theorem 1.8 (Monotonicity of “normalized” principal minors, [14, Theorem C]).
If A, B ⊂ V(G) are nonempty vertex subsets with A ⊂ B, then

det D[A]

cof D[A]
≤ det D[B]

cof D[B]
.

The monotonicity result implies the following bounds as a corollary.

Theorem 1.9 (Bounds on “normalized” principal minors, [14, Theorem D]). Suppose G is
a tree with distance matrix D.

(a) If conv(S, G) denotes the subtree of G consisting of all edges on paths between vertices of

S ⊂ V(G), then
det D[S]
cof D[S]

≤ 1
2
|E(conv(S, G))|.

(b) If γ is a simple path between vertices s0, s1 ∈ S, then
1
2
|E(γ)| ≤ det D[S]

cof D[S]
.

We note that Theorem 1.9 (b) is an equality if S consists of exactly two points. The
result in Theorem 1.8 was also independently obtained by Devriendt [8, Property 3.38]
in a more general context studying effective resistance on graphs.

1.3 Related work

The initial work of Graham and Pollack [11] inspired a large amount of subsequent
research on distance matrices and generalizations. In [9], it is observed that the distance
matrix ratio det D/ cof D is additive over wedge sums of graphs. Bapat, Lal, and Pati [4]
defined a q-analogue of the distance matrix and found formulas for its determinant and
inverse. Bapat [2] also found a formula for the determinant of the effective resistance
matrix of a graph, although the combinatorial content here is more obscured. It would
be worth studying whether these results can be extended to arbitrary principal minors.

Choudhury and Khare [6] generalize the Graham–Pollak identity to some principal
minors det D[S] for a certain restricted class of vertex subsets S. They do so using
a framework that encompasses the q-analogue distance matrix as well. Very recently,
Gutiérrez and Lillo [12] observe that Theorem 1.4 can be expressed as

det D[S] = (−1)|S|−12|S|−2
(
(|S| − 1) κ1(G; S)

− ∑
F∈F2(G;S)

(dego(F, ∗)− 1) (dego(F, ∗)− 4)
)

through some straightforward algebraic manipulation, while also providing a new proof
for this result using a nice combinatorial argument involving sign-reversing involutions
on collections of paths in G.
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2 Proof roadmap

Here we give a brief outline to how we obtain the expression of det D[S] that appears in
Theorem 1.4, our main result. The argument consists of four steps. (Recall that 1 denotes
the all-ones vector.)

(I) Find a vector m ∈ RS such that D[S]m = λ1, for some scalar λ. Find λ.

(II) Compute 1⊺m. Since D[S] is nonsingular (cf. Lemma 4.2), we have m = λ(D[S]−11)
and hence

1⊺m = λ(1⊺D[S]−11) = λ · cof D[S]
det D[S]

.

(III) Solve or simplify
det D[S]
cof D[S]

=
λ

1⊺m
.

(IV) Multiply previous expression by cof D[S], using (1.4), to get det D[S].

We demonstrate the steps of this proof roadmap on our running example.

Example 2.1. Suppose G is the tree from Figure 1, which we reproduce in Figure 4. As
before, let S consist of the four leaf vertices, which are marked with larger circles.

v4 v5 v6 v7

Figure 4: A tree with six edges, and S ⊂ V containing four vertices.

The distance submatrix is D[S] =


0 2 3 4
2 0 3 4
3 3 0 3
4 4 3 0

 . We now compute det D[S] via the

above roadmap.

(I) The vector m =
(
6 6 5 9

)⊺ satisfies D[S]m = λ1 for λ = 63.

(II) We have 1⊺m = 26.

(III) Thus
det D[S]
cof D[S]

=
λ

1⊺m
=

63
26

.

(IV) Using (1.4), the cofactor sum is cof D[S] = −104, so

det[S] = (cof D[S]) ·
(

det D[S]
cof D[S]

)
= −252. ⋄

While not obvious here, it turns out that the entries of m are combinatorially mean-
ingful (see Definition 3.1), which also gives combinatorial meaning to the constant λ.
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3 Potential theory

Here we discuss step (I) of the roadmap (Section 2), which involves solving D[S]m = λ1
for some m ∈ RS and real λ. This problem can be viewed through the lens of potential
theory: m describes the distribution of charged particles among the vertices S, and the
entries of D[S] give the (negative) potential stored from interacting charges repelling one
another in the ambient space G, depending on their position. If the potential D[S]m is
non-constant, charges will move from higher-potential locations to lower-potential ones
(leaving total charge conserved) in order to decrease the energy E(m) := m⊺D[S]m. The
charges will redistribute until they settle in equilibrium, such that D[S]m is constant on
S. The aim of this section is to describe the resulting equilibrium distribution m (up to
scaling) and equilibrium energy m⊺D[S]m.

We first define a vector m which satisfies the relation D[S]m = λ1 for some λ.

Definition 3.1. Let m = m(G; S) denote the vector in RS defined by

mv = ∑
T∈F1(G;S)

(2 − dego(T, v)) for each v ∈ S, (3.1)

where dego(T, v) is the outdegree of the v-component of T.

Proposition 3.2. The vector m = m(G; S) defined above satisfies 1⊺m = 2 κ1(G; S).

Remark 3.3. The vector m (3.1) appears in several places in the literature, with various
rescalings. In Bapat–Sivasubramanian [5, Equation (20)], it is denoted τ. In Devriendt [8],
it is denoted p called the resistance curvature vector of the Kron reduction G/Sc; the
corresponding λ, such that D[S]p = λ1, is called the resistance radius (up to rescaling by
a multiple of κ(G; S)).

3.1 Main computation

The following is the technical heart of our main result. See [14] for the proof.

Theorem 3.4. With m = m(G; S) defined as in (3.1), D[S]m = λ1 for the constant

λ = (n − 1)κ1(G; S)− ∑
F2(G;S)

(2 − dego(F, ∗))2. (3.2)

Remark 3.5. A key step in the proof of Theorem 3.4 uses the following “transition struc-
ture” which relates the S-rooted spanning forests F1(G; S) with (S, ∗)-rooted spanning
forests F2(G; S), via the operations of edge-deletion and edge-union.

Consider the “deletion” map

E(G)×F1(G; S) del−→ F1(G; S) ⊔ F2(G; S)
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defined by del(e, T) = T \ e if e ∈ T, and del(e, T) = T otherwise. For a given spanning
forest F ∈ F2(G; S), there are exactly dego(F, ∗)-many choices of pairs (e, T) ∈ E(G)×
F1(G; S) such that F = T \ e.

There is an associated “union” map

E(G)×F2(G; S) uni−→ F1(G; S) ⊔ F2(G; S)

defined by uni(e, F) = F ∪ e if e ∈ ∂F(∗), and uni(e, F) = F otherwise. Here, ∂F(∗)
denotes the set of edges that have one end in the floating component F(∗), and one end
outside of it. For a spanning forest T ∈ F1(G; S), there are exactly (|V| − |S|)-many
choices of pairs (e, F) ∈ E(G)× F2(G; S) such that T = F ∪ e (since |E(T)| = |V| − |S|
for any such spanning forest T).

4 Monotonicity via quadratic optimization

Here we discuss another rather surprising property of the ratio
det D[S]
cof D[S]

, which allows

us to prove Theorem 1.8. Throughout, we assume that D is the distance matrix of a tree.
Recall that cof M denotes the sum of cofactors of a matrix M.

Proposition 4.1. We have
det D[S]
cof D[S]

= max{u⊺D[S]u : u ∈ RS, 1⊺u = 1}.

Proposition 4.1 is shown in two steps: first, by use of Lagrange multipliers we can
show that det D[S]

cof D[S] is a critical value. This part is straightforward. The second step is to
confirm that the critical value is indeed a maximum, by analysis of the signature of D[S].

Lemma 4.2 (Bapat [3, Lemma 8.15]). Suppose D is the distance matrix of a tree with n vertices.
Then D has one positive eigenvalue and n − 1 negative eigenvalues.

Starting from Lemma 4.2, it is straightforward to argue that the submatrix D[S] has
signature (1, |S| − 1); see [14, Lemma 3.4].

Proposition 4.1 is essentially enough for us to prove our result on the monotonicity
of the ratios det D[S]

cof D[S] , as S varies over vertex subsets of a fixed tree.

We first give a minor restatement of Proposition 4.1, viewing RS as a subspace of RV

where coordinates indexed by V \ S are set to zero.

Corollary 4.3. We have
det D[S]
cof D[S]

= max{u⊺Du : u ∈ RV , 1⊺u = 1, uv = 0 if v ̸∈ S}.

We now return to Theorem 1.8.
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Proof of Theorem 1.8. We are to show that for vertex subsets A ⊂ B, we have
det D[A]

cof D[A]
≤

det D[B]
cof D[B]

. By Corollary 4.3, both values
det D[A]

cof D[A]
and

det D[B]
cof D[B]

arise from optimizing the

same objective function on an affine subspace of RV , but the subspace for A is contained
in the subspace for B.

5 Extensions and applications

5.1 Weighted graphs

If a tree G = (V, E) is assigned positive real edge weights {αe : e ∈ E}, then the weighted
path distance d(α)(u, v) is defined as the sum of the weights of edges on the unique path
from u to v. Bapat–Kirkland–Neumann [1] proved an analogue of (1.1) for the weighted
distance matrix of a tree,

det D = (−1)n−12n−2 ∑
e∈E

αe ∏
e∈E

αe. (5.1)

We additionally have the following weighted version of our main result, which reduces
to Theorem 1.4 when taking all unit weights, αe = 1. We defer the proof to the paper [14].

Theorem 5.1. Suppose G = (V, E) is a tree with distance matrix D. For any nonempty subset
S ⊂ V, we have

det D[S] = (−1)|S|−12|S|−2

 ∑
E(G)

αe ∑
F1(G;S)

w(T)− ∑
F2(G;S)

w(F) (dego(F, ∗)− 2)2

 , (5.2)

where F1(G; S) is the set of S-rooted spanning forests T of G, F2(G; S) is the set of (S, ∗)-rooted
spanning forests F of G, w(T) and w(F) denote the co-weights of T and F, and dego(F, ∗) is the
outdegree of the floating component of F, as above.

5.2 Symanzik polynomials

The identity in Theorem 5.1 relates closely to Symanzik polynomials, which are used
in quantum field theory for studying Feynman diagrams. We recall the definition here.
Given a graph G = (V, E), the first Symanzik polynomial is the homogeneous polynomial
in edge-indexed variables x = {xe : e ∈ E} defined by

ψG(x) = ∑
T∈F1(G)

∏
e ̸∈T

xe,
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where F1(G) denotes the set of spanning trees of G.
Consider a “momentum” function p : V → R with the constraint ∑v∈V p(v) = 0.

Then the second Symanzik polynomial is

φG(p; x) = ∑
F∈F2(G)

(
∑

v∈F1

p(v)
)2

∏
e ̸∈F

xe,

where F2(G) is the set of two-component spanning forests of G, and F1 denotes one of
the components1 of F.

In terms of Symanzik polynomials, let ψ and φ denote the first and second Symanzik
polynomials of the quotient graph G/S (i.e., the graph with the same edge set as G,
but all vertices in S are glued together to a single vertex). Let pcan be the momentum
function pcan(v) = deg(v)− 2 for v ̸∈ S. We have

det D[S] = (−1)|S|−12|S|−2

( ∑
E(G)

αe

)
ψ(G/S)(α)− ϕ(G/S)(pcan; α)

 (5.3)

(equivalent to Theorem 5.1), or more succinctly,

det D[S]
cof D[S]

=
1
2

(
∑
e∈E

αe −
φ(G/S)(pcan; α)

ψ(G/S)(α)

)
(5.4)

(equivalent to a weighted version of equation (1.5)).

5.3 Phylogenetics

Theorem 1.9 may be of interest to those studying phylogenetics. In phylogenetics, one
aims to find the tree that best represents the evolutionary history among a collection of
organisms using biological data (e.g. DNA sequences). In this tree, leaf vertices repre-
sent modern-day species, while internal vertices represent ancestral species. There are
standard methods for estimating pairwise distances between species along their evolu-
tionary tree. This means we can often predict the distance submatrix D[S] of the target
tree, in which S is the set of leaf vertices, and we would like to use this information
in reverse to decide what underlying tree best fits this distance data. Results such as
Theorem 1.8 may lead to new tests for phylogenetic inference, or for evaluating tree
instability [7].

1It doesn’t matter which component we label as F1, since the momemtum constraint implies that
∑v∈F1

p(v) = −∑v∈F2
p(v).
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5.4 Characteristic polynomial coefficients

In [10], Graham and Lovasz study the characteristic polynomial of the distance matrix of
a tree det(D − λI) = ∑k≥0 δk λk. Note that δ0 = det D. They generalize the determinant
formula (1.1) by finding a combinatorial formula for every coefficient δk = δk(G) of the
characteristic polynomial. Their expression for δk involves summing over all spanning
forests of G with (k − 1)-, k-, or (k + 1)-many edges.

The simplest case of their theorem, beyond δ0, is [10, Equation (6), p. 63]

δ1(G) = (−1)n−12n−3 (4 · N2P1(G) + 2 · NP2(G) + 4n − 8) (5.5)

where G is a tree on n vertices, and N2P1(G) (resp. NP2(G)) denotes the number of
subgraphs of G isomorphic to two disjoint edges (resp. to a two-edge path).

There is a well-known relationship between coefficients of the characteristic polyno-
mial and principal minors, namely

δk = (−1)k ∑
|S|=n−k

det D[S]. (5.6)

By applying Theorem 1.4 and summing over vertex subsets of fixed size, we immediately
obtain another combinatorial expression for δk. Interestingly, this expression for δk looks
rather different from [10, Equation (42), p. 81] by Graham and Lovasz, as it involves
summing over spanning forests of G with (n − k)- or (n − k + 1)-many components.

It may be possible to give an alternative proof of the Graham–Lovasz identities using
Theorem 1.4, which we leave for future work. For now we only elaborate on the k = 1
case: if S = V \ {v} contains n − 1 vertices, then

κ1(G; S) = deg(v), κ2(G; S) = 1, and dego(F, ∗) = deg(v)

for the unique forest F ∈ F2(G; S). Summing over all vertex subsets with |S| = n − 1,
we obtain by (5.6) and (1.2) that

δ1(G) = (−1)n−12n−3

(
(n − 1) ∑

v∈V
deg(v)− ∑

v∈V
(deg(v)− 2)2

)
, (5.7)

which further simplifies to δ1(G) = (−1)n−12n−3 (2(n − 1)2 − ∑v∈V(deg(v)− 2)2).
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