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Abstract. For the almost complete intersection ideals (x2
1, . . . , x2

n, (x1 + · · ·+ xn)k), we
compute their reduced Gröbner basis for any term ordering, revealing a combinato-
rial structure linked to lattice paths, elementary symmetric polynomials, and Catalan
numbers. Using this structure, we classify the weak Lefschetz property for these ide-
als. Additionally, we provide a new proof of the well-known result that the squarefree
algebra satisfies the strong Lefschetz property.

Résumé. Pour les idéaux d’intersection presque complète (x2
1, . . . , x2

n, (x1 + · · ·+ xn)k),
nous calculons leur base de Gröbner réduite pour tout ordre monomial, mettant en
évidence une structure combinatoire liée aux chemins de réseaux, aux polynômes
symétriques élémentaires et aux nombres de Catalan. En utilisant cette structure, nous
classifions la propriété de Lefschetz faible pour ces idéaux. Nous fournissons égale-
ment une nouvelle démonstration du résultat bien connu selon lequel l’algèbre sans
carrés satisfait la propriété de Lefschetz forte.

Keywords: Gröbner basis, Catalan numbers, lattice paths, almost complete intersec-
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1 Introduction

Let k be a field of characteristic zero and let R = k[x1, . . . , xn] be the polynomial ring
in n variables. A monomial order ≺ on R is a total order on the monomials of R where
any subset of monomials has a smallest element, and such that m1 ≺ m2 implies that
m · m1 ≺ m · m2 for all monomials m in R. A Gröbner basis for an ideal I with respect to
≺ is a subset {g1, . . . , gs} of I such that the largest monomial of any f in I is divisible by
the largest monomial of one of the gi. Gröbner bases are a key tool in computer algebra
systems for performing computations. However, they are also known for their lack of
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respect for symmetry, strong dependence on the monomial ordering, and often involved
explicit description. In contrast, our main result gives, for any term ordering, a Gröbner
basis for

In,k = (x2
1, . . . , x2

n, (x1 + · · ·+ xn)
k)

which exhibits a different behavior. First, all Gröbner basis elements, except for the
squares, are elementary symmetric polynomials in a subset of the variables, and in par-
ticular, they have 0, 1-coefficients. Second, the sequence formed by the number of Gröb-
ner basis elements of degree greater than 2 corresponds to the (k − 1)-fold convolution
of Catalan numbers.

Notice that we can present our ideals In,k as (x2
1, . . . , x2

n, ek(x1, . . . , xn)), where ek de-
notes the k’th elementary symmetric polynomial. This gives a connection to earlier work
by Haglund, Rhoades, and Shimozon [9] on the Delta conjecture [8] where they deter-
mine the Gröbner basis with respect to the lexicographical monomial order for ideals of
the form (xk

1, . . . , xk
n, en(x1, . . . , xn), . . . , en−k+1(x1, . . . , xn)), and surprisingly show that its

elements can be described in terms of Demazure characters, which provides an overlap
with our class in the trivial cases In,n−1 and In,n.

The ideals In,k are also well studied for their relations to the Lefschetz properties. An
algebra A = R/I, where I is an ideal generated by homogeneous polynomials, so called
forms, can be written as A = A0 ⊕ A1 ⊕ · · · , where Ai is the vector space consisting of
zero and all forms of degree i. The algebra A has the weak Lefschetz property (WLP)
if there is an ℓ in A1 such that, for every i, the map Ai → Ai+1 given by a 7→ ℓ · a is
either injective or surjective. If also all powers of ℓ give maps that are always injective or
surjective, then A is said to have the strong Lefschetz property (SLP). It is well known
that the Lefschetz properties often serve as a bridge between different areas of mathe-
matics, with well-established connections to commutative algebra, algebraic geometry,
combinatorics, representation theory, and algebraic topology. In this spirit, one can view
the present paper as strengthening the link to combinatorics, and contributing with a
link to computer algebra. Indeed, we use our combinatorially described Gröbner basis
to show that

R/In,k has the WLP if and only if

{
k ≥ n−3

2 for n odd,
k ≥ n

2 for n even,

and we give a new proof of the fact the squarefree algebra R/(x2
1, . . . , x2

n) has the strong
Lefschetz property, originally shown independently by Stanley [19] and Watanabe [22].
As a corollary, we also obtain a minor result related to the Fröberg conjecture [5].

The ideal (x2
1, . . . , x2

n, (x1 + · · ·+ xn)k), which may initially appear quite specialized, is
in fact a general object. After a linear change of coordinates, we obtain the isomorphism

R/(x2
1, . . . , x2

n, (x1 + · · ·+ xn)
k) ∼= R/(ℓ2

1, . . . , ℓ2
n, ℓk

n+1),
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where the ℓi are general linear forms. This reveals a deeper geometric connection, par-
ticularly in the context of the interpolation of general fat points via Macaulay’s inverse
system, as described by Emsalem and Iarrobino [4]. In light of this, it is natural to further
explore the structure of algebras generated by n + 1 powers of general linear forms.

We have included only the proofs of the main results and refer to [13] for the more
detailed proofs.

Remark 1. While finalizing the paper, we were informed that Booth, Singh, and Vraciu
in [2] independently have provided a description of the initial ideal of (xd

1, . . . , xd
n, (x1 +

· · · + xn)d) for d = 2, 3, using different techniques. Their work overlaps with ours re-
garding the initial ideal for In,2. They also find relations for establishing failure of the
weak Lefschetz property (WLP) due to injectivity of In,2 for certain n, which are similar
to but distinct from special cases of the relations we derive for the failure of the WLP for
In,k for certain n and k.

2 The Gröbner basis

We fix notation as follows. Let [n] = {1, . . . , n}. For any subset S = {i1, . . . , is} ⊆ [n],
denote by xS the monomial xi1 · · · xis in k[x1, . . . , xn]. We fix integers n and k ≥ 2.

2.1 Constructing the Gröbner basis elements

In this section, we define a collection of polynomials gA,n,k combinatorially and prove
that they are in the ideal In,k. Later, we will show that they form a Gröbner basis for In,k.

Definition 1. The squarefree part of a polynomial f ∈ k[x1, . . . , xn] is its normal form with
respect to the monomial ideal (x2

1, . . . , x2
n). We write SFP( f ) for the squarefree part of f . For a

subset of polynomials P ⊆ k[x1, . . . , xn] we write SFP(P) = {SFP( f ) | f ∈ P}.

Note that in Definition 1, the word squarefree does not refer to irreducible factors of a
polynomial f , but to the exponents of the variables x1, . . . , xn in the terms of its support.
In other words, the squarefree part of a polynomial is the part obtained by removing all
terms that contain a square. For example,

SFP((x1 + · · ·+ x5)
2) = 2(x1x2 + x1x3 + · · ·+ x4x5) = 2e2(x1, . . . , x5),

where e2 is the elementary symmetric polynomial of degree two. Since (x2
1, . . . , x2

n) ⊂ In,k
for all n and k, the crucial part of the analysis of the homogeneous ideals In,k is the
degreewise description of their squarefree parts SFP((In,k)(d)).
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Lemma 1. 1. Let S ⊆ [n] and fS,n,k =
1
k!SFP(xS(x1 + · · ·+ xn)k). Then fS,n,k is squarefree

of degree k + |S| and can be written as

fS,n,k = ∑
u squarefree

deg(u)=k+|S|
xS|u

u.

2. Let k ≤ d ≤ n. Then SFP((In,k)(d)) is generated as a vector space by the polynomials fS,n,k
with |S| = d − k.

Lemma 2. Let k ≤ d ≤ n. For any S ⊆ [n] with |S| = d − k let λS ∈ k be a scalar. Then

∑
|S|=d−k

λS fS,n,k = ∑
u squarefree

deg(u)=d

 ∑
xS|u

|S|=d−k

λS

 u.

Proof. Write f = ∑|S|=d−k λS fS,n,k. As a k-linear combination of squarefree polynomials
of degree d, f is also squarefree of degree d. By Lemma 1, the coefficient of a squarefree
term u of degree d in the polynomial fS,n,k is λS if xS | u and zero otherwise. Thus the
coefficient of u in f is the sum of all λS where xS | u, as claimed.

Definition 2. Let k ≤ d ≤ n, and A = {i1, . . . , id} ⊆ [n] with max(A) ≤ 2d − k. We define

gA,n,k = ∑
u squarefree

deg(u)=d
supp(u)∩({1,...,2d−k}\A))=∅

u. (2.1)

Example 1. For the values n = 5, k = 2, and d = 3, consider the set A = {1, 3, 4}. Note that
max(A) = 4 ≤ 4 = 2 · d − k. In this case, gA,n,k is given by

x1x3x4 + x1x3x5 + x1x4x5 + x3x4x5,

the elementary symmetric polynomial e3(x1, x3, x4, x5) of degree d supported on the variables
indexed by A ∪ {5} = A ∪

(
[n] \ {1, . . . , 2d − k}

)
.

We now show that gA,n,k ∈ In,k, which is a major step needed for the proof of Theo-
rem 2.

Theorem 1. Let fS,n,k ∈ In,k for S ⊆ [n] be the squarefree part of the polynomial xS(x1 + · · ·+
xn)k. Then the elements gA,n,k can be written as

gA,n,k =
d−k

∑
i=0

(−1)i k
(k + i)( d

k+i)
∑

S∈Ti(A)

fS,n,k

where d = |A|, max(A) ≤ 2d − k, and

Ti(A) = {S ⊆ [n] : |S| = d − k and |S ∩ {1, . . . , 2d − k} \ A| = i}.
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Proof. Let C = {1, . . . , 2d − k} \ A. Write f = ∑d−k
i=0 λi

(
∑S∈Ti

fS,n,k
)
. By construction, f is

a sum of squarefree monomials of degree d. Let u be a squarefree term with deg(u) = d.
By Lemma 2, its coefficient in f is ∑d−k

i=0 |{S ∈ Ti : xS | u}| · λi. On the other hand, the
coefficient of u in gA,n,k is 1 if |supp(u) ∩ C| = 0, and zero otherwise. Thus, f = gA,n,k
holds if and only if the coefficients λi solve the inhomogeneous linear system of (n

d)
equations (labeled by the terms u)

d−k

∑
i=0

|{S ∈ Ti : xS | u}| · λi =

{
1, if |supp(u) ∩ C| = 0
0, if |supp(u) ∩ C| > 0.

(2.2)

If |supp(u) ∩ C| = j and S ∈ Ti with i > j, then xS ∤ u. Thus, we can rewrite (2.2) as

j

∑
i=0

|{S ∈ Ti : xS | u}| · λi =

{
1, if |supp(u) ∩ C| = 0
0, if |supp(u) ∩ C| = j > 0.

(2.3)

We now claim that the system (2.3) contains only d − k + 1 distinct equations. First, it is
easy to see that for |supp(u) ∩ C| = 0 we have |{S ∈ T0 : xS | u}| = ( d

d−k) independently
of u. Now, consider u with |supp(u) ∩ C| = j > 0. Note that |supp(u) \ C| = d − j.
Furthermore, consider S ∈ Ti with 0 ≤ i ≤ j. Then |S ∩ C| = i and |S \ C| = d − k − i.
The condition xS | u is then equivalent to satisfying both S ∩ C ⊆ supp(u) ∩ C and
S \C ⊆ supp(u) \C. The number of sets S ∈ Ti that fulfill this is (j

i)(
d−j

d−k−i) independently
of u.

The system (2.3) now simplifies to
( d

d−k)λ0 = 1
∑1

i=0 (
1
i)(

d−1
d−k−i)λi = 0

...
∑d−k

i=0 (d−k
i )( k

d−k−i)λi = 0

. (2.4)

This is a lower triangular system with diagonal elements ( d−j
d−k−j) = (d−j

k ) ̸= 0 (recall that
k ≤ d and d − j ≥ d − (d − k) = k). In particular, it is straightforward to verify that its
unique solution is λi = (−1)i k

(k+i)( d
k+i)

for 0 ≤ i ≤ d − k.

2.2 Hilbert series via Lattice paths

In what follows, we will establish a Gröbner basis with respect to any monomial order
with x1 ≻ · · · ≻ xn of In,k that is the union of {x2

1, . . . , x2
n} with the set of gA,n,k whose

leading term is minimal with respect to division. We will need a counting argument,
and, to this end, we introduce a certain type of lattice paths.
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Definition 3. An (N, E)-lattice path is a path on the lattice Z2 that begins at (0, 0) and consists
only of northward steps (in the direction (0, 1), denoted N) and eastward steps (in the direction
(1, 0), denoted E).

There exists a bijection τ that maps an (N, E)-lattice path of length n to the monomial ∏j∈J xj,
where the subset J ⊆ [n] contains j if and only if the j-th step in the path is north.

Lemma 3. Let k ≤ d ≤ n. Consider polynomials gA,n,k for the sets A = {i1, . . . , id} ⊆ [n] with
max(A) ≤ 2d − k as in (2.1). Then, we have that

1. in(gA,n,k) = xi1 · · · xid ,

2. the (N, E)-lattice path τ−1(in(gA,n,k)) touches the line y = x + k,

3. if P is an (N, E)-lattice path of length n that intersects the line y = x + k, then there exists
a polynomial gA,n,k ∈ In,k such that in(gA,n,k) divides τ(P).

We now proceed to compute the number of elements gA,n,k, where A is minimal with
respect to inclusion. Their leading terms minimally generate SFP(in(In,k)).

Definition 4. Let (ai)
∞
i=0 be a sequence of integers. The k-fold self-convolution of (ai)

∞
i=0,

denoted (ak
i )

∞
i=0, is defined as the sequence of coefficients of the power series

(
∑∞

i=0 aiti)k+1.

One sequence that is central to our discussion is the Catalan numbers.

Definition 5. The Catalan numbers (Cn)∞
n=0 are given by Cn = (2n

n )− ( 2n
n−1). The r-th number

of the Catalan (k − 1)-fold convolution is denoted by Ck−1
r .

Corollary 1. The number of polynomials gA,n,k such that A is minimal with respect to inclusion,
and of degree k + r, is zero if n < 2r + k; otherwise, it is given by Ck−1

r . In particular, for k = 1
and k = 2, it is the r-th and (r + 1)-th Catalan number, respectively.

Proof. By Lemma 3, the polynomials gA,n,k of degree k + r are in bijection with (N, E)-
lattice paths that take at most n steps and touch the line y = x + k exactly once, specifi-
cally at the last step after k + r steps north. Since such a path comprises a total of 2r + k
steps, there can be no such paths if n < 2r + k, resulting in no Gröbner basis elements of
degree r + k. For n ≥ 2r + k, we find that, disregarding the last step, these paths are also
in bijection with paths that remain below the line y = x + k − 1 and terminate on that
same line after k − 1 + r steps north.

Next, by [21, Corollary 16], Cj
i represents the number of (N, E)-lattice paths that start

at (i, 0), do not cross the line y = x, and end at (i + j, i + j). By shifting all such paths left
by i steps, we can also interpret Cj

i as counting (N, E)-paths starting at the origin that
remain below the line y = x + i and terminate at (j, i + j). By combining this count with
the previously established enumeration for the number of polynomials gA,n,k of degree
k + r, we arrive at the complete enumeration. Specifically, for k = 1 we get C0

r = Cr
polynomials in degree r and for k = 2, the claim follows from the well-known fact that
C1

n = Cn+1.
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The following lemma presents our main counting argument and serves as the final
step needed to complete the main part of the proof of Theorem 2.

Lemma 4. Let d be an integer with 0 ≤ d ≤ n, and consider the terms of degree d outside
the degree reverse lexicographic initial ideal in(In,k). If 2d − k ≥ n, there are no such terms.
Otherwise, these terms are squarefree, and their number is at most (n

d)− ( n
d−k).

Corollary 2. The Hilbert series of R/In,k is given by
[
(1 + t)n(1 − tk)

]
, where the brackets

indicate truncation at the first non-positive coefficient.

Before we state our main result, recall that a Gröbner basis is reduced if it is in bijection
with the minimal generating set of in(I), all its elements have 1 as leading coefficient,
and the monomials appearing after the leading monomial of every polynomial in it are
not in the initial ideal.

Theorem 2. Consider the family A of subsets A ⊆ [n] satisfying max(A) = 2|A| − k for
some k ≥ 2, and minimal with respect to inclusion. Then, the reduced Gröbner basis of the
ideal In,k = (x2

1, . . . , x2
n, (x1 + · · ·+ xn)k) with respect to degree reverse lexicographic ordering

is given by

Gn,k = {x2
1, . . . , x2

n} ∪
k+⌊(n−k)/2⌋⋃

d=k

{gA,n,k | A ∈ A, |A| = d} ,

where for |A| = d,
gA,n,k = ed(xi1 , . . . , xin−d+k)

is the elementary symmetric polynomial of degree d in the variables indexed by the set

{i1, . . . , in−d+k} = A ∪ {2d − k + 1, . . . , n}

with leading term xA = ∏a∈A xa. In particular, gA,n,k is supported on (n−d+k
d ) terms. Moreover,

for fixed k the sequence of cardinalities |{A ∈ A : |A| = d}| is a (k − 1)-fold convolution of the
sequence of Catalan numbers.

Proof. First, by Lemma 3 and Corollary 2, the squarefree leading terms of polynomials
in In,k are in bijection with n-step (N, E)-lattice paths that touch the line y = x + k, and
each of these terms is divisible by some leading term in(gA,n,k). Among these leading
terms, the minimal ones with respect to division are those that touch the line y = x + k
exactly once, occurring after their last step north. Moreover, the penultimate step cannot
be east; if it were, there would be an earlier intersection with the line. This establishes the
defining conditions of the set A. Regarding non-squarefree leading terms, clearly they
are divisible by some x2

i . By Theorem 1, Gn,k ⊂ In,k. Thus, Gn,k is a minimal Gröbner
basis of In,k.
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To show that Gn,k is reduced, first observe that all its elements are monic. Now,
consider gA,n,k ∈ Gn,k. Let (a, b) ∈ Z2 be the lattice point where τ−1(in(gA,n,k)) touches
the line y = x + k. Any term u ∈ gA,n,k − in(gA,n,k) is of the form

u = xj1 · · · xjm in(gA,n,k)/(xℓ1 · · · xℓm),

where 0 < m ≤ |A|, j1, . . . , jm > max(A), and ℓ1, . . . , ℓm ∈ A. Consequently, the lattice
path τ−1(u) reaches the point (a + m, b − m) after max(A) steps. The closest it could
approach the line y = x + k is at the point (a + m, b) after max(A) + m steps. However,
this point lies below the line since m > 0 and (a, b) is on the line. Therefore, u /∈ in(In,k).

The last claim follows from Corollary 1.

Example 2. We set n = 5 and k = 2. The reduced Gröbner basis of I5,2 is

G5,2 = {x2
1, x2

2, x2
3, x2

4, x2
5, g{1,2},5,2, g{1,3,4},5,2, g{2,3,4},5,2},

where

g{1,2},5,2 = x1x2 + x1x3 + x2x3 + x1x4 + x2x4 + x3x4 + x1x5 + x2x5 + x3x5 + x4x5,

g{1,3,4},5,2 = x1x3x4 + x1x3x5 + x1x4x5 + x3x4x5,

g{2,3,4},5,2 = x2x3x4 + x2x3x5 + x2x4x5 + x3x4x5.

Remark 2. The Gröbner basis of In,k is independent of the monomial ordering once we fix
the ordering x1 ≻ · · · ≻ xn. It is also invariant under permutations of the first k variables
and the action of transpositions of the form (k + 2i − 1, k + 2i) for i ≥ 1. In particular, the
number of distinct Gröbner bases of In,k is given by the multinomial coefficient ( n

k,2,...,2,1),
where the entry 1 is included if and only if n − k ≡ 1 mod 2. See [13, Proposition 2.29]
for details.

3 The Lefschetz properties

We now apply the results from the previous section to study the Lefschetz properties.
We refer to [11, 16] for more background and details on the Lefschetz properties.

3.1 Monomial complete intersections have the SLP

As a first application of our Gröbner basis results, specifically Corollary 2, to the Lef-
schetz properties, we establish the well-known result that the squarefree algebra pos-
sesses the SLP.

Corollary 3. The squarefree algebra A = R/(x2
1, . . . , x2

n) has the SLP.
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Proof. Note that multiplication by a form f of degree d on an algebra B has full rank if
and only if

HS(B/( f ); t) = [(1 − td)HS(B; t)],

where the square brackets indicate truncation of the polynomial at the first non-positive
coefficient. Since HS(A; t) = (1 + t)n, Corollary 2 says that HS(A/(ℓd); t) = [(1 −
td)HS(A; t)] for the linear form ℓ = x1 + · · · + xn and any d. Thus any power of ℓ
gives a map that has full rank on A, so A has the SLP.

The SLP for artinian monomial complete intersections can be derived from the square-
free algebra, as shown in a short argument by Hara and Watanabe [10], so in this regard
the squarefree case serves as the building block for the SLP for this class of algebras.

While Stanley and Watanabe established the SLP in the 1980s, the result for squarefree
algebras dates back to the 1970s, studied in the context of zero-one matrices by Kantor
[14], Graver and Jurkat [7], and Wilson [23], with references highlighted by Lindström.
Besides these, we note Hara and Watanabe’s proof for d = 2, Ikeda’s [12] from the 1990s,
and Phuong and Tran’s [18] more recent proof. So, to our knowledge, our proof is the
seventh for the base case d = 2.

3.2 The WLP for powers of linear forms in the squarefree algebra

As R/(ℓa1
1 , . . . , ℓan

n ) has the WLP for general ℓi, it is natural to ask if also R/(ℓd
1, . . . , ℓd

n+1)
has the WLP. However, this is not the case, and was first observed by Fröberg and
Hollman [6] for the case (n, d) = (5, 2), which via results by Cruz and Iarrobino [3] and
Sturmfels and Xu [20] for d = 2, and Migliore, Miro-Róig and Nagel [15], Nagel and
Trok [17] for general d, ended up in a classification by Boij and the second author [1],
who showed that for n ≥ 4, the WLP holds only in sporadic cases. The proof relies on
Macaulay’s inverse system and a reduction to the case d = 2, where it is shown that the
WLP fails due to lack of surjectivity.

In the following theorem, we fully characterize the pairs (n, k) for which the algebra
R/(ℓ2

1, . . . , ℓ2
n, ℓk

n+1), defined by powers of general linear forms ℓ1, . . . , ℓn+1, has the WLP.
In this case, the WLP can be derived from the structure of R/(ℓ2

1, . . . , ℓ2
n, ℓ2

n+1). Unlike
the equigenerated case, however, the failure of the WLP here is due to a lack of injec-
tivity. This requires identifying non-trivial identities within the squarefree algebra; see
Proposition 1.

The classification result that we will prove is stated in the following theorem.

Theorem 3. Let k be a field of characteristic zero. Then for general linear forms ℓ1, . . . , ℓn+1,
the algebra R/(ℓ2

1, . . . , ℓ2
n, ℓk

n+1)
∼= R/(x2

1, . . . , x2
n, (x1 + · · · + xn)k) has the weak Lefschetz

property if and only if {
k ≥ n−3

2 for n odd,
k ≥ n

2 for n even.
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Remark 3. Theorem 3 implies that the Fröberg conjecture is true for a1 = · · · = an+1 = 2 and
an+2 = k, where {

k ≥ n−2
2 for n even,

k ≥ n+1
2 for n odd.

The statement is trivial when n is odd, as in this case, k is the socle degree or higher. However,
for even n, the case k = n−2

2 offers a new, but minor contribution for the conjecture.

In the following lemmas, it is useful to work with the ideal In−1,2 in place of In,k to
streamline the analysis and simplify computations; see [13] for proofs. Let us fix the
algebras

A = k[x1, . . . , xn−1]/(x2
1, . . . , x2

n−1, (x1 + · · ·+ xn−1)
2) and B = k[x1, . . . , xn]/(x2

1, . . . , x2
n)

Lemma 5. The algebra R/(x2
1, . . . , x2

n, (x1 + · · ·+ xn)k) has the WLP if and only if, for a general
linear form ℓ in k[x1, . . . , xn−1], the multiplication by ℓk yields a full rank map on A.

The following proposition will be used to establish the failure of the WLP in Theo-
rem 3.

Proposition 1. Let ℓ = a1x1 + · · ·+ anxn be a general linear form. Then:

(i) If n = 2p + 1 for some p ≥ 1, then there exists another linear form ℓ′ and a degree (p − 1)
form g such that in the algebra B, we have ℓpℓ′ = (x1 + · · ·+ xn)2g.

(ii) If n = 2p for some p ≥ 3, then there exist a degree 2 form f and a degree p − 2 form g
such that ℓp−2 f = (x1 + · · ·+ xn)2g in B and f is not a multiple of (x1 + · · ·+ xn)2.

While Proposition 1 will be used to establish failure of the WLP, the next lemma will
be used to lift this failure to more degrees and address the nontrivial cases with the WLP.

Lemma 6. Let ℓ be a general linear form in the algebra B. Then:

(i) If n ≥ 2p + 2, then ·ℓp : B1 → Bp+1 is injective.

(ii) If n = 2p and p ≥ 3, then for q, 2 < q < p, the map ·ℓq−2 : B2 → Bq is injective.

With this preparation, we are now ready to prove Theorem 3.

Proof of Theorem 3. By Lemma 5, this is equivalent to showing that the k-th power of
a general linear form has full rank on A. for the same values of n and k. We begin by
examining the ideals for which we want to show the WLP.

Note that the socle degree of A is given by the smallest integer d for which (n−1
d )−

(n−1
d−2) > 0, which is (n − 1)/2 if n is odd, and n/2 if n is even. Since any multiplication

by a power of a linear form from A0, or into a zero-dimensional vector space, has full
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rank, it follows that any k greater than (n − 1)/2 (for n odd) or greater than n/2 (for
n even) works. Additionally, when n = 2k + 3, the socle degree is k + 1, so the only
map potentially lacking full rank is from degree 1 to degree k + 1. However, this map is
injective by Lemma 6(i), establishing all the required full-rank maps.

We are now left to show that the remaining values of n, k give algebras that do not
have the WLP. Assume first that n = 2p + 2. Then we claim that for any general lin-
ear form ℓ in A, the map ·ℓk : Ap+1−k → Ap+1 does not have full rank. For k = p,
Proposition 1(i) provides a linear form ℓ′ ∈ A1 such that ℓpℓ′ = 0 in A. Additionally, by
Lemma 6(i), we have ℓkℓ′ ̸= 0 for any k < p. Therefore, ℓp−kℓ′ is a nonzero element in
the kernel of ℓk for all k = 2, . . . , p − 1, demonstrating that ·ℓk : Ap+1−k → Ap+1 cannot
be injective. Moreover, this map cannot be surjective either. Using the theory of inverse
systems, Boij and the second author in [1, Theorem 5.2] have shown that A/(ℓk) is al-
ways nonzero in degree p + 1 for any k ≥ 2. This proves all required failures of maximal
rank for the case where n is even.

The case where n = 2p + 1 is odd follows a similar proof. First, the map ·ℓk : Ap−k →
Ap is not injective for k = p − 2 by Proposition 1(ii), as there exists a nonzero form f
of degree 2 with ℓp−2 f = 0 in A. Furthermore, by Lemma 6(ii), we have ℓp−k−2 f ̸= 0
in A for k < p − 2, which means that ℓp−k−2 f is a nonzero element in the kernel of
·ℓk : Ap−k → Ap, demonstrating that this map is never injective. Additionally, by [1,
Theorem 5.2], setting the last variable to zero shows that A/(ℓk) is nonzero in degree p
for any k ≥ 2. This completes the verification of all required failures of full rank, proving
the theorem.
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