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Abstract. Given a finite poset, Greene introduced a rational function obtained by summing cer-
tain rational functions over the linear extensions of the poset. This function has interesting in-
terpretations and for certain families of posets, it simplifies surprisingly. Greene evaluated this
rational function for strongly planar posets in work on the Murnaghan–Nakayama formula.
Develin, Macauley, and Reiner introduced toric posets, which combinatorially are equivalence
classes of posets (or rather acyclic quivers) under the operation of flipping maximum elements
into minimum elements and vice versa. In this work, we introduce a toric analogue of Greene’s
rational function for toric posets, and study its properties. In addition, we use toric posets to show
that the Kleiss–Kuijf relations, which appear in scattering amplitudes, are equivalent to a specific
instance of Greene’s evaluation of his rational function for strongly planar posets. We also give
an algorithm for finding the set of toric total extensions of a toric poset.
Keywords: Toric, poset, linear extension, arrangement, rational function, Greene

1 Introduction
In 1992, C. Greene associated to every poset 𝑃 on [𝑛] = {1, 2,… , 𝑛} a rational function

Ψ𝑃 (𝐱) =
∑

𝑤∈(𝑃 )

1
(𝑥𝑤1

− 𝑥𝑤2
)(𝑥𝑤2

− 𝑥𝑤3
)⋯ (𝑥𝑤𝑛−1

− 𝑥𝑤𝑛
)
,

motivated by a combinatorial proof of the Murnaghan–Nakayama formula [13]. Here (𝑃 ) denotes
the set of linear extensions 𝑤 = (𝑤1 < ⋯ < 𝑤𝑛) of 𝑃 from the partial order 𝑃 to a total order. Part
of the mathematical beauty in Ψ𝑃 (𝐱) is that for certain poset families, Ψ𝑃 (𝐱) simplifies surprisingly.
Example 1.1. We evaluate Greene’s rational function for two posets.

Ψ𝑃1(𝐱) = 0
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𝑃1
Ψ𝑃2(𝐱) = 𝑥1−𝑥6

(𝑥2−𝑥3)(𝑥2−𝑥4)(𝑥1−𝑥4)(𝑥1−𝑥5)(𝑥4−𝑥6)(𝑥5−𝑥6)

2 1
3 4 5

6𝑃2

∗catan042@umn.edu. This work was partially supported by NSF DMS-2053288.

mailto: catan042@umn.edu


2 Elise Catania

A poset 𝑃 is strongly planar if after adding a new bottom element 0̂ and top element 1̂, the Hasse
diagram 𝐻(𝑃 ⊔ {0̂, 1̂}) may be order-embedded in R2 without crossings. In this embedding, each
bounded region 𝛿 of R2 ⧵𝐻(𝑃 ) has a unique minimum element 𝑚𝑖𝑛(𝛿) and a unique maximum
element 𝑚𝑎𝑥(𝛿). Greene proved that Ψ𝑃 (𝐱) vanishes if 𝐻(𝑃 ) is disconnected, and otherwise

Ψ𝑃 (𝐱) =
∏

𝛿∈Δ(𝑥min(𝛿) − 𝑥max(𝛿))
∏

𝑖⋖𝑃 𝑗
(𝑥𝑖 − 𝑥𝑗)

. (1.1)

In Example 1.1, the poset 𝑃2 is a connected, strongly planar poset and in 𝐻(𝑃2), there is exactly
one bounded region 𝛿, with max(𝛿) = 6 and min(𝛿) = 1.

Boussicault, Féray, Lascoux, and Reiner [4] interpreted Ψ𝑃 (𝐱) geometrically and algebraically,
extending Greene’s results. E.g., they showed 𝐻(𝑃 ) is disconnected if and only if Ψ𝑃 (𝐱) = 0.

Develin, Macauley, and Reiner introduced toric posets [9] (also seen in [16]). Geometrically,
a toric poset corresponds to a toric chamber in the complement of a graphic toric hyperplane ar-
rangement. This is similar to how a poset corresponds to a chamber in the complement of a graphic
hyperplane arrangement; see [9, 14, 21, 25] and Section 2. Recently, toric hyperplane arrangements
have received increased attention; see, e.g., [1, 3]. Combinatorially, toric posets can be thought of
as an equivalence class [𝑄] of acyclic (no directed cycles) quivers that are equivalent under the
relation of flipping a sink vertex to a source vertex and vice versa. This flip operation has been
well-studied and appears widely in different contexts [2, 7, 10, 17, 18, 22, 23, 24]. In fact, these
equivalence classes are subsets of the mutation class of a quiver used in cluster algebras [11].

Just as a permutation (𝑤1, 𝑤2,… , 𝑤𝑛) of [𝑛] may be thought of as a total order 𝑤1 < 𝑤2 <
⋯ < 𝑤𝑛 or an acyclic orientation of the complete graph on [𝑛], a toric total order is the cyclic
equivalence class [(𝑤1, 𝑤2,… , 𝑤𝑛)] under rotation (𝑤1, 𝑤2,… , 𝑤𝑛) ↦ (𝑤2, 𝑤3,… , 𝑤𝑛, 𝑤1), or
the special case of a toric poset for an acyclic quiver whose underlying undirected graph is complete.

In this work, which is an abstract of the recent preprint [6], we define a toric analogue of
Greene’s rational function for toric posets, a sum of rational functions indexed by the set of toric
total extensions, denoted tor([𝑄]) (see Section 3).
Definition 1.2. Let [𝑄] be a toric poset. Then, we define Ψ[𝑄]

tor (𝐱) as
Ψ[𝑄]
tor (𝐱) ∶=

∑

[𝑤]∈tor ([𝑄])
Ψ[𝑤]
tor (𝐱),

where
Ψ[𝑤]
tor (𝐱) =

1
(𝑥𝑤1

− 𝑥𝑤2
)(𝑥𝑤2

− 𝑥𝑤3
)⋯ (𝑥𝑤𝑛−1

− 𝑥𝑤𝑛
)(𝑥𝑤𝑛

− 𝑥𝑤1
)
.

Motivated by the results in [4], we use Greene’s results to prove similar results for Ψ[𝑄]
tor (𝐱) –

see our first two main results, Theorem 4.5 on its vanishing, and Theorem 4.8 on its denominator.
To compute Ψ[𝑄]

tor (𝐱) for a toric poset [𝑄], it is necessary to compute the set tor([𝑄]) of toric
total extensions. We show in Theorem 3.14 that counting tor([𝑄]) is a #𝑃 -complete problem, so
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one should not expect efficient algorithms for finding this set. For theoretical purposes, we often
use a decomposition (see Proposition 3.12 part (ii)) that expresses tor([𝑄]) as a disjoint union
indexed by the subset [𝑄]𝑣 of quivers in [𝑄] having vertex 𝑣 as a source. Although there is no
efficient algorithm for computing [𝑄]𝑣, one of our main theorems derives a more efficient recursive
algorithm to compute tor([𝑄]) (see Theorem 5.3). In Corollary 4.3, another one of our main
results, we exhibit a novel connection between toric posets and the Kleiss–Kuijf relations, which
appear in scattering amplitudes. Full proofs can be found in [6].
Remark 1.3. The rational function Ψ[𝑤]

tor (𝐱) appears in scattering amplitude computations as Parke–
Taylor factors [20]. Most recently, in [19], Parisi, Sherman-Bennett, Tessler, and Williams utilize
Ψ[𝑤]
tor (𝐱) in order to prove a tiling conjecture for the 𝑚 = 2 amplituhedron.

2 Posets and Graphic Hyperplane Arrangements
The definition of a toric poset relies on the well-studied association between posets and chambers in
graphic hyperplane arrangements [9, 14, 21, 25], so we discuss this correspondence. A poset 𝑃 on
[𝑛] gives rise to an open polyhedral cone 𝑐(𝑃 ) in R𝑛 where 𝑐(𝑃 ) ∶= {𝑥 ∈ R𝑛 ∶ 𝑥𝑖 < 𝑥𝑗 if 𝑖 <𝑃 𝑗}.

Connected components in the complement of a graphic hyperplane arrangement are open poly-
hedral cones called chambers, and each cone 𝑐(𝑃 ) appears as a chamber in the complement of
at least one graphic hyperplane arrangement. Let 𝐺 be a simple, undirected graph on the ver-
tex set [𝑛], so 𝐺 ⊆

([𝑛]
2

). Then, the graphic hyperplane arrangement (𝐺) is defined to be
(𝐺) ∶=

⋃

{𝑖,𝑗}∈𝐺 𝑖𝑗 where 𝑖𝑗 is the hyperplane 𝑥𝑖 = 𝑥𝑗 .
An acyclic quiver is a directed graph that contains no directed cycles. There is a one-to-one

correspondence between chambers in R𝑛−(𝐺) and acyclic quivers that have the same underlying
graph 𝐺. Given such a chamber, for every pair of vertices 𝑖, 𝑗 such that {𝑖, 𝑗} ∈ 𝐺, we orient this
edge 𝑖 → 𝑗 if 𝑥𝑖 < 𝑥𝑗 and orient the edge 𝑗 → 𝑖 otherwise. Moreover, any acyclic quiver on 𝑛
vertices induces a poset structure on 𝑛 elements. In particular, we set 𝑖 < 𝑗 in the poset whenever
there is a directed path from 𝑖 to 𝑗 in the quiver.
Example 2.1. We show two graphic hyperplane arrangements. For each arrangement, we label the
chambers by the posets induced by acyclic orientations of the corresponding graph.

𝑥2 = 𝑥3

𝑥1 = 𝑥3

𝑥1 = 𝑥23
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A poset 𝑃 is also determined by its set of linear extensions. Each extension (𝑤1, 𝑤2,… , 𝑤𝑛)
corresponds to a chamber 𝑐𝑤 ∶= {𝐱 ∈ R𝑛 ∶ 𝑥𝑤1

< 𝑥𝑤2
< ⋯ < 𝑥𝑤𝑛

} in the complement of the
complete graphic hyperplane arrangement (𝐾𝑛), also known as the braid arrangement. From this
observation, we have 𝑐(𝑃 ) =

⋃

𝑤∈(𝑃 ) 𝑐𝑤 where (⋅) denotes topological closure. This equation
demonstrates that when one fixes the graph 𝐺, posets (chambers) are determined by their sets of
linear extensions. Posets may arise as chambers in several graphic hyperplane arrangements as the
graph 𝐺 varies. Although there is ambiguity when identifying 𝑃 with an acyclic quiver 𝑄, there
are two natural choices: the transitive closure 𝑃 and the Hasse diagram 𝐻(𝑃 ).

3 Toric Posets
In [9], Develin, Macauley, and Reiner introduce toric posets. We may distinguish toric posets
from posets, by calling posets “ordinary" posets. Toric graphic hyperplane arrangements are the
source of the name “toric” poset. Given an undirected graph 𝐺 on 𝑛 vertices, recall that there is an
associated graphic hyperplane arrangement (𝐺) inside R𝑛. We define a quotient map 𝜋 ∶ R𝑛 →
R𝑛∕Z𝑛. The toric graphic hyperplane arrangement associated to 𝐺 is tor(𝐺) = 𝜋((𝐺)). A
connected component of R𝑛∕Z𝑛 −tor(𝐺) is a toric chamber. A toric poset is a set that arises as
a toric chamber in a toric graphic hyperplane arrangement for at least one graph 𝐺.

Naturally, given 𝐱, 𝐲 ∈ R𝑛, these points lie in the same equivalence class in R𝑛∕Z𝑛 exactly
when for each coordinate 1 ≤ 𝑖 ≤ 𝑛, we have 𝑥𝑖 mod 1 = 𝑦𝑖 mod 1 where 𝑥𝑖 mod 1 and 𝑦𝑖
mod 1 are elements of [0, 1). Therefore, we can still recover an acyclic quiver with underlying
graph 𝐺 for each point [𝐱] ∈ R𝑛∕Z𝑛 by orienting {𝑖, 𝑗} ∈ 𝐺 as 𝑖 → 𝑗 if 𝑥𝑖 mod 1 < 𝑥𝑗 mod 1
and orienting {𝑖, 𝑗} as 𝑗 → 𝑖 otherwise.

Key point: By this construction, two points in the same toric chamber might not map
to the same acyclic quiver. To account for this, the following flip operation is defined.

Definition 3.1 ([9]). Consider acyclic quivers 𝑄1, 𝑄2 that differ by converting one source vertex
(all edges directed outward) to one sink vertex (all edges directed inward). Then, we say that 𝑄1, 𝑄2
are related by a flip. This flip operation induces an equivalence relation on the set of acyclic quivers
with the same underlying graph 𝐺, and we denote this equivalence relation as ≡.
Remark 3.2. This flip operation was studied by Mosesian and Pretzel in [18] and [22], respectively
and has appeared in other works including Chen [7], Defant and Kravitz [8], Eriksson and Eriksson
[10], Macauley and Mortveit [17], Speyer [24], and Propp [23]. This flip operation also appears in
the context of reflection functors in quiver representations [2] and is an instance of quiver mutation
at a sink or source vertex [11].

With ordinary posets, we saw that there is a bijection between chambers of (𝐺) and the set of
acyclic quivers with underlying graph 𝐺. For toric posets, we have the following theorem.
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Theorem 3.3 ([9, Theorem 1.4]). There is a bijection between the chambers of tor(𝐺) and equiv-
alence classes under ≡ of acyclic quivers with underlying graph 𝐺.

With ≡ defined, we can define toric posets in a combinatorial way.
Definition 3.4. A toric poset [𝑄] is an equivalence class of acyclic quivers that are equivalent under
the relation of flipping a sink vertex to a source vertex and vice versa.
Example 3.5. Let us consider the following toric poset [𝑄]:

1

2 3

4

1 4

32

2

41

3

32

1 4

4

23

1

3

41

2

Any two quivers 𝑄1, 𝑄2 ∈ [𝑄] are related by a sequence of source to sink (or sink to source) flips.

3.1 Properties of Toric Posets
All quivers will be acyclic (no directed cycles) and simple, no parallel directed arcs; self-loops and
anti-parallel directed arcs are already prevented due to the acyclic assumption.

For ordinary posets, the Hasse diagram and transitive closure depend on chains in the poset. A
similar story is true for toric posets and toric chains. We first define a toric directed path.
Definition 3.6 ([9]). For 𝑄′ ∈ [𝑄], elements 𝑥1, 𝑥2,… , 𝑥𝑘−1, 𝑥𝑘 form a toric directed path if 𝑄′

contains the chain 𝑥1 → 𝑥2 → ⋯ → 𝑥𝑘−1 → 𝑥𝑘 and the directed edge 𝑥1 → 𝑥𝑘.
Let 𝐶 be the set of vertices in a toric directed path. The length of the toric directed path is |𝐶|−

1. We note that an edge and a vertex is a toric directed path of length 1 and length 0, respectively.
Definition 3.7 ([9]). For a toric poset [𝑄] that has underlying graph 𝐺 with vertex set 𝑉 , a toric
chain is a subset 𝑉 ′ ⊆ 𝑉 that is totally ordered for every poset induced by an acyclic quiver in [𝑄].

Just as chains are closed under subsets in a poset, toric chains are closed under subsets in a toric
poset. In [9, Proposition 6.3], Develin, Macauley, and Reiner show that a subset 𝑉 ′ ⊆ 𝑉 is a toric
chain if and only if the elements of 𝑉 ′ lie along a toric directed path.
Definition 3.8 ([9]). Two elements 𝑎, 𝑏 of a toric poset [𝑄] are torically comparable if there exists
a toric chain in [𝑄] that 𝑎, 𝑏 lie on together. Otherwise, elements 𝑎, 𝑏 are torically incomparable.

As with ordinary posets, a toric poset may arise as a chamber in the complement of toric graphic
hyperplane arrangements for several graphs. However, there are two natural choices of such graphs:

i. [𝑄], the toric transitive closure of [𝑄], and
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ii. [𝑄]Hasse, the toric Hasse diagram corresponding to [𝑄].
Definition 3.9 ([9]). Let [𝑄] be a toric poset and 𝑄′ ∈ [𝑄]. The toric transitive closure of 𝑄′,
denoted 𝑄′ is the quiver where one adds to the underlying graph of 𝑄′ all edges {𝑖, 𝑗} if 𝑖 and 𝑗
live on a toric chain and directs 𝑖 → 𝑗 if there exists a toric directed path from 𝑖 to 𝑗 in 𝑄′. Then,
the toric transitive closure of [𝑄], denoted [𝑄] is defined as [𝑄] ∶= [𝑄′]. In [9, Corollary 7.3], the
authors show that [𝑄] does not depend on the choice of representative 𝑄′ ∈ [𝑄].

In contrast to the toric transitive closure, we can define the toric analogue of a Hasse diagram
as follows. Let [𝑄] be a toric poset and choose a representative 𝑄′ ∈ [𝑄]. Let 𝑄′

Hasse be the quiver
constructed from 𝑄′ by removing each edge 𝑖 → 𝑗 for which 𝑄′ contains a toric directed path from 𝑖
to 𝑗 that is both non-maximal and has length strictly greater than 1. The toric Hasse diagram of [𝑄],
denoted [𝑄]Hasse, is defined as [𝑄]Hasse ∶= [𝑄′

Hasse]. In [9, Corollary 9.2], the authors show that
the toric Hasse diagram does not depend on the choice of representative 𝑄′ ∈ [𝑄]. Below we show
one representative of [𝑄]Hasse, [𝑄], and [𝑄] and we label these quivers 𝑄1, 𝑄2, 𝑄3, respectively.

1

2

3 4

5

𝑄1

1

2

3 4

5

𝑄2

1

2

3 4

5

𝑄3

A toric total order is a cyclic equivalence class and corresponds to a chamber in the complement
of the toric complete graphic arrangement 𝑡𝑜𝑟(𝐾𝑉 ). A toric total order is of the form

[𝑤] ∶= [(𝑤1,… , 𝑤𝑛)] = {(𝑤1,… , 𝑤𝑛−1, 𝑤𝑛), (𝑤2,… , 𝑤𝑛, 𝑤1),… (𝑤𝑛, 𝑤1,… , 𝑤𝑛−1)
}

.

Definition 3.10 ([9]). Let [𝑄] be a toric poset and let 𝑐 be the toric chamber in the associated toric
graphic hyperplane arrangement that corresponds to [𝑄]. A toric total order [𝑤] is a toric total
extension of [𝑄] if 𝑐[𝑤] ⊆ 𝑐, where 𝑐[𝑤] is the toric chamber associated to [𝑤]. We denote the set
of toric total extensions of [𝑄] as tor([𝑄]).

In the following lemma, we show that the set of toric total extensions of [𝑄]Hasse is the same
as the set of toric total extensions of [𝑄]. Sometimes it is more convenient to work in the toric
transitive closure rather than the toric Hasse diagram and vice versa. For instance, part (iii) of
Theorem 5.3 is phrased in terms of the toric transitive closure.
Lemma 3.11. Let [𝑄] be a toric poset. Then, tor([𝑄]Hasse) = tor([𝑄]) = tor([𝑄]).

Let [𝑄]𝑣 denote the set of quivers in [𝑄]where 𝑣 is a source. We prove the following proposition.
Proposition 3.12. For a toric poset [𝑄], the set of toric total extensions can be written in terms of
ordinary linear extensions in the following ways:
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i. tor([𝑄]) = {[𝑤] ∶ 𝑤 ∈ (𝑄′) for some 𝑄′ ∈ [𝑄]}

ii. tor([𝑄]) =
⨆

𝑄′∈[𝑄]𝑣

{

[𝑣�̂�] ∶ �̂� ∈ (𝑄′ − {𝑣})
}

where ⨆ denotes disjoint union.
A bounded poset 𝑃 is one that has a unique minimum 0̂ and a unique maximum 1̂. We prove

the following proposition, which is used in the proof of Theorem 3.14.
Proposition 3.13. Let 𝑃 be a bounded poset, and let 𝑄 be the quiver resulting from adding the
directed edge 0̂ → 1̂ to the Hasse diagram 𝐻(𝑃 ). Then one has a bijection

𝜃 ∶ (𝑃 ) ⟶ tor([𝑄])
(0̂, 𝑤2,… , 𝑤𝑛−1, 1̂) ⟼ [(0̂, 𝑤2,… , 𝑤𝑛−1, 1̂)].

In 1991, Brightwell and Winkler showed that counting the number of linear extensions of an
ordinary poset is a #𝑃 -complete problem. We prove an analogous result for toric posets in Theo-
rem 3.14. Further discussion regarding #𝑃 -completeness can be found in [5, 12].
Theorem 3.14. Counting the toric total extensions for a toric poset [𝑄] is #𝑃 -complete.

Although part (ii) of Proposition 3.12 provides a more efficient process for finding the set of
toric total extensions relative to Proposition 3.12 part (i), we look for more efficient ways to compute
this set. In Section 5, we provide a recursive algorithm to more efficiently compute tor([𝑄]).

4 Properties of Ψ[𝑄]
tor (𝐱)

As mentioned in Remark 1.3, the denominator of Ψ[𝑤]
tor (𝐱) appears as Parke–Taylor factors in scat-

tering amplitude computations. We now show how to recover the Kleiss–Kuijf relations, an identity
that appears in scattering amplitudes [15], by showing that these relations are, surprisingly, a spe-
cific instance of Greene’s theorem for strongly planar posets (recall Equation (1.1)).
Proposition 4.1. Suppose 𝑃 is a bounded poset with minimum element 0̂ and maximum element
1̂. Let 𝑄 be the quiver resulting from adding the directed edge 0̂ → 1̂ to the Hasse diagram 𝐻(𝑃 ).
Then, for the toric poset [𝑄], we have

Ψ[𝑄]
tor (𝐱) =

1
𝑥1̂ − 𝑥0̂

Ψ𝑃 (𝐱).

Corollary 4.2. Let 𝑃 be a bounded, strongly planar poset with minimum element 0̂ and maximum
element 1̂. Let Δ be the set of bounded regions of 𝑃 , and let 𝑄 be the quiver resulting from adding
the directed edge 0̂ → 1̂ to 𝐻(𝑃 ). Then, by Proposition 4.1 and Equation (1.1), we have

Ψ[𝑄]
tor (𝐱) =

1
𝑥1̂ − 𝑥0̂

∏

𝛿∈Δ(𝑥min(𝛿) − 𝑥max(𝛿))
∏

𝑖⋖𝑃 𝑗
(𝑥𝑖 − 𝑥𝑗)

.
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The following corollary is a special case of Corollary 4.2 applied to the poset 𝑃 on the right
of Figure 1. Let 𝐛 = (𝑏1, 𝑏2,… , 𝑏𝑘), 𝐜 = (𝑐1, 𝑐2,… , 𝑐𝑗), and let rev(𝐛) = (𝑏𝑘,… , 𝑏2, 𝑏1). As
convention, let 𝑏𝑘+1 = 𝑐𝑗+1 = 1̂ and 𝑏0 = 𝑐0 = 0̂.

0̂

𝑏1

𝑏2

...

1̂

𝑏𝑘

𝑄

𝑐1

𝑐2

...

𝑐𝑗

0̂

𝑏1

𝑏2

...

1̂

𝑏𝑘

𝑃

𝑐1

𝑐2

...

𝑐𝑗

Figure 1

Corollary 4.3. (Kleiss–Kuijf Shuffle Relations) ForΨ[𝑄]
tor (𝐱)where [𝑄] is the toric poset represented

by quiver 𝑄 shown on the left of Figure 1, we have

Ψ[𝑄]
tor (𝐱) =

(−1)𝑘
𝑘
∏

𝑟=0
(𝑥𝑏𝑟+1 − 𝑥𝑏𝑟) ⋅

𝑗
∏

𝑠=0
(𝑥𝑐𝑠 − 𝑥𝑐𝑠+1)

, (4.1)

or equivalently,
∑

𝐚∈𝐛⧢𝐜
Ψ[(1̂,0̂,𝐚)]
tor (𝐱) = (−1)𝑘Ψ[(1̂,rev(𝐛),0̂,𝐜)]

tor (𝐱). (4.2)

Properties of Ψ𝑃 (𝐱) shown by Boussicault, Féray, Lascoux, and Reiner in [4] as well as proper-
ties by Greene in [13] serve as motivation for the next few analogous properties of Ψ[𝑄]

tor (𝐱). Recall
that in [4], the authors show that a poset 𝑃 is disconnected if and only if Ψ𝑃 (𝐱) = 0. We present
a sufficient condition for when Ψ[𝑄]

tor (𝐱) = 0, but first present a computational lemma that will help
in the proof of this result. It also appeared recently as [19, Proposition 7.17] with a different proof.
Lemma 4.4. Let 𝐚 = (𝑎1, 𝑎2… , 𝑎𝑚) and 𝐛 = (𝑏1, 𝑏2,… , 𝑏𝑛). Then,

∑

𝐜∈𝐚⧢𝐛Ψ
[(1,𝐜)]
tor (𝐱) = 0.

We now present our next main result. Recall that a cut vertex is a vertex such that if it is removed,
the number of connected components of the graph increases.
Theorem 4.5. Let [𝑄] be a toric poset, and let 𝐺 be the underlying undirected graph of [𝑄]. If 𝐺
is either disconnected with at least three vertices or has a cut vertex, then Ψ[𝑄]

tor (𝐱) = 0.
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In Theorem 4.5, we need to assume the toric poset [𝑄] has at least three vertices since if [𝑄]
has exactly two vertices 1, 2 and no arcs, then Ψ[𝑄]

tor (𝐱) =
1

(𝑥1−𝑥2)(𝑥2−𝑥1)
= −1

(𝑥1−𝑥2)2
≠ 0.

Remark 4.6. Theorem 4.5 gives a sufficient condition for the vanishing of Ψ[𝑄]
tor (𝐱). We depict a

quiver 𝑄 whose toric poset [𝑄] has Ψ[𝑄]
tor (𝐱) = 0, but the vanishing is not implied by Theorem 4.5.

1

2 3 4

5

In [19, Theorem 7.11], the authors show that a certain sum over cyclic extensions of partial
cyclic orders vanishes. Since cyclic extensions can be seen to be the same as toric total extensions,
it is natural to wonder how their sum relates to our Theorem 4.5. In [6], we show that neither
theorem implies the other, but acknowledge some overlap.

For ordinary posets, Boussicault, Féray, Lascoux, and Reiner show that linear terms in the
denominator of Ψ𝑃 (𝐱) correspond to cover relations of 𝑃 .
Theorem 4.7 ([4, Corollary 5.2]). For a connected poset 𝑃 , the minimal denominator of Ψ𝑃 (𝐱) is
∏

𝑖⋖𝑃 𝑗
(𝑥𝑖 − 𝑥𝑗).

For toric posets, we prove the following result.
Theorem 4.8. For [𝑄] a toric poset, Ψ[𝑄]

tor (𝐱) can always be expressed over the denominator of
∏

{𝑖,𝑗}∈[𝑄]Hasse(𝑥𝑖 − 𝑥𝑗) where we take the product over all edges {𝑖, 𝑗} in [𝑄]Hasse.

Remark 4.9. For [𝑄] in Figure 1, we emphasize that the minimal denominator of Ψ[𝑄]
tor (𝐱) does not

contain the linear factor (𝑥0̂ − 𝑥1̂), even though the edge {0̂, 1̂} does appear in [𝑄]Hasse.

5 An Algorithm for Finding Toric Total Extensions
Computing the set of toric total extensions tor([𝑄]) via Proposition 3.12 (ii) requires enumerating
all quivers 𝑄′ ∈ [𝑄] with a vertex 𝑣 as a source; there is currently no good algorithm for this.
Therefore, we are motivated to find methods that are more computationally efficient to compute
tor([𝑄]). We provide a recurrence for finding tor([𝑄]) (see Theorem 5.3) that is similar to the
following recurrence for finding the set of ordinary linear extensions of posets.
Lemma 5.1. Let 𝑃 be a poset, and let 𝑎, 𝑏 be two incomparable elements of 𝑃 . Then,

(𝑃 ) = (𝑃𝑎→𝑏) ⊔(𝑃𝑏→𝑎)

where 𝑃𝑎→𝑏 is obtained from 𝑃 by adding the relation 𝑎 < 𝑏 and 𝑃𝑏→𝑎 is defined similarly.
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Theorem 5.2 is a key component in the proof of Theorem 5.3 and may be of independent interest.
One can view Theorem 5.2 simply as a statement regarding sink-source mutation of acyclic quivers.
Theorem 5.2. Let 𝑣 be any vertex in an acyclic quiver 𝑄, and let 𝑄1, 𝑄2 be any two acyclic quivers
in the subset [𝑄]𝑣 of the source-sink flip-equivalence class [𝑄], so 𝑣 is a source in both 𝑄1 and 𝑄2.
Then there exists a source-sink flip sequence from 𝑄1 to 𝑄2 such that every intermediate quiver in
the sequence also has 𝑣 as a source.

The proof of Theorem 5.2 requires some work, and can be found in our preprint [6, Theorem
1.9]. Moreover, we note that Theorem 5.2 is not true if we drop the acyclic condition.

Let 𝑄 be a quiver with vertices 𝑎 and 𝑏 such that there is no edge between 𝑎 and 𝑏. We define
𝑄𝑎→𝑏 to be the quiver 𝑄 with an added directed edge 𝑎 → 𝑏, and 𝑄𝑏→𝑎 is defined similarly.
Theorem 5.3. Let 𝑎, 𝑏 be two torically incomparable elements in the toric poset [𝑄].

(i) If 𝑎, 𝑏 are in different connected components of the graph of [𝑄], then [𝑄𝑎→𝑏] = [𝑄𝑏→𝑎] and

tor([𝑄]) = tor([𝑄𝑎→𝑏]) = tor([𝑄𝑏→𝑎]).

(ii) If 𝑎, 𝑏 are in the same connected component and 𝑄′ ∈ [𝑄] is a representative where 𝑎, 𝑏 are
ordinary incomparable, then the sets tor([𝑄′

𝑎→𝑏]) and tor([𝑄′
𝑏→𝑎]) are disjoint subsets of

tor([𝑄]), but the inclusion of the disjoint union

tor([𝑄′
𝑎→𝑏]) ⊔tor([𝑄′

𝑏→𝑎]) ⊆ tor([𝑄])

may be proper.

(iii) On the other hand, assume that 𝑎, 𝑏 are distance two in the graph of the toric transitive
closure [𝑄], say both adjacent to the vertex 𝑣. Then if one chooses 𝑄′ ∈ [𝑄]𝑣, that is, 𝑄′ is
a representative of [𝑄] with 𝑣 a source, the inclusion in (ii) becomes an equality:

tor([𝑄]) = tor([𝑄′
𝑎→𝑏]) ⊔tor([𝑄′

𝑏→𝑎]).

This result can be used to recursively compute tor([𝑄]) in terms of tor([𝑄𝑖]) for toric posets
[𝑄𝑖], each having more edges in their toric Hasse diagram than that of [𝑄]. Each of the latter
toric posets has fewer toric total extensions, so they are easier to understand. We show that when
this iterative process ends, our resulting toric posets are exactly the toric total orders [𝑤]; that is,
tor([𝑤]) = {[𝑤]}. Note that the transitive closure of a toric chain is a complete graph.
Corollary 5.4. For a toric poset [𝑄], iterative application of Theorem 5.3 gives a finite algorithm
for finding tor([𝑄]), where the resulting toric posets correspond to toric total orders [𝑤]. In other
words, for every toric poset that is not a toric total order, either Theorem 5.3 part (i) or (iii) applies.
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Example 5.5. We calculate tor([𝑄]) for the toric poset from Example 3.5, and illustrate Theo-
rem 5.3 with the following tree. If node [𝑄] has children [𝑄𝑖], then tor([𝑄]) =

⨆

[𝑄𝑖]
tor([𝑄𝑖]).

For each of our toric posets, we draw one representative. Note that in this example [𝑄] = [𝑄]Hasse.

𝑄
1

2 3

4

𝑄2→3
1

2 3

4

𝑄3→2
1

2 3

4

(𝑄3→2)1→4

1

2

3

4

(𝑄2→3)4→1

1

4

3

2
(𝑄3→2)1→4

4

1

2

3
(𝑄3→2)4→1

1

4

2

3

Reading the leaves left-to-right, tor([𝑄]) = {[(1, 4, 2, 3)], [(1, 2, 3, 4)], [(1, 4, 3, 2)], [(1, 3, 2, 4)]}.

Acknowledgements
The author is very grateful to Vic Reiner for guidance throughout all stages of this project. The au-
thor would also like to thank Esther Banaian, Swee Hong Chan, Patricia Commins, Colin Defant,
Nick Early, Tucker Ervin, Darij Grinberg, Matt Macauley, and Scott Neville for helpful conver-
sations and references, and Son Nguyen, for his assistance in creating a Sage program to acquire
initial data. The author would also like to thank Gregg Musiker for his encouragement of this work.
Work partially supported by NSF DMS-2053288.

References
[1] M. Aguiar and S. H. Chan. “Toric arrangements associated to graphs”. Sém. Lothar. Combin. 78B

(2017), Art. 84, 12 pp.
[2] I. Bernstein, I. Gel'fand, and V. Ponomarev. “Coxeter functors and Gabriel’s theorem”. Russian

Mathematical Surveys 28.2(170) (1973), pp. 17–32. DOI.
[3] C. Bibby and E. Delucchi. “Supersolvable posets and fiber-type abelian arrangements”. Selecta Math.

(N.S.) 30.5 (2024), Paper No. 89, 39 pp. DOI.
[4] A. Boussicault, V. Féray, A. Lascoux, and V. Reiner. “Linear extension sums as valuations on cones”.

J. Algebraic Combin. 35.4 (2012), pp. 573–610. DOI.

https://dx.doi.org/10.1070/RM1973v028n02ABEH001526
https://dx.doi.org/10.1007/s00029-024-00976-w
https://dx.doi.org/10.1007/s10801-011-0316-2


12 Elise Catania

[5] G. Brightwell and P. Winkler. “Counting linear extensions is #P-complete” (1991), pp. 175–181. DOI.
[6] E. Catania. “A Toric Analogue for Greene’s Rational Function of a Poset”. 2024. arXiv:2409.04907.
[7] B. Chen. “Orientations, lattice polytopes, and group arrangements. I. Chromatic and tension polyno-

mials of graphs”. Ann. Comb. 13.4 (2010), pp. 425–452. DOI.
[8] C. Defant and N. Kravitz. “Friends and strangers walking on graphs”. Comb. Theory 1 (2021), Paper

No. 6, 34 pp. DOI.
[9] M. Develin, M. Macauley, and V. Reiner. “Toric partial orders”. Trans. Amer. Math. Soc. 368.4

(2016), pp. 2263–2287. DOI.
[10] H. Eriksson and K. Eriksson. “Conjugacy of Coxeter elements”. Electron. J. Combin. 16.2 (2009),

Research Paper 4, 7 pp. DOI.
[11] S. Fomin and A. Zelevinsky. “Cluster algebras. II. Finite type classification”. Invent. Math. 154.1

(2003), pp. 63–121. DOI.
[12] O. Goldreich. “Computational complexity: a conceptual perspective”. ACM Sigact News 39.3 (2008),

pp. 35–39.
[13] C. Greene. “A rational-function identity related to the Murnaghan-Nakayama formula for the charac-

ters of 𝑆𝑛”. J. Algebraic Combin. 1.3 (1992), pp. 235–255. DOI.
[14] C. Greene and T. Zaslavsky. “On the interpretation of Whitney numbers through arrangements of

hyperplanes, zonotopes, non-Radon partitions, and orientations of graphs”. Trans. Amer. Math. Soc.
280.1 (1983), pp. 97–126. DOI.

[15] R. Kleiss and H. Kuijf. “Multigluon cross sections and 5-jet production at hadron colliders”. Nuclear
Physics B 312.3 (1989), pp. 616–644. DOI.

[16] M. Macauley. “Morphisms and order ideals of toric posets”. Mathematics 4.2 (2016). 39. DOI.
[17] M. Macauley and H. S. Mortveit. “Posets from admissible Coxeter sequences”. Electron. J. Combin.

18.1 (2011), Paper 197, 18 pp. DOI.
[18] K. M. Mosesian. “Strongly basable graphs”. Akad. Nauk Armjan. SSR Dokl. 54 (1972), pp. 134–138.
[19] M. Parisi, M. Sherman-Bennett, R. Tessler, and L. Williams. “The Magic Number Conjecture for the

𝑚 = 2 amplituhedron and Parke-Taylor identities”. 2024. arXiv:2404.03026.
[20] S. J. Parke and T. R. Taylor. “Amplitude for 𝑛-gluon scattering”. Phys. Rev. Lett. 56.23 (1986). DOI.
[21] A. Postnikov, V. Reiner, and L. Williams. “Faces of generalized permutohedra”. Doc. Math. 13

(2008), pp. 207–273. DOI.
[22] O. Pretzel. “On reorienting graphs by pushing down maximal vertices”. Order 3.2 (1986), pp. 135–

153. DOI.
[23] J. Propp. “Lattice structure for orientations of graphs”. 2002. arXiv:math/0209005.
[24] D. E. Speyer. “Powers of Coxeter elements in infinite groups are reduced”. Proc. Amer. Math. Soc.

137.4 (2009), pp. 1295–1302. DOI.
[25] R. P. Stanley. “Acyclic orientations of graphs”. Discrete Math. 5 (1973), pp. 171–178. DOI.

https://dx.doi.org/10.1145/103418.103441
https://arxiv.org/abs/2409.04907
https://dx.doi.org/10.1007/s00026-009-0037-6
https://dx.doi.org/10.5070/C61055363
https://dx.doi.org/10.1090/tran/6356
https://dx.doi.org/10.37236/70
https://dx.doi.org/10.1007/s00222-003-0302-y
https://dx.doi.org/10.1023/A:1022435901373
https://dx.doi.org/10.2307/1999604
https://dx.doi.org/10.1016/0550-3213(89)90574-9
https://dx.doi.org/10.3390/math4020039
https://dx.doi.org/10.37236/684
https://arxiv.org/abs/2404.03026
https://dx.doi.org/10.1103/PhysRevLett.56.2459
https://dx.doi.org/10.4171/DM/248
https://dx.doi.org/10.1007/BF00390104
https://arxiv.org/abs/math/0209005
https://dx.doi.org/10.1090/S0002-9939-08-09638-X
https://dx.doi.org/10.1016/0012-365X(73)90108-8

	Introduction
	Posets and Graphic Hyperplane Arrangements
	Toric Posets
	Properties of Toric Posets

	Properties of Greene's Toric Function
	An Algorithm for Finding Toric Total Extensions

