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Characteristic Polynomials of Deformations of
Coxeter Arrangements via Levels of Regions

Ningxin Zhang*1

1School of Mathematical Sciences, Peking University, Beijing

Abstract. We obtain a novel formula for characteristic polynomials of deformations
of the Braid arrangements using the notion of levels of regions. As an application,
we recover and strengthen results of Chen et al. on the characteristic polynomials of
several specific types of hyperplane arrangements via much simpler arguments. Our
theorem also generalizes to type B.
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1 Introduction

The study of Coxeter arrangements plays an essential role in the theory of hyperplane
arrangements [6, 8], largely because of their significant connections to algebra, partic-
ularly in the context of reflection groups and invariant theory. Coxeter arrangements
arise from the reflecting hyperplanes associated with the root systems of finite Coxeter
groups, which reveal the symmetries and combinatorial structures in a geometric con-
text.

Deformations of Coxeter arrangements are affine arrangements where each hyper-
plane is parallel to some hyperplane of the original Coxeter arrangement. Numerous
special examples of these arrangements have been extensively studied over the years [2,
7], including the Catalan arrangement and the Shi arrangement, particularly concerning
characteristic polynomials and the enumeration of regions.

In this paper, we establish a formula for the characteristic polynomial of general
deformations of Coxeter arrangements, expanding the polynomial into terms related
to the numbers of regions with different levels. The level of a region, defined as the
dimension of unbounded directions or the degree of freedom within the region, was first
introduced by Ehrenborg in 2019 [5]. We will present the precise definition in Section 2.

The Coxeter arrangement of type An−1 in Rn is

CoxA(n) = {xi − xj = 0 | 1 ≤ i ̸= j ≤ n}.
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We define a non-degenerate deformation of the Coxeter arrangement of type An−1 to be a
hyperplane arrangement

A = {xi − xj = a(1)ij , . . . , a
(tij)

ij | 1 ≤ i ̸= j ≤ n}, (1.1)

where a(1)ij , . . . , a
(tij)

ij ∈ R and tij ≥ 1 for all 1 ≤ i, j ≤ n. Notice that in the origi-
nal definition of deformations, the number of hyperplanes in each direction tij can be
any nonnegative integer. However, in this article we focus on the non-degenerate de-
formations, meaning that in each direction there is at least one hyperplane within the
arrangement.

The following is our main theorem, a new expansion of the characteristic polynomial
of deformations of type A Coxeter arrangements.

Theorem 1.1. Let A be a non-degenerate deformation of CoxA(n) as in Equation (1.1). Then

χA(t) =
n

∑
k=0

(−1)n−k · rk(A) ·
(

t
k

)
,

where rk(A) is the number of regions with level k in arrangement A.

Remark 1.2. When t = −1, the right hand side of the formula

RHS =
n

∑
k=0

(−1)n−k · rk(A) · (−1)k = (−1)n · r(A),

which is consistent with Zaslavsky’s theorem (see Theorem 2.4).

Our result Theorem 1.1 generalizes several recent results by Chen et al. (see Theorem
1.5 of [4] and Theorem 1.2 of [3]) on the characteristic polynomials of a specific type of
arrangements via much simpler and more general arguments.

Example 1.3. Let A = {H1, H2, H3, H4, H5} be a hyperplane arrangement in R3, where

H1 : x1 − x2 = 0, H2 : x1 − x2 = 1, H3 : x2 − x3 = 0, H4 : x1 − x3 = 1, H5 : x1 − x3 = 0.

Figure 1a shows the projection of the arrangement A onto the plane x1 + x2 + x3 = 0,
where all the regions are labeled by their levels. The characteristic polynomial

χA(t) = t3 − 5t2 + 6t = 6
(

t
3

)
− 4

(
t
2

)
+ 2

(
t
1

)
,

where r3(A) = 6, r2(A) = 4, and r1(A) = 2.
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Theorem 1.1 can be extended to type B deformations as well. The Coxeter arrange-
ment of type Bn in Rn is

CoxB(n) = {xi = 0 | 1 ≤ i ≤ n} ∪ {xi ± xj = 0 | 1 ≤ i, j ≤ n}.

Similarly, we define a non-degenerate deformation of the Coxeter arrangement of type Bn
to be a hyperplane arrangement

B ={xi = a(1)i , . . . , a(ri)
i | 1 ≤ i ≤ n}

∪ {xi − xj = b(1)ij , . . . , b
(sij)

ij | 1 ≤ i ̸= j ≤ n}

∪ {xi + xj = c(1)ij , . . . , c
(tij)

ij | 1 ≤ i ̸= j ≤ n},

(1.2)

where a(1)i , . . . , a(ri)
i , b(1)ij , . . . , b

(sij)

ij , c(1)ij , . . . , c
(tij)

ij ∈ R and ri, sij,tij ≥ 1 for all 1 ≤ i, j ≤ n.
As in the type A case, the non-degenerate deformation of type B still requires that there
is at least one hyperplane in each direction of the arrangement.

Analogous to Theorem 1.1, we have the following main theorem, an expansion of the
characteristic polynomial of deformations of type B Coxeter arrangements.

Theorem 1.4. Let B be a non-degenerate deformation of CoxB(n) as in Equation (1.2). Then,

χB(t) =
n

∑
k=0

(−1)n−k · rk(B) ·
( t−1

2
k

)
,

where rk(B) is the number of regions with level k in arrangement B.

Remark 1.5. When t = −1, the right hand side of the formula

RHS =
n

∑
k=0

(−1)n−k · rk(B) · (−1)k = (−1)n · r(B),

which is consistent with Zaslavsky’s theorem.

Example 1.6. Let B = {H1, H2, H3, H4, H5} be a hyperplane arrangement in R3 shown in
Figure 1b, where

H1 : x1 = 0, H2 : x1 − x2 = 0, H3 : x2 = 0, H4 : x1 + x2 = 1.

The characteristic polynomial

χB(t) = t2 − 4t + 5 = 8
( t−1

2
2

)
+ 2

( t−1
2
0

)
,

where r2(B) = 8, r1(B) = 0, and r0(B) = 2.

The outline of the paper is as follows. In Section 2 we give necessary background
on hyperplane arrangements. In Section 3 we prove our main results, which are Theo-
rem 1.1 and Theorem 1.4, and give some applications as well.
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(b) The hyperplane arrangement B.

Figure 1: Examples of deformations of Coxeter arrangements.

2 Background

2.1 Characteristic polynomials

A hyperplane arrangement A = {H1, . . . , Hm} is a finite set of affine hyperplanes in Rn.
The intersection poset L(A) of arrangement A is the set of all nonempty intersections of
hyperplanes in A, including Rn itself, partially ordered by reverse inclusion.

Definition 2.1. The characteristic polynomial χA(t) of the arrangement A is defined by

χA(t) = ∑
x∈L(A)

µ(x)tdim(x),

where L(A) is the intersecting poset of A, and µ(x) = µ(0̂, x) is the Möbius function of
L(A).

Let A be an arrangement in Rn. Given a hyperplane H0 ∈ A, define the restriction
arrangement AH0 in the affine subspace H0

∼= Rn−1 by

AH0 = {H0 ∩ H ̸= ∅ : H ∈ A−{H0}}.

Let A′ = A−{H0} and A′′ = AH0 . We call (A,A′,A′′) a triple of arrangements with
distinguished hyperplane H0. The characteristic polynomial has a fundamental recursive
property.

Lemma 2.2 (Deletion-restriction [8]). Let (A,A′,A′′) be a triple of arrangements. Then

χA(t) = χA′(t)− χA′′(t).

We call A an integer-arrangement if all of its hyperplanes are given by equations with
integer coefficients. For such an arrangement A, the following well-known result shows
that the characteristic polynomial can be computed by counting the cardinality of certain
finite fields.
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Theorem 2.3 ([1]). Let A be an rational arrangement in Rn. Given a sufficiently large prime
power q, then χA(q) is equal to the number of points in Fn

q that do not belong to any of the
hyperplanes in arrangement A.

2.2 Levels of regions

A region of an arrangement A is a connected component of the complement of the hy-
perplanes. Let R(A) denote the set of regions of A, and let

r(A) = |R(A)|

denote the number of regions in the arrangement A.

Theorem 2.4 (Zaslavsky Theorem). Let A be an arrangement in Rn. Then

r(A) = (−1)nχA(−1).

The following definition may not be as familiar to the audience.

Definition 2.5. Given a subset X ⊂ Rn, the level of X is the smallest non-negative integer
ℓ such that

X ⊂ B(W, r) = {x ∈ Rn : d(x, W) ≤ r},

for some subspace W of dimension ℓ and a real number r > 0.

Informally speaking, the level of a region equals the dimension of its unbounded
directions, reflecting the region’s degree of freedom.

Let Rℓ(A) denote the collection of regions of A with level ℓ, and let

rℓ(A) = |Rℓ(A)| .

Example 2.6. Let A = {H1, H2, H3, H4} be a hyperplane arrangement in R2, see Figure 2,
where

H1 : x = 0, H2 : y = 0, H3 : x + y = 1, H4 : y = 1.

The characteristic polynomial of A is χA(t) = t2 − 4t+ 4. For the three regions labeled in
Figure 2, we show that ℓ(∆0) = 0, ℓ(∆1) = 1, ℓ(∆2) = 2. We have the number of regions
with each level r0(A) = 1, r1(A) = 2, r2(A) = 6, and r(A) = r0(A) + r1(A) + r2(A) = 9.
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Figure 2: The hyperplane arrangement A.

3 Expanding χ(t) to the numbers of regions with different
levels

In this section, we proof our main results Theorem 1.1 and Theorem 1.4. The method
involves applying the deletion-restriction lemma (see Lemma 2.2) and using induction
on the dimension of the arrangements. The crucial part is to show that the restriction of
a deformation on a hyperplane is also an arrangement of desired form. This allows us
to utilize the recursive property of characteristic polynomials.

3.1 Deformations of type A Coxeter arrangements

Before proving Theorem 1.1, we establish the following lemma to address the key com-
ponent of the proof.

Lemma 3.1. Let A be a non-degenerate deformation of a type A Coxeter arrangement in Rn.
Choose a hyperplane H0 ∈ A. Then the restriction of A on H0 is a non-degenerate deformation
of a type A Coxeter arrangement in Rn−1.

Proof. Suppose that H0 : xk − xl = a for some 1 ≤ k < l ≤ n and a ∈ R. Let π be a
projection from H0 to Rn−1 by

π(x1, . . . , xl, . . . xn) = (x1, . . . , x̂l, . . . , xn).

It is not hard to tell that π is an isomorphism. Therefore, the restriction arrangement
AH0 is isomorphic to the arrangement π(AH0) in Rn−1 under the projection π. For any
H ∈ A− H0 such that H ∩ H0 ̸= ∅, H has the form

H : xi − xj = b
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for some 1 ≤ i < j ≤ n and b ∈ R. We obtain all the hyperplanes in arrangement
π(AH0) as follows by taking the projection of nonempty intersections with H0.

π(H ∩ H0) =


{x ∈ Rn−1 : xk − xj = a + b}, if i = l,
{x ∈ Rn−1 : xk − xi = a − b}, if j = l,
{x ∈ Rn−1 : xi − xj = b}, otherwise.

Each hyperplane is parallel to some linear hyperplane xi − xj = 0, which means π(AH0)
is a deformation of a type A Coxeter arrangement. On the other hand, for each pair
1 ≤ i < j ≤ n such that i, j ̸= l, since A is non-degenerate, there is at least one hyperplane
of the form xi − xj = aij for some aij ∈ R in A as well as in π(AH0). Therefore, the
arrangement π(AH0) is non-degenerate.

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. We use induction on the dimension n of the deformation A.
For the base case when n = 2, assume the deformation A = {x1 − x2 = a1, . . . , ak}. It

is easy to show that r1(A) = k − 1 and r2(A) = 2. From the intersection poset of A, we
have the characteristic polynomial χA(t) = t2 − kt = 2(t

2)− (k − 1)(t
1).

We assume that the theorem holds for all the deformation A in Rn−1. For the case
of dimension n, firstly we show that the Coxeter arrangement CoxA(n) satisfies the
expansion equation in the theorem. Regions in CoxA(n) have a natural bijection to
permutations of length n. And each region has the level of n. Thus,

r(CoxA(n)) = rn(CoxA(n)) = n!.

On the other hand, by applying Theorem 2.3, we know that

χCoxA(n)(t) = t · (t − 1) · · · (t − n + 1) = n!
(

t
n

)
= rn(CoxA(n))

(
t
n

)
.

Next, we know that any deformation can be constructed step by step from CoxA(n)
(within finite steps), where each step involves either adding a hyperplane to or removing
a hyperplane from the arrangement, while ensuring that the arrangement remains a
non-degenerate deformation at each step. It is sufficient to show that the deformation
preserves the expansion equation after adding or removing a hyperplane, given that the
equation holds prior to the operation. Assume that A is any deformation satisfying the
expansion, i.e.

χA(t) =
n

∑
k=0

(−1)n−k · rk(A) ·
(

t
k

)
.

Add a hyperplane H0 to the arrangement A and denote the new deformation by Ã,
where H0 is parallel to some hyperplane in A. Denote the arrangement ÃH0 by Å
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for simplicity. By Lemma 3.1, Å is a non-degenerate deformation of type A in Rn−1.
Applying the inductive hypothesis, the expansion holds for Å, i.e.

χÅ(t) =
n−1

∑
k=0

(−1)n−1−k · rk(Å) ·
(

t
k

)
.

(Ã,A, Å) is a triple of arrangements. Then by Lemma 2.2,

χÃ(t) = χA(t)− χÅ(t).

Now we count the number of regions with each level that increases due to the addition
of hyperplane H0. Let H ∈ A be the nearest hyperplane parallel to H0. All the increased
regions appear between H0 and H, which means they can not have the level of n. Mean-
while, the rest of the regions remain at the same level as before. Each newly-constructed
region corresponds to a region of the arrangement ÃH0 in H0, which is exactly the inter-
section of the boundary of the region with H0. See Figure 3 for an example, the regions
increased are marked with stars. Since the distance between H0 and H is bounded, the
vectors of each increased regions are constrained in the direction of the norm of H0,
which implies that each of the increased region has the same level as its corresponding
region in H0. Thus,

rk(Ã) = rk(A) + rk(Å)

for each 1 ≤ k ≤ n − 1, and rn(Ã) = rn(A). We have

χÃ(t) =χA(t)− χÅ(t)

=
n

∑
k=0

(−1)n−k · rk(A) ·
(

t
k

)
−

n−1

∑
k=0

(−1)n−1−k · rk(Å) ·
(

t
k

)
=rn(A) ·

(
t
n

)
+

n−1

∑
k=0

(−1)n−k ·
(

rk(A) + rk(Å)
)
·
(

t
k

)
=

n

∑
k=0

(−1)n−k · rk(Ã) ·
(

t
k

)
,

.

The addition of a parallel hyperplane preserves the expansion equation. We use the same
method to show that the removal of a parallel hyperplane preserves the expansion as
well. Note that a hyperplane can only be removed if there is at least one other hyperplane
parallel to it,in order to maintain its non-degenerate condition. These three arrangements
described above can still form a triple of arrangements by swapping the order of the first
two arrangements before and after the operation. The rest of the proof remains the
same. Finally, we conclude that every step preserves the expansion and therefore all the
non-degenerate deformations A in Rn satisfy the the expansion equation.



Characteristic polynomials of deformations of Coxeter arrangements 9

(a) The arrangement A.

H H0

∗
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(b) Adding H0 in A.

Figure 3: The regions increased after adding a hyperplane.

3.2 Deformations of type B Coxeter arrangements

As in the previous subsection, we firstly present the analogous lemma for deformations
of type B.

Lemma 3.2. Let B be a non-degenerate deformation of a type B Coxeter arrangement in Rn.
Choose a hyperplane H0 ∈ B. Then the restriction of B on H0 is a non-degenerate deformation
of a type B Coxeter arrangement in Rn−1.

Proof. We prove the lemma by examining the equation of H0 case by case, using the same
method as in the proof of Lemma 3.1. Recall that each hyperplane H ∈ A has one of the
following forms: xi = b, xi − xj = b, or xi + xj = b for some 1 ≤ i ̸= j ≤ n and some
b ∈ R.
Case 1. H0 has the form

H0 : xk = a

for some 1 ≤ k ≤ n and a ∈ R. Let π be a projection from H0 to Rn−1 by

π(x1, . . . , xk, . . . xn) = (x1, . . . , x̂k, . . . , xn).

For any H ∈ A− H0 such that H ∩ H0 ̸= ∅, there are three possibilities.
If H : xi = b (i ̸= k), then

π(H ∩ H0) = {x ∈ Rn−1 | xi = b}.

If H : xi − xj = b, then

π(H ∩ H0) =


{x ∈ Rn−1 | xj = a − b}, if i = k,
{x ∈ Rn−1 | xi = a + b}, if j = k,
{x ∈ Rn−1 | xi − xj = b}, otherwise.
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If H : xi + xj = b, then

π(H ∩ H0) =


{x ∈ Rn−1 | xj = b − a}, if i = k,
{x ∈ Rn−1 | xi = b − a}, if j = k,
{x ∈ Rn−1 | xi + xj = b}, otherwise.

Those equations of hyperplanes π(H ∩ H0) show that the arrangement BH0 ∼= π(BH0)
is a deformation of a type B Coxeter arrangement. On the other hand, since B is non-
degenerate, there is at least one hyperplane in each direction in B. By iterating over all
possible subscripts i, j or h of H, we obtain that the arrangement BH0 is non-degenerate
as well.

Case 2. H0 has the form
H0 : xk − xl = a

for some 1 ≤ k < l ≤ n and a ∈ R.

Case 3. H0 has the form
H0 : xk + xl = a

for some 1 ≤ k < l ≤ n and a ∈ R.

The proof of Case 2 and Case 3 is similar to previous arguments, so we will not repeat
it here.

Proof of Theorem 1.4. We prove the theorem by induction on dimension n of the deforma-
tion B. For the base case when n = 1, assume the deformation B = {x1 = a1, . . . , ak}.
Then r0(B) = k − 1 and r1(B) = 2. We have the characteristic polynomial

χB(t) = t − kt = 2
( t−1

2
1

)
− (k − 1)

( t−1
2
0

)
,

satisfying the expansion of the theorem.
For the Coxeter arrangement CoxB(n) of any dimension n, there is a natural bijection

between regions in CoxB(n) and signed permutations of length n. And each region has
the level of n. Thus,

r(CoxB(n)) = rn(CoxB(n)) = 2n · n!.

Moreover, by Theorem 2.3, we have

χCoxB(n)(t) = (t − 1) · (t − 3) · · · (t − (2n − 1)) = 2n · n! ·
( t−1

2
n

)
= rn(CoxB(n))

( t−1
2
n

)
,

which implies that the expansion equation holds for Coxeter arrangements of type B.
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The subsequent steps are the same as the arguments in the proof of Theorem 1.1. Any
deformations of dimension n can be constructed step by step from the Coxeter arrange-
ment CoxB(n), with each step adding a hyperlane to or removing a hyperplane from the
arrangement. By Lemma 3.2, the restriction preserves the properties of non-degenerate
deformations. Therefore, we can apply the deletion-restriction lemma combined with
the inductive hypothesis of lower dimension to conclude the result recursively.

3.3 Applications of main results

Theorem 1.1 recovers and generalizes recent results on several specific types of arrange-
ments, while Theorem 1.4 further extends Theorem 1.1 to type B.

The Catalan-type arrangement is defined by

Cn,A = {xi − xj = 0,±a1,±a2, . . . ,±am | 1 ≤ i ̸= j ≤ n},

where A = {a1 > a2 > . . . > am} is a positive real number set. Note that when A = {1}
the arrangement is the classical Catalan arrangement and when A = [m] it becomes the
m-Catalan arrangement.

The semiorder-type arrangement is defined by

C∗
n,A = {xi − xj = ±a1,±a2, . . . ,±am | 1 ≤ i ̸= j ≤ n}

where A = {a1 > a2 > . . . > am} is a positive real number set.
Very recently, Chen et al. [4, 3] established the following result on the characteristic

polynomials of a specific type of arrangements.

Theorem 3.3 ([4, 3]). Let Ān = {xi − xj = a1, a2, . . . , am | 1 ≤ i ̸= j ≤ n}, where A =
{a1, a2, . . . , am} is a real number set. Then

χĀn
(t) =

n

∑
k=0

(−1)n−krk(An)

(
t
k

)
.

In particular, the formula holds for both Cn,A and C∗
n,A.

Note that the arrangements mentioned above are non-degenerate deformations of
type A Coxeter arrangements. Our main result Theorem 1.1 not only recovers Theo-
rem 3.3, but also extends the above result to any non-degenerate deformations of the
Braid arrangements through much simpler arguments. While the proof of Theorem 3.3
relies on certain symmetries of coefficients, our results Theorem 1.1 and Theorem 1.4
employs a more general method and requires much fewer ristrictions on arrangements.

Moreover, our main results Theorem 1.1 and Theorem 1.4 provide a new approach to
determine the characteristic polynomial of hyperplane arrangement.

The authors of [4] provided the following enumeration result for the regions with
fixed levels in m-Catalan arrangements.
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Theorem 3.4 ([4]). The number of regions rk(Cn,[m]) with level k in m-Catalan arrangement
Cn,[m] is given by

rk(Cn,[m]) =
n!mk

(m + 1)n−k

(
(m + 1)n−k

mn

)
.

Combined with Theorem 1.1,we immediately obtain the characteristic polynomial for
the m-Catalan arrangement.

Many hyperplane arrangements of interest to combinatorialists are non-degenerate
deformations of Coxeter arrangements. By counting the number of regions with fixed
level for more such arrangements, Theorem 1.1 and Theorem 1.4 can be applied to derive
their characteristic polynomials in a novel way.
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