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Turbulence Polyhedra
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Abstract. A framing on a DAG (directed acyclic graph) gives a notion of compatibil-
ity on its routes which induces a regular unimodular triangulation on the underlying
flow polytope. We define framed turbulence charts and their turbulence polyhedra,
generalizing DAGs by removing the assumptions of directedness and acyclicity. We
obtain presentations for turbulence polyhedra using special walks called “trails” on
the underlying turbulence chart and we obtain subdivisions (and in many cases tri-
angulations) of the turbulence polyhedra induced by a notion of compatibility on its
trails. As a special case, we obtain presentations and subdivisions for flow polyhe-
dra of framed directed graphs (without assuming acyclicity). As a motivating special
case, we define and study the turbulence polyhedron of the fringed quiver of a gentle
algebra, providing new insights into g-vector fans of gentle algebras.
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1 Introduction

Flow polytopes, which model the space of unit flows on a directed acyclic graph (DAG),
are a fundamental object of combinatorial optimization and have relations to many fields
such as representation theory [2], Grothendieck polynomials [8], and algebraic geome-
try [7]. Danilov, Karzanov, and Koshevoy [5] introduced framings on DAGs and defined
a notion of pairwise compatibility on routes. The complex of cliques, or sets of pairwise
compatible routes, of a framed DAG serves as a combinatorial model for a (regular uni-
modular) DKK triangulation of the associated flow polytope. Many important classes of
polytopes and their canonical triangulations appear in this way, such as associahedra,
generalized permutahedra [9], s-permutahedra [6], and many order polytopes [8].

Inspired by a recent connection between flow polytopes and the representation theory
of gentle algebras [3], we will generalize the definition of a (resp. framed) DAG by
doing away with the assumptions of (D)irectedness and (A)cyclicity. This results in a
combinatorial object called a (resp. framed) turbulence chart (G,∼, R) giving rise to a
turbulence polyhedron F1(G,∼). Generalizing routes of a DAG are trails of a turbulence
chart, each of which is either a route (maximal walk) or a band (infinitely repeating cycle).

Just as we may obtain presentations and triangulations of flow polytopes in terms of
routes on the underlying (framed) DAG, we may obtain presentations and subdivisions
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of turbulence polyhedra in terms of trails on the underlying (framed) turbulence chart.
We first obtain a presentation of the turbulence polyhedron of a framed turbulence chart
(G,∼, R) by characterizing its vertices as indicator vectors of elementary routes and show-
ing that the indicator vectors of elementary bands form a minimal generating set for the
recession cone of F1(G,∼, R). We then use the framing R to obtain a notion of pairwise
compatibility on trails, giving rise to a bundle complex of pairwise compatible trails. We
show that the bundle complex of (G,∼, R) serves as a combinatorial model for a sub-
division of the turbulence polyhedron F1(G,∼, R) which we call the bundle subdivision.
When (G,∼, R) is acyclic or gentle (see below), we obtain a unimodular triangulation
called the clique triangulation. See Figure 1.

We isolate three independent properties which a turbulence chart may have: di-
rectability, acyclicity, and gentleness. A chart is acyclic if it has no bands, which is
equivalent to boundedness of the turbulence polyhedron. Directable framed turbulence
charts are those whose “flow” may be given a consistent direction. These are modelled
by a new definition of “framed directed graphs,” i.e., framed DAGs without the assump-
tion of acyclicity. It is then a consequence of our presentation and subdivision results on
turbulence polyhedra that the analogous presentation and subdivision results hold for
framed directed graphs and their flow polyhedra.

Just as directable framed turbulence charts may be modelled by framed directed
graphs, gentle framed turbulence charts are modelled by the fringed quiver of an asso-
ciated gentle algebra. Fringed quivers were introduced [4, 10] and are equipped with
a simplicial complex of pairwise compatible routes which describes the g-vector fan of
the underlying gentle algebra. In fact, our bundle complex of gentle turbulence charts
agrees with this story, and the addition of bands to the complex adds to the theory by
giving some interpretation for the complement of the g-vector fan. Moreover, applying
a quotient map of the turbulence polyhedron into the ambient space of the g-vector fan
allows us to prove g-convexity of gentle algebras.

2 Background on Framed DAGs

We start by recalling some background on flow polytopes and framed DAGs. Let G =
(V, E) be a finite directed acyclic graph (DAG) with vertex set V and edge set E. For
each v ∈ V, let in(v) and out(v) denote the set of incoming and outgoing edges of v,
respectively. A vertex v is called a source if in(v) = ∅, a sink if out(v) = ∅, and internal
otherwise. An edge α ∈ E is directed from its tail t(α) to its head h(α). The edge α is
internal if it is between two internal vertices, and otherwise it is a source edge and/or a
sink edge. A route of G is a maximal (directed) path in G.

Definition 2.1. A flow f on a DAG G is a function f : E → R which preserves flow at
each internal vertex, i.e., for every internal vertex v we have ∑e∈in(v) f (e) = ∑e∈out(v) f (e).
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Figure 1: A turbulence chart with its fringed quiver and three-dimensional turbulence
polyhedron. In the middle are its six maximal cliques, which give rise to six simplices
making up the unimodular triangulation on the right.

The (unit) flow polytope F1(G) is the space of unit flows on G; i.e., flows satisfying xe ≥ 0
for all edges e ∈ E and ∑v is a source

e∈out(v)
f (e) = 1. The vertices of F1(G) are precisely the

indicator vectors of routes of G.

Definition 2.2. Let G = (V, E) be a DAG. For each internal vertex v of G, assign a
linear order to the edges in in(v) and assign a linear order to the edges in out(v). This
assignment is called a framing of G, which we denote by R. If e is less than f in the linear
order for R on in(v), we write e <R,in(v) f (and similarly for out(v)).

To denote a framing, we label the internal half-edges of a DAG with integers. See
Figure 2 for an example.

Definition 2.3. Two paths p and q of (G, R) are incompatible if without loss of generality
p contains α1Sα2 and q contains β1Sβ2, for some path S and some edges αi, βi with
α1 >R,in(v) β1 and α2 <R,out(w) β2. Otherwise, they are compatible. A clique is a set of
pairwise-compatible routes of (G, R). Cliques form the simplicial clique complex.

For example, in Figure 2, the route α1β2 and the route α2β1 are incompatible, as they
share the unique internal vertex but α2β1 enters this vertex with a higher edge and leaves
with a lower edge compared to α1β2.

Definition 2.4. Let P be a lattice polyhedron. A subdivision of P is a set S of lattice poly-
hedra such that ∪Q∈SQ is a dense subset of P and for every choice of distinct Q1, Q2 ∈ S ,
the set Q1 ∩ Q2 is a common (possibly empty) proper face of Q1 and Q2. A triangulation



4 J. Berggren

1

2

1

2α2

α1 β1

β2

1

2

1

2α2

α1 β1

β2 1

2

1

2α2

α1 β1

β2

α2β1 α1β1

α2β2 α1β2

Figure 2: Shown is a framed DAG (framing in red), its two maximal cliques, and the
corresponding triangulation of its flow polytope.

is a subdivision in which each cell is a simplex of dimension dim(P). A triangulation is
unimodular if each cell has normalized volume 1.

Through the correspondence between routes of G and vertices of F1(G), we may
view maximal cliques of (G, R) as collections of vertices of F1(G) which form a simplex
of a regular unimodular triangulation:

Theorem 2.5 ([5]). The set of maximal cliques of a framed DAG (G, R) forms a regular unimod-
ular triangulation of the flow polytope F1(G).

The triangulation from Theorem 2.5 is called the DKK triangulation of (G, R). Figure 2
shows a framed DAG and its two maximal cliques, each of which is connected with the
corresponding simplex of its DKK triangulation.

3 Turbulence Charts and Turbulence Polyhedra

We now give the main definitions and results of this abstract.
We call a vertex of an undirected graph G internal if it is incident to two or more

edges (counting multiplicity), and fringe otherwise. An edge is fringe if it is incident to
a fringe vertex, and otherwise is internal. A half-edge of G at a vertex v is a tuple (e, v),
where e is an edge of G incident to a vertex v. We write that v is the vertex of (e, v). If
e starts and ends at the same vertex, then we still consider e to be a part of two distinct
half-edges so that every edge of G is a part of exactly two half-edges. We consider any
undirected graph to have vertex set V, internal vertex set Vint, and edge set E.

Definition 3.1. A turbulence chart is a tuple (G,∼) where G is an undirected graph and
∼:= {∼v : v ∈ Vint} is the data of an equivalence relation ∼v splitting the half-edges of
G at v into exactly two nonempty equivalence classes for every internal vertex v ∈ Vint.

We will see that we may obtain a turbulence chart from a directed graph by letting ∼v
at each internal vertex separate the incoming half-edges from the outgoing half-edges,
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and then forgetting the orientations of edges (see the left of Figure 5). This operation
respects the following definitions of the turbulence polyhedron and bundle complex.

Definition 3.2. A function F : E → R≥0 is a (nonnegative) flow on (G,∼) if it satisfies
conservation of flow: for any internal vertex v of (G,∼) with equivalence classes S1 and
S2 of ∼v, we have ∑(e,v)∈S1

F(e) = ∑(e,v)∈S2
F(e). The flow F is unit if ∑e∈E fringe F(e) = 2.

The turbulence polyhedron F1(G,∼) is the space of unit flows on (G,∼).

We are able to understand flow polytopes in terms of paths and routes on the under-
lying DAG; we now define the analogs on turbulence charts. It will be necessary to work
with “oriented walks” along an unoriented graph – to do this, we need the notation of
oriented edges.

Definition 3.3. Define an oriented edge of an undirected graph G as a tuple of the form
ẽ := eteh, where et and eh are the two (distinct) half-edges of one (unoriented) edge e. We
consider ẽ to start at the vertex t(ẽ) of et and end at the vertex h(ẽ) of eh. The inverse edge
ẽ−1 is the oriented edge ehet. A string on G of length m ≥ 0 is a sequence s = ẽ1ẽ2 . . . ẽm,
where each ẽj is an oriented edge of G and for any j ∈ [m − 1], we have h(ẽj) = t(ẽj+1)

and the half-edges eh
j and et

j+1 are in different equivalence classes of ∼h(ẽj)
. We say that

s starts at t(s) := t(ẽ1) and ends at h(s) := h(ẽm). The inverse string s−1 is the sequence
ẽ−1

m ẽ−1
m−1 . . . ẽ−1

1 . For any 1 ≤ a ≤ b ≤ m, the string ẽa ẽa+1 . . . ẽb is a substring of s.

See Figure 3 for an example of a turbulence chart (ignore the numbers for now). We
draw turbulence charts so that internal vertices are dots, fringe vertices are boxes, and
at each internal vertex v a blue line separates the two equivalence classes of ∼v. Under
these conventions, a string is a walk on the graph subject to the rule that each time one
reaches an internal vertex, one may only continue by crossing the blue line at that vertex.

Definition 3.4. A route on (G,∼) is a string which starts and ends at fringe vertices.
We consider a route p to be equivalent to p−1. A band on (G,∼) is a string B such that
B2 := B ◦ B is a string and that B is not a power of any strictly smaller string B′. A
substring of the band B is a substring of any power of its underlying string. Two bands
B and B′ are equivalent if (the underlying string of) B′ is a substring of B2 or (B−1)2. A
trail of (G,∼) is a route or band of (G,∼). The turbulence chart (G,∼) is acyclic if there
are no bands of (G,∼).

On the middle and right of Figure 3, some routes and a band are depicted. Our
depictions of trails do not include a direction and our depictions of bands do not mark
a start point, as we only care about trails up to equivalence.

Recall that vertices of a flow polytope are precisely the indicator vectors of routes; we
wish to give the analogous result for turbulence polyhedra. In order to do this, we first
give the classes of bands and routes which we will use in our presentation.
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Figure 3: On the left is a framed turbulence chart. The middle is not a bundle because
the red and green are incompatible, and the right shows a bundle.

simple lollipop nonelementary simple barbell nonelementary

Figure 4: Examples of elementary (blue) and nonelementary (red) routes and bands.

Definition 3.5. 1. A tiara is a string σ which does not use the same vertex twice except
for h(σ) = t(σ) such that σ ◦ σ is not a string (i.e., the first and final half-edges of σ

are in the same equivalence class of ∼h(σ)).

2. A string or route is simple if it does not use the same vertex twice.

3. A route is a lollipop if it is of the form sσs−1, s is a simple string and σ is a tiara and
that s and σ intersect only at h(s) = t(σ) = h(σ).

4. A band is simple if it does not use the same vertex twice, except that its head is the
same as its tail.

5. A band is a barbell if up to cyclic equivalence it is of the form sσ1s−1σ2, where s is
a simple string and σ1 and σ2 are tiaras such that s, σ1, and σ2 intersect only at the
necessary vertices h(s) = t(σ2) = h(σ2) and t(s) = t(σ1) = h(σ1).

A route is elementary if it is simple or it is a lollipop. A band is elementary if it is
simple or it is a barbell. See Figure 4 for a visual summary of these definitions.

We may use trails of (G,∼) to get at points of the turbulence polyhedron F1(G,∼):

Definition 3.6. Let p = ẽ1ẽ2 . . . ẽm be a route or band of (G,∼). The indicator vector I(p)
is the vector in RE such that the coordinate of an edge e is the number of indices j ∈ [m]
such that the underlying edge of ẽj is e. It is immediate that if p is a trail of (G,∼), then
I(p) ∈ F1(G,∼).
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Theorem 3.7. The map p 7→ I(p) gives a bijection from elementary routes of (G,∼, R) to
vertices of F1(G,∼). The map B 7→ I(B) maps the elementary bands to a minimal generating
set for the recession cone of F1(G,∼).

Recall that the recession cone of a polyhedron P ⊆ Rn is the set Rec(P) = {y ∈ Rn :
x + λy ∈ P for all x ∈ P, λ ∈ R≥0}. Proving Theorem 3.7 amounts to showing that
indicator vectors of nonelementary vertices may be obtained as convex combinations
of indicator vectors of elementary vertices, and that indicator vectors of nonelementary
bands may be obtained as nonnegative combinations of indicator vectors of elementary
bands. See Example 3.13 and Example 3.14 for examples.

We now define framings on turbulence charts, generalizing framings on DAGs.

Definition 3.8. Let (G,∼) be a turbulence chart. Let v be an internal vertex of G and
let S1 and S2 be the equivalence classes of half-edges at v given by ∼v. Assign separate
linear orders to S1 and S2. This data, ranging over all internal vertices of G, is called a
framing R of (G,∼). We write (G,∼, R) to denote a framed turbulence chart. If h1 and h2
are half-edges in the same equivalence class of ∼v for some internal vertex v, we write
h1 <R,∼v h2 to represent that h1 is lesser in the relevant order of R.

To denote a framing, we label the half-edges of a turbulence chart at internal vertices
with red integers. We now use framings to define a notion of compatibility on trails.

Definition 3.9. Let v and w be internal vertices of G. Let ẽ0 and f̃0 be oriented edges
ending at v such that eh

0 and f h
0 are equivalent in ∼v and such that eh

0 <R,∼v f h
0 . Let ẽm+1

and f̃m+1 be oriented edges starting at w such that et
m+1 and f t

m+1 are equivalent in ∼w
and such that et

m+1 <R,∼w f t
m+1. Choose any s (which is either empty or a string) so

that ẽ0sẽm+1 is a string; then f̃0s f̃m+1 is also a string. We say that (ẽ0sẽm+1, f̃0s f̃m+1) is an
incompatibility. Two trails p and q are incompatible if without loss of generality there is a
substring p′ of p and q′ of q such that (p′, q′) is an incompatibility. Otherwise, they are
compatible. A trail is rigid if it is compatible with itself. A clique of (G,∼, R) is a set of
pairwise compatible rigid routes (up to equivalence of routes). A bundle of (G,∼, R) is a
set of pairwise compatible rigid trails (up to equivalence of trails). The bundle complex of
(G,∼, R) is the simplicial complex of bundles of (G,∼, R).

In the middle of Figure 3, the red and blue routes are compatible, and the blue and
green routes are compatible, but the red and green routes are incompatible because they
share a segment which the green enters and leaves high relative to the red. On the right,
all three trails are compatible and hence form a bundle. See the middle of Figure 1 for
an example of the set of maximal cliques of a turbulence chart.

We now generalize the theory of DKK triangulations by using routes, bands, and
indicator vectors to obtain subdivisions of turbulence polyhedra.
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Definition 3.10. Let K̄ be a bundle of (G,∼, R) and let K be the clique consisting of
all routes of K̄. A (unit) K̄-bundle combination is a linear combination ∑p∈K̄ apI(p) of
indicator vectors of trails, such that each ap is nonnegative and the sum of ap over routes
of K̄ is 1. If K̄ = K is a clique, then it is a clique combination. The bundle combination
is positive if ap is nonzero for every p ∈ K̄. The (unit) bundle space ∆1(K̄) is the space of
unit bundle combinations of K̄. If K̄ = K is a band, then ∆1(K) is a simplex and we call
it the clique simplex of K.

Any bundle space is a polyhedron, and is bounded if and only if it is a clique simplex.

Theorem 3.11. Let (G,∼, R) be a turbulence chart. Any flow in F1(G,∼) has at most one
description as a positive bundle combination, and all rational flows may be described as a bundle
combination.

Theorem 3.11 is proven by giving a constructive algorithm to decompose any rational
flow as a bundle combination. We will see that when (G,∼, R) contains no bands,
then every flow in F1(G,∼) may be described as a positive bundle combination, hence
Theorem 3.11 generalizes the triangulation result Theorem 2.5 on flow polytopes. We
now make explicit the subdivision given by Theorem 3.11. Define the bundle subdivision
of F1(G,∼, R) as Sbundle(G,∼, R) := {∆1(K̄) : K̄ is a maximal bundle of (G,∼, R)}.

Corollary 3.12. If (G,∼, R) is a turbulence chart, then the bundle subdivision is a subdivision
of F1(G,∼, R) covering all rational points.

Example 3.13. Consider the three-dimensional turbulence polytope of Figure 1. Routes
of (G,∼, R) are determined by the sequence of edges used, so we refer to them as such
without using half-edges. In the middle of the figure is shown the clique complex of
(G,∼, R), and hence all rigid routes. The only non-elementary routes are the rigid
route e1e2e3e4 and the non-rigid route e4e2e3e1 (whose indicator vector is the same as
I(e1e2e3e4)). Hence, by Theorem 3.7 taking indicator vectors of every other route gives
all vertices of the turbulence polytope. The indicator vector I(e1e2e3e4) is the unique
lattice point of F1(G,∼) which is not a vertex, depicted as an open vertex along the back
edge of the turbulence polyhedron. The indicator vector of any colored route is drawn
as a vertex of the same color, and the indicator vector of f1 f2 is the black vertex. Shown
also are the six maximal cliques, each of which gives a clique simplex of the turbulence
polyhedron whose vertices are the indicator vectors of its routes (note that all simplices
consist of the black vertex and open lattice point with two of the colored vertices).

Example 3.14. Consider the three-dimensional turbulence polyhedron of Figure 5.
Routes of (G,∼, R) are determined by the sequence of edges used, so we refer to them
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Figure 5: A turbulence chart with its fringed quiver, five maximal cliques, and (trian-
gulated) turbulence polyhedron.

as such without using half-edges. The full list of maximal bundles of (G,∼, R) are

{e1e2e3, f1 f2 f3, e2 f2}, {e1e2e3, f1 f2 f3, e1 f1, e3 f3},

{e1e2e3, f1 f2 f3, e1(e2 f2)
m f1, e1(e2 f2)

m+1 f1} (for any m ≥ 0), and

{e1e2e3, f1 f2 f3, e3(e2 f2)
m f3, e3(e2 f2)

m+1 f3} (for any m ≥ 0).

Note that all maximal bundles contain {e1e2e3, f1 f2 f3} and that there is only one maxi-
mal bundle containing a band (namely, e2 f2). In the middle of the figure are depicted
five maximal cliques, with the caveat that {e1e2e3, f1 f2 f3} are not drawn for readability.
The four elementary routes of (G,∼, R) are {e1 f1, e2 f2, e1e2e3, f1 f2 f3}, which correspond
through indicator vectors to the four vertices of F1(G,∼, R) (in particular, I(e1e2e3) and
I( f1 f2 f3) are the top and bottom vertices of the polyhedron). The turbulence polyhe-
dron goes on infinitely to the right, which is the direction given by the indicator vector
of the unique (elementary) band I(e2 f2). Hence, the presentation of F1(G,∼, R) given
in Theorem 3.7 works in this case. Each maximal clique gives a full-dimensional clique
simplex consisting of the two black vertices and two of the colored points. The maximal
bundle {e1e2e3, f1 f2 f3, e2 f2} gives a bundle space whose vertices are at the black vertices
and which continues infinitely to the right to make a two-dimensional strip. Note that
every point of the turbulence polyhedron is contained in a maximal bundle space.

4 Special Cases: Acyclic, Directable, and Gentle

We now isolate three properties of turbulence charts which may be independently true
or false: gentleness, directedness, and acyclicity. Directable turbulence charts may be
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modelled by framed directed graphs, and gentle turbulence charts may be modelled by
gentle algebras. We remark that the class of gentle, acyclic, and directable turbulence
charts are modelled by the amply framed DAGs of [3, 5]. Figure 1 is gentle, acyclic, but
not directable. Figure 5 is gentle and directable, but not acyclic.

We first discuss acyclic turbulence charts. Recall that a turbulence chart is acyclic if it
has no bands. It follows from Theorem 3.7 that a turbulence chart is acyclic if and only
if its turbulence polyhedron is bounded. In this acyclic case, every bundle is actually a
clique, and the bundle subdivision is a unimodular triangulation.

Proposition 4.1. If (G,∼, R) is acyclic, then every point of F1(G,∼) is obtained uniquely as a
clique combination and the bundle subdivision is a unimodular triangulation of F1(G,∼).

4.1 Directable Turbulence Charts

We begin this subsection by discussing framed directed graphs. One may define a framing
on a directed graph (which may not be acyclic) as in Definition 2.2. We say that a band
of a directed graph is a directed cycle which is not a power of a strictly smaller directed
cycle; we consider bands up to cyclic equivalence. A trail of a directed graph is a band
or route. We may finally define compatibility of trails as in Definition 2.3, giving us the
bundle complex of a framed directed graph. We define the flow polyhedron F1(G, R) of a
framed directed graph (G, R) as in Definition 2.1.

A turbulence chart (G,∼, R) is directable if the edges of G may be given orientations
such that at each internal vertex v, the equivalence class ∼v separates the arrow heads
from the arrow tails. The chart of Example 3.14 is directable, but that of Example 3.13 is
not. If (G, R) is a framed directed graph, define a turbulence chart (G′,∼′, R′) where G′

is the underlying undirected graph of G, and at each internal vertex v the equivalence
class ∼′

v separates the half-edges into those coming from arrow heads (ordered by R′ the
same as R) and those coming from arrow tails (ordered by R′ opposite to R).

We remark that the reversal of the framing R at arrow tails explains why routes of a
framed DAG are incompatible when one enters low and leaves high relative to another,
while trails of a framed turbulence chart are incompatible when one enters low and
leaves low relative to another.

Proposition 4.2. Notating as above, we have F1(G, R) = F1(G′,∼′), and there is a natural
correspondence from trails of (G, R) to trails of (G′,∼′, R′) which preserves compatibility. Any
directable framed turbulence chart may be obtained from a framed directed graph in this way.

Theorem 3.7, Theorem 3.11, and Corollary 3.12 give results about presentations and
subdivisions of turbulence polyhedra in terms of the bundle complex of the turbulence
chart. Proposition 4.2 allows us to translate these results verbatim into framed directed
graph language, obtaining the vertices and recession cone of a flow polyhedron in terms
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of elementary routes and bands and obtaining a subdivision of a flow polyhedron in-
duced by the bundle complex.

See Example 3.14; below the turbulence chart (G,∼, R) is pictured a framed DAG
(G′, R′) which maps to it as in Proposition 4.2 (we could have alternatively chosen the
framed DAG given by switching all 1’s and 2’s and reversing all orientations). The
turbulence polyhedron F1(G,∼, R) is equal to the flow polyhedron F1(G′, R′). The
bundle complex of (G,∼, R) may also then be viewed as the bundle complex of the
framed DAG (G′, R′), hence the associated presentations and bundle subdivisions can
be seen to come from the bundle complex of (G′, R′).

4.2 Gentle Turbulence Charts

Definition 4.3. A fringed quiver Λ̃ = (Q, I) is a directed graph Q such that every vertex
of Q is either internal, in which case its degree is four and it is incident to exactly two
incoming and two outgoing arrows, or fringe, in which case its degree is one. Moreover,
Q is equipped with a set I of relations of Q of the form αβ, where h(α) = t(β). We require
that if v is an internal vertex with incoming arrows {α, β} and outgoing arrows {γ, δ},
then without loss of generality αγ and βδ are in I and {αδ, βγ} are not.

See the bottom-left of Figures 1 and 5 for examples of fringed quivers. If αβ ∈ I, then
we draw a blue arc between the end of α and the start of β to notate the relation. For
example, in Figure 1 we have I = {e1 f2, f1e2, f2e3, e2 f3}.

Fringed quivers were defined in [4, 10] in order to study the τ-tilting theory of the
underlying gentle algebra. They come equipped with routes and bands which are as-
sociated to certain modules over the underlying gentle algebra. Routes have a notion
of pairwise compatibility wherein two routes p and q are incompatible if they share a
common substring which p enters and leaves through arrow heads, and q enters and
leaves through arrow tails. Compatibility of routes translates to τ-rigidity of modules.

Let Λ̃ = (Q, I) be a fringed quiver of a gentle algebra Λ. We define a turbulence chart
(G,∼, R) as follows. The graph G is the underlying undirected graph of Q. For each
internal vertex v of Q with relations αβ and γδ, the equivalence relation ∼v separates
{α, β} from {γ, δ}. The framing R orders all half-edges coming from arrow heads as
high, and all half-edges coming from arrow tails low. See Figures 1 and 5 for two
examples. We say that a turbulence polyhedron is gentle if it arises in this way. Routes
and bands of (G,∼, R) are in natural bijection with routes and bands of Λ̃. This bijection
respects compatibility, realizing an isomorphism between the clique complex of (G,∼
, R) and the clique complex of Λ̃. We may then consider Theorems 3.7 and 3.11 as
presentation and subdivision results of the turbulence polyhedron of a gentle algebra
through the combinatorics of its τ-tilting theory.

Theorem 4.4. If (G,∼, R) is gentle, then the union of the simplices given by bundle spaces of
cliques are dense in F1(G,∼, R). We call this the the bundle subdivision of F1(G,∼, R).
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Remark 4.5. There is a projection map from F1(G,∼, R) to the ambient space of the
g-vector fan of Λ. We define its image to be the g-polyhedron of Λ, which extends the
definition of g-polytopes [1] outside of the τ-tilting-finite case. In this way we are able
to show g-convexity of both representation-finite and -infinite gentle algebras.

Remark 4.6. In the literature, the combinatorics of the g-vector fan of Λ is described by
the clique complex of Λ̃. The addition of bands to our bundle complex then gives some
interpretation for the complement of the g-vector fan of Λ.

We finish the extended abstract by speaking to our methods of proving the results
of this paper. In fact, most of our technical work is done directly on fringed quivers of
gentle algebras. We then show that general (bundle-subdivided) turbulence polyhedra
are precisely faces of gentle (bundle-subdivided) turbulence polyhedra, and use this fact
to port Theorem 3.7, Theorem 3.11, and Corollary 3.12 to general turbulence polyhedra.
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