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Abstract. We investigate the cluster algebra of Fock–Goncharov coordinates of the
moduli space of decorated SL3-local systems ASL3,S when S is a marked disk. In par-
ticular, we give explicit expansion formula for the cluster variables with coefficients in
terms of dimer covers (or perfect matchings) of certain subgraphs of Goncharov’s A2

plabic graphs. We describe the poset structures on the said dimer covers, and show
that the corresponding rank functions compute the F-polynomials of the correspond-
ing cluster variables.

1 Introduction

Cluster algebras were introduced by Fomin and Zelevinsky [4, 5], motivated by dual
canonical basis of quantum groups. Loosely speaking, a cluster algebra is a commutative
ring with a distinguished set of variables called cluster variables, which are grouped into
equal-sized subsets called clusters. Two clusters that differ by one entry are connected
by an involution called mutation, of the form {x1, · · · , xi, · · · , xn} ↔ {x1, · · · , x′i, · · · , xn}
where the product of xix′i satisfies a binomial exchange relation.

Structures of cluster algebras are often found in the coordinate rings of geometric objects
(such as the Grassmannian) where the coordinates correspond to clusters and mutations
are change of coordinate transformations. One of the examples of cluster algebras is
the Teichmüller space T(S) = Hom(π1(S), PSL2)/PSL2 of a surface S. Robert Penner
[10] introduced moduli spaces T̃(S) that are principal R+-bundles over T(S), known as
the decorated Teichmüller spaces. Specifically, by attaching horocycles at ideal points
on S, Penner introduced the notion of λ-lengths for each pair of ideal points, which
coordinatize T̃(S). The relations among the λ-lengths coordinates are cluster mutations.
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Meanwhile, Thurston’s lamination [13] gives the shear coordinates of the usual Teich-
müller space, which are cross-ratios of Penner’s λ-lengths.

The duality between Penner’s λ-lengths and Thurston’s shear coordinates is generalized
by Fock and Goncharov [3] to a much higher realm. For certain algebraic groups G
and its Langlands dual Ǧ, they introduced pairs of positive spaces (A+

G,S,X+
Ǧ,S

) called

higher Teichmüller spaces (a.k.a. character varieties). When G = SL2 and Ǧ = PGL2,
these spaces recover Penner’s decorated Teichmüller spaces and Thurston’s laminations
respectively. When G = SLn, they also admit a cluster structure as explained in [3].

In the language of cluster algebras, the A-coordinates correspond to cluster variables
and the X -coordinates correspond to coefficients. Let ASLn,m denoted the cluster algebra
(with principal coefficients) of the Fock–Goncharov coordinates of A+

SLn,S when S is a
disk with m marked points on its boundary. In this paper, we investigate the combina-
torics of cluster variables in ASL3,m that correspond to the Fock–Goncharov coordinates.
In particular, we give explicit combinatorial formulas using dimer covers (a.k.a. perfect
matchings) on a weighted version of Goncharov’s A2-webs [6]. We conjecture that our
construction generalize to general SLn as well.

The plan of the paper is as follows. In Section 2 we review necessary background on
cluster algebras and quiver mutations, and define the cluster algebra ASL3,m. In Section 3
we introduce a weighted version Goncharov’s A2 plabic graphs, and state our main
theorem. We then conclude by giving an example for our main result.

2 Background

In this section, we introduce background on cluster algebras and introduce the Fock–
Goncharov cluster algebra ASL3,m.

2.1 Cluster algebras and quiver mutations.

The definition of a cluster algebra A begins with its ground ring. Let (P,
⊕

, ·) be a
semifield, an abelian multiplicative group together with a binary operation

⊕
which is

commutative, associative and distributive with respect to multiplication. Additionally,
the multiplicative group P is torsion-free, and therefore is the group ring ZP, which
will be the ground ring for A. Let F be the field of rational functions in n independent
variables, with coefficients in QP. Here n is the rank of the cluster algebra A.

Particularly, throughout this article, we will take (P, ·) to be a free abelian group (written
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multiplicatively) on n variables {y1, y2, ..., yn} and the addition
⊕

defined as follows:

∏
j

y
aj
j ⊕∏

j
y

bj
j = ∏

j
y

min(aj,bj)

j . (2.1)

A seed is a triplet (x, y, Q) containing the following data.

• A cluster x = (x1, x2, ..., xn) is an n-tuple of elements of F forming a free basis,
• A coefficient tuple y = {y1, y2, ..., yn} is an n-tuple of elements of P,
• A quiver Q is a directed graph with n vertices without loops or 2-cycles.

A cluster algebra A = A(x, y, Q) is determined by the choice of an initial seed (x, y, Q).
We call x the initial cluster and y the initial coefficient tuple of A. We will occasionally
denote the coefficient yi associated to the cluster variable xi as yxi

.

Now the cluster algebra A is a ZP-subalgebra of F generated by cluster variables, which
can be produced from initial seed by mutation. The mutation µk in direction k, where
k = 1, 2, ...n, transforms a seed (x, y, Q) into a new seed (x′, y′, Q′) as follows:

• x′ = x\{xk} ∪ {x′k}, where

xkx′k =
1

yk
⊕

1

(
yk ∏

i→k
xi + ∏

i←k
xi

)
. (2.2)

• y′ = (y′1, y′2, ..., y′n), where

y′j =

{
y−1

k , if j = k,
yj ∏k→j yk(yk

⊕
1)−1 ∏k←j(yk

⊕
1) if j ̸= k.

(2.3)

• The quiver Q′ is obtained from Q by a mutation at the vertex k, that is
– for every path i→ k→ j, add one arrow i→ j,
– reverse all arrows at k,
– delete all 2-cycles.

Finally, the cluster algebra A is the ZP-subalgebra of F generated by the set of cluster
variables obtained by mutating in all directions from the initial seed.

We now review the case of ASL2,m, where clusters are in bijection with triangulations
of an m-gon. The initial quiver is constructed by placing a vertex at each edge of the
triangulation T, and inside each face of T we put arrows to form clock-wise oriented
triangles. See Figure 1 for example.

A mutation corresponds to a quadrilateral flip in the triangulation, which turns out to be
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µx
x x’

Figure 1: SL2 quiver associated to a triangulation. Here m = 6.

identical to mutating the corresponding vertex in the quiver, as depicted in Section 2.1.
Note that one cannot flip the boundary edges, therefore we call those variables “frozen”.

2.2 Cluster algebra ASL3,m.

We now construct the cluster algebra ASL3,m. Similar to the SL2 case, the initial data is
given by a triangulation T of a m-gon P. Define the initial quiver Q3(T) as follows.

• Place two vertices on each arc of the triangulation T and one vertex in the interior
of each triangle of T. The corresponding cluster variables are called edge variables
and face variables respectively.

• Attach arrows to the vertices with clockwise oriented triangles as depicted in Fig-
ure 2.

x3

x1

x2

x4

x
′
3

x
′
1

x
′
2

x
′
4

flip at d
dd

Figure 2: A 6-gon P with triangulation T and the corresponding quiver Q3(T) (3-
triangulation). A flip at the diagonal d is obtained by first mutating x1 and x2, and
then mutating x3 and x4.

Different from the SL2 case, the quadrilateral flips are given by a sequence of four muta-
tions. In particular, to flip a diagonal d, we first mutate the two vertices sitting on d (in
any order since they commute, and so do the following two), and then mutate the two
vertices sitting on the two triangles adjacent to d. The result of these mutations is exactly
the quiver associated to the triangulation after the flip. See Figure 2 for illustration.

3 Plabic Graphs and Dimer Covers

We now recall the definition of Goncharov’s A2-plabic graph and describe a weighted
version, which will be central to our main formula.
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3.1 Construction of weight A2 plabic graphs

Let P be a polygon and T be a triangulation on P, and Q3(T) the corresponding quiver.
Recall that the 3-triangulation T̂ (following Fock–Goncharov) associated to T is obtained
by separating each triangle in T into 4 smaller triangles (see Figure 3). We further define
the weight of edges on T̂ as shown in the middle of Figure 3.

The plabic graph Γ is defined as follows. For each vertex of T̂, we place a white vertex.
And for each triangle of T that is being divided into four smaller ones in T̂, we place
a black vertex in each of the three small triangles except for the internal one. We then
add black-to-white edges in each of the non-internal small triangles, making every black
vertex trivalent. The weight of edges in the plabic graph is set to be the weight of the
opposite edge in T̂, see Figure 3 for illustration. Finally, we remove all the degree one
vertices, and call the resulting weighted graph the weighted plabic graph associated to
Q3(T).
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d1

d2 e2

e1

b2

b1

x

x x

y y

y

b1

x
a1

c1

x a2

c2

b2 x
y d1

c1

e1 y

c2

d2e2
y

c1 c2

a1

a2

d1

d2 e2

e1

b2

b1

x

y
c1 c2

Figure 3: From left to right: the quiver Q3(T), the weighted 3-triangulation T̂, the
weighted plabic graph Γ. The weight of edges in Γ are labeled. And the label of a face
of Γ is the cluster variable corresponding to the quiver vertex sitting inside the face.

Note that the plabic graph ΓT is dual to the quiver Q3(T), so that every face of ΓT
corresponds to a vertex of Q3(T). Therefore each quadrilateral face or hexagonal face
of Γ has a cluster variable sitting inside, which we define to be the label of that face,
denoted label(F).
Remark 1. In SL2 case, all the clusters obtained from mutation of non-frozen vertices cor-
responds to Fock–Goncharov coordinates (i.e. triangulations). However, the SL3 quiver
Q3(T) is not of finite type in general. In fact, the only clusters that corresponds to tri-
angulations are obtained by iteratively applying the special sequence of four mutations.
We shall restrict ourselves in that case, and only allow such mutations. In particular, our
main result will only provide formulae for clusters that are Fock–Goncharov coordinates.
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3.2 Plabic Subgraphs

To establish the combinatorial expansion formula for cluster variables, we shall define
a subgraph Γx of the weighted plabic graph Γ for each edge or face variable x of other
triangulations, on which there is a one-to-one correspondence of dimer covers and ex-
pansion terms of x.

For each arc (i, j) on the polygon P, we denote xij and xji the two cluster variables
corresponding to (i, j), where xij is the one that is placed closer to the vertex i. For each
triangle (i, j, k) on P, we denote xijk it corresponding face variable. Note that for face
variables xijk we do not distinguish the ordering of indices.

In what follows, we define plabic subgraphs that will be used to compute certain edge
and face variables.

i

a

d c

b

j

i

a

d c

b

j

xdcj xdcj

Figure 4: Left: The plabic subgraph Γxij . Right: The plabic subgraph Γxiaj . Here only
the first and last triangle are shown, and dashed edges being removed to form the
plabic subgraph.

Definition 1. Consider a triangulation as described in Figure 4.

• For an edge variable xij, define the corresponding plabic subgraph Γij to be the subgraph
of Γ with a hexagonal face near vertex j removed. Define the label of Γxij by

label(Γxij) := xdcj ∏
F∈faces of Γxij

xF. (3.1)

• For a face variable xiaj such that (i, a) is an edge in T, we define Γija to be the subgraph of
Γ with 3 less faces: two hexagonal faces inside (i, a, b) and (j, d, c), and one quadrilateral
face near vertex b. The label of Γxija is defined by

label(Γxija) := xdcj ∏
F∈faces of Γxiaj

xF. (3.2)
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3.3 Dimer Covers and their weights and heights

A dimer cover (or perfect matching) M of a bipartite graph G is a collection of edges such
that every vertex in G is incident to exactly on edge in M. We denote D(G) the set of
all dimer covers of G. For weighted graphs, we define the weight of a dimer cover M to
be simply the product of all edge weights in M. To account for the coefficients in our
cluster algebras, we shall introduce an additional statistics called height on dimer covers
of the plabic subgraphs, which relies on the notion of the minimal dimer cover.
Proposition 1. Let G be a plabic subgraph. There exists a unique dimer cover M0 ∈ D(G) such
that every boundary edge of M0 is oriented counterclockwise from white to black, and exactly half
the boundary edges of G are included in M0. We call M0 the minimal dimer cover or minimal
matching. See Figure 5 for example.

Figure 5: Example of a minimal dimer cover. The white-to-black counterclockwise
orientation of boundary edges are shown.

Definition 2. Let G be a plabic subgraph, we define the height of M ∈ D(G) as follows.
Consider the union M = M ∪M0 where M0 is the minimal dimer cover defined above.
Pictorially M is obtained by super-imposing M on top of M0. Note that M is a double
dimer cover which contains only doubled edges and cycles. We then define the height
of M to be

ht(M) = ∏
f∈ cycles of M

y f

where the product is over the faces of G that are surrounded by a cycle of M, and y f is
the coefficient corresponding to the cluster variable sitting in f . See Figure 6 for example.

3.4 Statement of the Main Theorem

Theorem 1. With above notation, let x be a cluster variable corresponding to a face or an edge,
and let Γx be the corresponding plabic subgraph. Then the expansion of x in terms of the initial
cluster is:

x =
1

label(Γx)
∑

M∈D(Γx)

wt(M) ht(M). (3.3)
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Figure 6: Superimposing a dimer cover M and the minimal dimer cover M0. Face
labels indicate the corresponding cluster variables and their coefficient. The height is
ht(M) = y2 y3 y5 y7 y8 y9.

Example 1. Let P be a quadrilateral and T be the triangulation in Figure 7. To obtain
the expansion formula for the edge variable xij, we figure out the subgraph Γxij and its
label. Then we find all dimer covers on this subgraph as well as their weight and height.

By definition we have label(Γxij) = xyc1c2, and Theorem 1 implies that

xij =
1

xyc1c2
(xb1yc1e + x2d1c1e1 yc1

+x2e2d2c2 yy yc2
+a2xyd2c2 yy yc1

yc2
) (3.4)

=
b1e
c2

+
xd1e1 yc1

c2y
+

xe2d2 yy yc2

yc1
+

a2d2 yy yc1
yc2

c1
. (3.5)

Remark 2. We note that a more common approach to obtain graph theoretic formulas
for generalizations of cluster variables is a different method called ”snake graphs” (see
[9, 8, 1]). In SL2 case, our method recovers an unpublished result of Caroll and Price [2].
Remark 3. The work of Muller–Speyer [7] and Postnikov [11] combined gives an expan-
sion formula for Fock–Goncharov X -coordinates as generating functions of certain plabic
graphs with weights of Plücker variables associated to the faces. The plabic graphs we
use are the same as theirs, except that the Plücker weights are attached to the edges. The
Muller–Speyer results work in the scope for any SLn. For the A-variables, the expansion
formula turns out to be more difficult for SLn of n ≥ 4, for reasons we will discuss in the
following remark.
Remark 4. We conjecture that the same construction of plabic subgraphs gives an expan-
sion formula for ASLn for n ≥ 4. Our proof for the SL3 case, however, does not generalize
to higher n. The main difficulty is that for higher n, the mutation sequence for one flip
involves mutating at a vertex twice, which corresponds to dividing by a non-monomial.

3.5 Poset structure on Dimer covers

Recall that in a cluster algebra with principal coefficients, a cluster variable is a Laurent
polynomial in the initial cluster variables {x1, x2, ..., xn}with coefficients in {y1, y2, ..., yn}.
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Figure 7: Left: the plabic subgraph Γij. Right: the poset of all dimer covers on Γxij

and their corresponding weight and height. Every covering relation on the poset cor-
responds to toggling a face i, which is equivalent to multiplying the height by yi.

The corresponding F-polynomial is defined by specializing all the xi’s to be 1. In terms
of plabic graphs, the F-polynomial is simply the sum of heights of all dimer covers. Our
main result Theorem 1 gives a poset structure on dimer covers which can be used to
compute the F-polynomial explicitly.

For G a plabic subgraph, define a poset PD(G) on D(G) as follows. For M1, M2 ∈ D(G),
we have M1 < M2 if ht(M1) is divisible by ht(M2). This poset can also be constructed
inductively. Fix M0 as the minimal element, then every covering relation of the poset is
given by toggling on faces (as illustrated in Figure 8). This perspective is detailed in the
following theorem.
Theorem 2. Let M ∈ D(G), its height can be computed via PD(G) as follows. Take any chain
from M0 to M which corresponds to a sequence of toggles, then ht(M) is the product of the
y-coefficients of the faces being toggled. Note that the result does not depend on the specific choice
of chains.
Remark 5. The poset PD(G) is a distributive lattice via an argument of Propp [12], and
its subposet consisting of join-irreducibles is isomorphic to a specific part of the quiver.
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toggle

toggle

toggle

toggle

Figure 8: Illustration of toggle on a hexagon face and on a square face.

4 Example of Main Theorem

Consider the hexagon P, a triangulation T and its quiver Q3(T) as depicted in Figure 9.
We wish to calculate the edge variable xij. Its plabic subgraph Γij and the minimal
matching M0 is depicted in Figure 9. The poset of dimer covers of Γij is shown in
Figure 10, and by Theorem 1, the cluster variable xij is given by

xij =
1

xyzwc1c2e1e2g1g2
(xyzwb1c1e2

1e2g1i1 + xyz2b1c1e1e2h1g1i1 y8 +x2zwc1d1e2
1g1i1 y2

+ xyz2b1c1e1e2h2g2i2 y8 y9 +x2z2c1d1e1e2h1g1i1 y2 y8 +x2zwc2d2e1e2
2g1i1 y2 y3

+ xyzwb1c1e1e2 f2g2h2 y7 y8 y9 +x2z2c1d1e1e2g2h2i2 y2 y8 y9 +x2z2c2d2e2
2g1h1i1 y2 y3 y8

+ xyzwa2c2d2e1e2g1i1 y1 y2 y3 +x2zwc1d1e1e2 f2g2h2 y2 y7 y8 y9

+ x2z2c2d2e2
2g2h2i2 y2 y3 y8 y9 +x2yzc2e2

2g1g2h1i1 y2 y3 y5 y8

+ xyz2a2c2d2e2g1h1i1 y1 y2 y3 y8 +xzwc2d2e2
2 f2g2h2 y2 y3 y7 y8 y9

+ x2yzc2e2
2g2

2h2i2 y2 y3 y5 y8 y9 +xyz2a2c2d2e2g2h2i2 y1 y2 y3 y8 y9

+ xy2za2c2e2g1g2h1i1 y1 y2 y3 y5 y8 +x2ywc2e2
2 f2g2

2h2 y2 y3 y5 y7 y8 y9

+ xyzwa2c2d2e2 f2g2h2 y1 y2 y3 y7 y8 y9 +xy2za2c2e2g2
2h2i2 y1 y2 y3 y5 y8 y9

+ x2ywc2e1e2 f1g1g2h2 y2 y3 y5 y6 y7 y8 y9 +xy2wa2c2e2 f2g2
2h2 y1 y2 y3 y5 y7 y8 y9

+ xy2wa2c2e1 f1g1g2h2 y1 y2 y3 y5 y6 y7 y8 y9

+ xyzwa2c1c2e1g1g2h2 y1 y2 y3 y4 y5 y6 y7 y8 y9).

The monomials in the above expression are in correspondence to the poset in Figure 10
from bottom to top and left to right.
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Figure 10: The Hasse diagram for the poset of dimer covers of Γij, where covering
relations are indicated by edges labeled by the face being toggled.
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