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Abstract. Generalizing the strong Lefschetz property for an N-graded algebra, we
introduce multigraded strong Lefschetz property for an Nm-graded algebra. We show
that, for a ∈ Nm

+, the generic Nm-graded Artinian reduction of the Stanley–Reisner
ring of an a-balanced homology sphere over a field of characteristic 2 satisfies the
multigraded strong Lefschetz property. A corollary is the inequality hb ≤ hc for b ≤
c ≤ a − b for the flag h-vector of an a-balanced simplicial sphere. This can be seen
as a common generalization of the unimodality of the h-vector of a simplicial sphere
by Adiprasito and balanced generalized lower bound inequality by Juhnke-Kubitzke
and Murai. Another combinatorial consequence is that a k-dimensional completely
balanced simplicial complex which is a subcomplex of a simplicial 2k-sphere satisfies
fk ≤ 2 fk−1.

Keywords: Lefschetz property, Stanley–Reisner ring, balancedness, multigraded alge-
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1 Introduction

The f -vector and h-vector of simplicial complexes have been extensively studied in alge-
braic and topological combinatorics in the last decades. Here, for a (d − 1)-dimensional
simplicial complex ∆, the f -vector of ∆ is a sequence ( f−1, . . . , fd−1), where fi is the
number of i-dimensional faces of ∆, and the h-vector (h0, . . . , hd) of ∆ is defined by
∑d

i=0 hiti = ∑d
i=0 fi−1ti(1− t)d−i using a variable t. For the study of f -vector and h-vector

of simplicial complexes, Stanley–Reisner ring (or face ring) has been used. A recent
breakthrough announced by Adiprasito [1] (see also [2, 11, 15]) is the hard Lefschetz the-
orem for the Stanley–Reisner ring of a simplicial (or homology) sphere, generalizing the
work of Stanley [17] for the boundary complex of simplicial polytopes. Among many
combinatorial consequences, this implies the celebrated g-conjecture, in particular gen-
eralized lower bound inequality (GLBI) asserting that the h-vector of a simplicial sphere
is unimodal.
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Adding extra combinatorial constraints to topological (or homological) ones and then
studying behaviors of f - and h-vectors have been of interest (see [5, 8, 18] for example).
Juhnke-Kubitzke and Murai [8] investigated completely balanced (or (1, . . . , 1)-balanced
in the definition below) simplicial spheres, and showed (assuming Hard Lefschetz the-
orem [1]) that the Stanley–Reisner ring of its rank selected subcomplex possesses the
top-heavy strong Lefschetz property (or dual-weak Lefschetz property). A corollary is
a balanced GLBI asserting that the h-vector of a completely balanced simplicial (d − 1)-
sphere satisfies

hi

(d
i)

≤ hi+1

( d
i+1)

for i <
d
2

. (1.1)

In this extended abstract of the full preprint [14], we investigate simplicial complexes
with a combinatorial constraint called a-balancedness. For a positive integer vector
a = (a1, . . . , am) with |a| := a1 + · · · + am = d, a pair (∆, κ) of a (d − 1)-dimensional
simplicial complex ∆ and a map κ : V(∆) → [m] := {1, . . . , m} is a-balanced if each face
of ∆ contains at most aj vertices of color j for each j = 1, . . . , m. Stanley [16] initiated a
research of a-balanced simplicial complexes and showed that the Stanley–Reisner ring
of an a-balanced simplicial complex admits a system of parameters homogeneous in the
fine Nm-grading induced by the coloring κ.

With this in mind, we introduce multigraded strong Lefschetz property for an Nm-
graded algebra, generalizing strong Lefschetz property of an N-graded algebra of [7].
We then show that the generic Nm-graded Artinian reduction of the Stanley–Reisner
ring of an a-balanced homology sphere over a field of characteristic 2 satisfies the multi-
graded strong Lefschetz property (Theorem 5.1). Note that Theorem 5.1 is a common
generalization of the above mentioned two algebraic results. Our proof of Theorem 5.1
relies on an anisotropy technique, in particular differential identity, over a field of char-
acteristic 2 in [2, 3, 11, 15].

A corollary of Theorem 5.1 is a combinatorial result on flag h-vector. The flag f -vector
of a-balanced simplicial complex (∆, κ) is an m-dimensional array ( fb)0≤b≤a where fb is
the number of faces σ ∈ ∆ with |σ ∩ κ−1(j)| = bj for j = 1, . . . , m. Here c ≤ d denotes the
component-wise inequality ci ≤ di for all i. The flag h-vector of (∆, κ) is an m-dimensional
array (hb)0≤b≤a defined by

∑
0≤b≤a

hbtb = ∑
0≤b≤a

fbtb(1 − t)a−b,

where t = (t1, . . . , tm) is a vector of variables. Here, we denote tc = tc1
1 · · · tcm

m for
t = (t1, . . . , tm) and c = (c1, . . . , cm) ∈ N.

Theorem 1.1. For an a-balanced homology sphere (∆, κ) over F2, we have hb ≤ hc for
any b, c ∈ Nm with b ≤ c ≤ a − b.
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Note that Theorem 1.1 can be seen as a common generalization of GLBI and balanced
GLBI. GLBI is the case of m = 1 in Theorem 1.1. Balanced GLBI (1.1) follows from the
inequality hiej ≤ h(i+1)ej

for a = 1 + 2iej in Theorem 5.1 together with the averaging
argument of Goff, Klee and Novik [6]. See [8] for details.

Another combinatorial corollary is related to the following balanced version of Grün-
baum–Kalai–Sarkaria conjecture posed by Kalai–Nevo–Novik [10].

Conjecture 1.2 ([10, Conjecture 8.2, Proposition 8.3]). Let ∆ be a k-dimensional com-
pletely balanced simplicial complex embedabble in S2k. Then, fk ≤ 2 fk−1 holds.

We prove the following significant partial result on Conjecture 1.2.

Theorem 1.3. Let ∆ be a k-dimensional completely balanced simplicial complex such
that there is a simplicial 2k-sphere Γ with ∆ ⊂ Γ. Then, fk ≤ 2 fk−1 holds.

The derivation of Theorem 1.3 from Theorem 5.1 is analogous to [1], and we omit it from
the extended abstract because of the length limit. The detailed argument for Theorem 1.3
can be found in the updated version of full preprint [14].

This extended abstract is organized as follows. After preliminaries are given in Sec-
tion 2, Lee’s formula for the evaluation map is recalled in Section 3. In Section 4, generic
Nm-graded Artinian reduction is defined, and differential formula for the evaluation
map in multigraded setting is derived. In Section 5, we derive the main result Theo-
rem 5.1 about multigraded strong Lefschetz property over a field of characteristic 2. In
Section 6, we briefly discuss further results in the full preprint [14].

2 Preliminaries

We highlight some definitions and notations we use (see [19] for general reference). We
denote the set of nonnegative (resp. positive) integers by N (resp. N+).

2.1 Simplicial complex and Stanley–Reisner ring

Throughout, by a simplicial complex, we always mean an abstract simplicial complex,
i.e., a downward closed collection of subsets of a finite set. The vertex set of a simplicial
complex ∆ is denoted by V(∆).

For an Nm-graded module M and b ∈ Nm, we denote by Mb the submodule of all
homogeneous elements of degree b.

Let k be a field and let ∆ be a simplicial complex. Let us denote by k[x] the poly-
nomial ring k[xv : v ∈ V(∆)]. The Stanley–Reisner ring of ∆ over k is k[∆] = k[x]/I∆,
where I∆ is the ideal generated by xτ := ∏v∈τ xv over all τ ̸∈ ∆. It is known that the
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Stanley–Reisner ring of ∆ has Krull dimension dim ∆+ 1. For a (d− 1)-dimensional sim-
plicial complex ∆, a length d sequence of linear forms Θ = (θ1, . . . , θd) of k[∆] is called a
linear system of parameters (l.s.o.p. for short) for k[∆] if k[∆]/(Θ) = k[∆]/(θ1, . . . , θd) is a
finite dimensional k-vector space. The resulting quotient algebra k[∆]/(Θ) is called an
Artinian reduction of k[∆] with respect to Θ.

For an a-balanced simplicial complex (∆, κ) with a ∈ Nm, the polynomial ring k[x]
naturally has the Nm-grading, sometimes called the fine grading, defined by deg xv =
eκ(v), where ej ∈ Nm denotes the j-th unit coordinate vector. For an a-balanced simplicial
complex (∆, κ), we say that a system of parameters Θ for k[∆] is Nm-graded (or a-colored)
if each θi is homogeneous in the fine Nm-grading of k[∆]. Stanley [16, Theorem 4.1]
showed that if k is an infinite field, every a-balanced simplcial complex (∆, κ) has an
Nm-graded l.s.o.p. Θ for k[∆], and (k[∆]/(Θ))b = 0 unless 0 ≤ b ≤ a. Note that for an
Nm-graded l.s.o.p. Θ for the Stanley–Reisner ring of an a-balanced simplicial complex,
Θ contains exactly aj elements of degree ej for each j.

2.2 Homological properties

A simplicial complex ∆ is called Cohen–Macaulay over k if there is an l.s.o.p. (θ1, . . . , θd)
for k[∆] such that k[∆] is a free k[θ1, . . . , θd]-module. By Reisner’s theorem, a simplcial
complex ∆ is Cohen–Macaulay over k if and only if it is pure and, for every face σ ∈ ∆,
H̃i(lkσ(∆);k) = 0 for all i ̸= dim ∆ − |σ| (see [19, Corollary II.4.2]). Here H̃∗(∆;k)
denotes the reduced simplicial homology group of ∆ with coefficients in k, and lkτ(∆) =
{σ ∈ ∆ : σ ∩ τ = ∅, σ ∪ τ ∈ ∆} denoted the link with respect to τ ∈ ∆. Note that for an
a-balanced Cohen–Macaulay complex (∆, κ), the equality dim(k[∆]/(Θ))b = hb holds
for 0 ≤ b ≤ a.

For an N-graded k[x]-module M, its socle is the submodule Soc(M) = {a ∈ M : ma =
0}, where m = (x1, . . . , xn) is the maximal graded ideal of k[x]. An N-graded k-algebra
of Krull dimension zero is said to be Gorenstein if its socle is a one-dimensional k-vector
space. Note that an N-graded finitely generated standard k-algebra A = A0 ⊕ · · · ⊕ Ad
with Ad ̸= 0 is Gorenstein if and only if dim Ad = 1 and the multiplication map Ai ×
Ad−i → Ad

∼=→ k is a nondegenerate bilinear pairing for i = 0, . . . , d [4, Lemma 36].
We say that a simplicial complex ∆ is a simplcial (d − 1)-sphere if its geometric real-

ization is homeomorphic to Sd−1. Let k be a field. A simplcial complex ∆ is a homology
(d − 1)-sphere over k if H̃∗(lkτ ∆;k) ∼= H̃∗(Sd−|τ|−1;k) for every face τ ∈ ∆. If ∆ is a ho-
mology sphere over k, an Artinian reduction A = k[∆]/(Θ) is Gorenstein with respect
to any l.s.o.p. Θ [19, Theorem II.5.1].

A pure (d − 1)-dimensional simplicial complex is strongly connected if for every pair
of facets σ and τ of ∆, there is a sequence of facets σ = σ0, σ1, . . . , σm = τ such that
|σi−1 ∩ σi| = d − 1 for i = 1, . . . , m. A (d − 1)-pseudomanifold (without boundary) is a
strongly connected pure (d − 1)-dimensional simplicial complex such that every (d − 2)-



Multigraded strong Lefschetz property for balanced simplicial complexes 5

face is contained in exactly two facets. A (d − 1)-pseudomanifold is orientable over k if
H̃d−1(∆;k) ∼= k, and such a pseudomanifold is said to be oriented if the facets are given
an ordering such that the coefficients of nonzero µ ∈ H̃d−1(∆;k) is constant over all
oriented facets.

3 Lee’s formula for the evaluation map

Let k be a field of arbitrary characteristic, and let ∆ be a (d − 1)-dimensional simpli-
cial complex. Let A = k[∆]/(Θ) = A0 ⊕ · · · ⊕ Ad be an Artinian reduction of k[∆]
with respect to an l.s.o.p. Θ. Then, by [20, Corollary 3.2], Ad is linearly isomorphic to
H̃d−1(∆;k). Thus, for a (d − 1)-pseudomanifold ∆ (without boundary) orientable over

k, Ad is a one-dimensional linear space. The linear isomorphism Ψ : Ad
∼=→ k which is

determined unique up to the scaling is called the evaluation map (or degree map, volume
map, Brion’s isomorphism). Lee [12] gave an explicit description of the evaluation map Ψ
with the appropriate scaling. We shall recall this formula below.

Let us prepare some conventions and notations used throughout. We always assume
that V(∆) = [n] := {1, . . . , n} and let k[x] = k[x1, . . . , xn]. For a sequence J = (v1, . . . , vk)
of vertices, we denote xJ = xv1 · · · xvk . We abbreviate the projection from k[x] to an
Artinian reduction A of k[∆] as long as it is not confusing. So, for example, the composite

k[x]d ↠ Ad
∼=→ k is also denoted as Ψ. An l.s.o.p. Θ = (θ1, . . . , θd) for k[∆] is identified

with a map p : V(∆) → k
d through the relation θk = ∑v∈V(∆) p(v)kxv for k = 1, . . . , d.

The map p is called a point configuration. For an (oriented) facet σ = [v1, . . . , vd] of ∆, let
[σ] = det

(
p(v1) · · · p(vd)

)
.

We also need the following notations to state Lee’s formula. Let v∗ be a new vertex
not in V(∆) with an associated position1 p′(v∗) ∈ k

d, and for an (oriented) facet σ =
v1, . . . , vd, let [σ − vi + v∗] be the determinant of the matrix obtained by replacing the i-th
column of the matrix

(
p(v1) · · · p(vd)

)
with p′(v∗).

Now we are ready to state Lee’s formula.

Lemma 3.1. Let ∆ be an orientable (d − 1)-pseudomanifold over a field k. Let A be an
Artinian reduction of k[∆] with respect to Θ, and let Ψ : Ad → k be the evaluation
map. Then, under suitable normalization, for any length d sequence of vertices J =

1Here, p′(v∗) has to be in sufficiently general position so that none of [σ − vi + v∗] vanishes. One may
need to extend the field to choose such a vector.
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(v1, . . . , vd),

Ψ(xJ) = ∑
σ∈∆: facet containing {J}

Ψ(xσ)
∏d

k=1[σ + v∗ − vk]

∏v∈σ[σ + v∗ − v]

= ∑
σ∈∆: facet containing {J}

1
[σ]

∏d
k=1[σ + v∗ − vk]

∏v∈σ[σ + v∗ − v]
(3.1)

holds. Here {J} denotes the set {v1, . . . , vd}, and the sum is taken over all oriented facets
of ∆ containing {J}.

Throughout, we assume that the evaluation map Ψ is normalized so that (3.1) holds.

4 Generic Artinian reduction

4.1 Generic Nm-graded Artinian reduction

For an a-balanced simplicial complex (∆, κ) with a ∈ Nm
+ and |a| = d, we define the

generic Nm-graded Artinian reduction of k[∆] as follows. Fix a partition I1 ⊔ · · · ⊔ Im of
[d] with |Ij| = aj for j = 1, . . . , m. Consider the set of new auxiliary indeterminates

{pk,v : k ∈ [d], v ∈ V(∆), k ∈ Iκ(v)}

and let k̃ = k(pk,v) be the rational function field of these indeterminates with coefficients
in k. Define the Nm-graded l.s.o.p. Θ = (θ1, . . . , θd) byθ1

...
θd

 = P

x1
...

xn

 ,

where the (k, v)-th entry of the coefficient matrix P is pk,v if k ∈ Iκ(v) and 0 otherwise.
The quotient Nm-graded algebra A = k̃[∆]/(Θ) is called the generic Nm-graded Artinian
reduction of k[∆] (with respect to a coloring κ). Note that, when m = 1, the generic
N-graded Artinian reduction coincides with the generic Artinian reduction in the sense
of [15]. We remark that to be consistent with the definition of [15], A = k̃[∆]/(Θ) is
called the generic Nm-graded Artinian reduction of k[∆], not of k̃[∆], though A is the
Artinian reduction of k̃[∆] in the usual sense. By [16, Theorem 4.1], as an Nm-graded
algebra, A is decomposed into Nm-homogeneous components as A =

⊕
0≤b≤a Ab. The

homogeneous decomposition as N-graded algebra is denoted as A =
⊕d

i=0 Ai.
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4.2 Differential formula in characteristic 2

In the generic N-graded Artinian reduction, the right-hand-side of (3.1) in Lee’s formula
is a rational function of new indeterminates pk,v. Papadakis–Petrotou [15] considered
taking partial derivative of (3.1) with respect to new indeterminates pk,v, and they prove
a remarkable formula in characteristic 2. This formula is later generalized by Karu–
Xiao [11, Theorem 4.1]. We recall this formula.

In this subsection, we assume that the field k is of characteristic 2. Then automatically
every pseudomanifold is orientable. For a pseudomanifold ∆, let A = k[∆]/(Θ) be the
generic (N-graded) Artinian reduction of k[∆], where k̃ = k(pkv : k ∈ [d], v ∈ V(∆)).
For a length d sequence I = (v1, . . . , vd) of vertices, define the differential operator ∂I by
∂p1,v1

◦ · · · ◦ ∂pd,vd
, where ∂pk,v denoted the (formal) partial derivative with respect to pk,v.

Under these notations, the following holds.

Theorem 4.1. [11, Theorem 4.1] Let ∆ be a (d − 1)-pseudomanifold, and let k be a field
of characteristic 2. Let A = k̃[∆]/(Θ) be the generic N-graded Artinian reduction of
k[∆], where k̃ = k(pkv : 1 ≤ k ≤ d, v ∈ V(∆)). Let Ψ : Ad → k̃ be the evaluation map
normalized as in Lemma 3.1. Then, for any length d sequences I and J of vertices,

∂IΨ(xJ) = Ψ(
√

xI xJ)
2

holds. Here, for a monomial xL, define its square root
√

xL by xK if there is a monomial
xK with x2

K = xL and 0 otherwise.

We generalize the formula in Theorem 4.1 in the setting of generic Nm-graded Ar-
tinian reduction by a simple trick of substitution. Let (∆, κ) be an a-balanced pseudo-
manifold and let A = k̃[∆]/(Θ) be the generic Nm-graded Artinian reduction of k[∆],
where k̃ = k(pkv). We call a length d sequence of vertices I = (v1, . . . , vd) (possibly
with repetition) κ-transversal if k ∈ Iκ(vk)

for k = 1, . . . , d. Note that I = (v1, . . . , vd) is a
κ-transversal sequence if and only if there exist corresponding variables p1,v1 , . . . , pd,vd

.
Note also that for every degree a monomial xJ in k[x], J can be reordered into a κ-
transversal sequence. For a κ-transversal sequence I = (v1, . . . , vd), define the differen-
tial operator ∂I by ∂p1,v1

◦ · · · ◦ ∂pd,vd
. The following differential formula for the map Ψ

holds.

Lemma 4.2. Let (∆, κ) be an a-balanced (d− 1)-pseudomanifold for a ∈ Nm
+ with |a| = d

and let k be a field of characteristic 2. Let A = k̃[∆]/(Θ) be the generic Nm-graded
Artinian reduction of k[∆]. Let Ψ : Aa → k̃ be the evaluation map normalized as
in Lemma 3.1. Then, for any κ-transversal sequence I and any length d sequence J of
vertices,

∂IΨ(xJ) = Ψ(
√

xI xJ)
2

holds. Here, for a monomial xL, define its square root
√

xL by xK if there is a monomial
xK with x2

K = xL and 0 otherwise.
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Proof. When m = 1, this formula coincides with the formula in Theorem 4.1. For general
case, the identity is obtained by substituting pk,v to 0 in the formula in Theorem 4.1 for all
indeterminates corresponding to pairs (k, v) with k ̸∈ Iκ(v). Note that this substitution
is a valid one since the denominator of (3.1) does not vanish after the substitution by the
Kind–Kleinschmidt’s criterion on l.s.o.p. for Stanley–Reisner ring [19, Lemma III.2.4].

Lemma 4.2 can be readily strengthened as below.

Corollary 4.3. Let (∆, κ), d, A, Ψ be as in Lemma 4.2. For a κ-transversal sequence I, an
element g ∈ Ai with i ≤ d

2 , and a length d − 2i sequence J of vertices,

∂IΨ(g2xJ) = Ψ(g
√

xI xJ)
2

holds.

Proof. Writing g = ∑K λKxK (λK ∈ k̃)2, we have

∂IΨ(g2xJ) = ∂IΨ

(
∑
K

λ2
Kx2

KxJ

)
(by characteristic 2)

= ∑
K

∂I(λ
2
KΨ(x2

KxJ)) (by linearlity of Ψ, ∂I)

= ∑
K

λ2
K∂IΨ(x2

KxJ) (by ∂pk,v( f 2g) = f 2∂pk,v(g) for f , g ∈ k̃ in char. 2)

= ∑
K

λ2
KΨ(xK

√
xI xJ)

2 (by Lemma 4.2)

= Ψ(g
√

xI xJ)
2.

5 Multigraded strong Lefschetz property via anisotropy

Throughout this section, we assume that k is a field of characteristic 2 and (∆, κ) is an
a-balanced homology sphere over F2 for a ∈ Nm

+ with |a| = d. Let A = k̃[∆]/(Θ) be the
generic Nm-graded Artinian reduction of k[∆], where k̃ = k(pkv). By Gorensteiness, the

multiplication map Ai × Ad−i → Ad
Ψ→ k̃ is a nondegenerate for each 0 ≤ i ≤ d. Hence,

the multiplication map Ab × Aa−b → Aa
Ψ→ k̃ is nondegenerate for each b ∈ Nm with

b ≤ a. We call this property as multigraded Poincaré duality.
Let k be a field and let A =

⊕
0≤b≤a Ab be an Artinian Gorenstein standard Nm-

graded k-algebra3 with A0 ∼= Aa ∼= k. We say that A has the multigraded strong Lefschetz

2Recall that we are abbreviating the projection from the polynomial ring to A.
3An Nm-graded algebra is standard if it is generated by Ae1 ⊕ · · · ⊕ Aem .
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property (as an Nm-graded algebra) if there is an element ℓj ∈ Aej for each j = 1, . . . , m
such that the multiplication map

×ℓa−2b : Ab → Aa−b

is an isomorphism for all b ∈ Nm with b ≤ a
2 , where ej ∈ Nm is the j-th unit coordinate

vector. We prove the following.

Theorem 5.1. Let k be a field of characteristic 0 or 2 and let (∆, κ) be an a-balanced ho-
mology sphere over F2. Then the generic Nm-graded Artinian reduction A = k̃[∆]/(Θ)
of the Stanley–Reisner ring k[∆] has the multigraded strong Lefschetz property.

Here k̃ is a purely transcendental field extension of k resulted in the generic Nm-graded
Artinian reduction.

Our proof of Theorem 5.1 relies on anisotropy technique used in [2, 3, 11, 15]. For a
vector space W over a field k, a bilinear form φ : W ×W → k is anisotropic if φ(u, u) ̸= 0
holds for any nonzero u ∈ W. Note that a bilinear form is anisotropic if and only if
the restriction φ|W ′×W ′ is nondegenerate for any nonzero subspace W ′ of W. We prove
the following combination of anisotropy and multigraded strong Lefschetz property in
a field of characteristic 2 with the explicit Lefschetz elements.

Theorem 5.2. Let (∆, κ) be an a-balanced homology sphere over F2, and let k be a field
of characteristic 2. Let A = k̃[∆]/(Θ) be the generic Nm-graded Artinian reduction of
k[∆]. Define ℓj = ∑v∈κ−1(j) xv ∈ Aej for j = 1, . . . , m. Then, for any b ∈ Nm with b ≤ a

2 ,
the bilinear form Q : Ab × Ab → k̃ defined by

Q(g, h) = Ψ(ghℓa−2b)

is anisotropic, where Ψ : Aa → k̃ is the evaluation map.

Toward the proof of Theorem 5.2, we first prove an auxiliary lemma, which can
be seen as the combination of a multigraded version of weak Lefschetz property and
anisotropy.

Lemma 5.3. Let (∆, κ), a, k, A, ℓj be as in Theorem 5.2. Let S be a (possibly empty)
subset of [m] and let eS = ∑j∈S ej ∈ Nm be the characteristic vector of S. For b ∈ Nm

with 2b + eS ≤ a, define the bilinear form Q′ : Ab × Ab → A2b+eS by

Q′(g, h) = ghℓeS .

Then Q′(g, g) ̸= 0 for any nonzero g ∈ Ab,.
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Proof. Suppose that g is a nonzero element of Ab. As Aa−b is generated by monomials,
by multigraded Poincaré duality of A, there is a monomial xK of degree a − b such that
gxK ̸= 0 in Aa. Its square x2

K is of degree 2a− 2b, where 2a− 2b ≥ a+ eS by assumption.
Hence there is a κ-transversal sequence I and a set of vertices U∗ ∈ VS := ∏j∈S κ−1(j)
and a length d − 2|b| − |S| sequence of vertices J satisfying x2

K = xI xU∗xJ
4.

Now we have the following identity:

∂IΨ(Q′(g, g)xJ) = ∑
U∈VS

∂IΨ(g2xUxJ) (by linearity of Ψ, ∂I and ℓeS = ∑
U∈VS

xU)

= ∑
U∈VS

Ψ(g
√

xI xUxJ)
2 (by Corollary 4.3)

(∗)
= Ψ(g

√
xI xU∗xJ)

2 = Ψ(gxK)
2 (5.1)

Here, in (∗), we are using the fact that, by the definition of square root, for a fixed
monomial xI xJ , there is a unique squarefree monomial xU′ with √xI xU′xJ ̸= 0. By our
choice of U∗, this is achieved by xU′ = xU∗ . As monomials xU for U ∈ VS are all distinct
and squarefree, the equality (∗) holds. Now, gxK is a nonzero element in Aa and Ψ is
an isomorphism, so we have Ψ(gxK)

2 ̸= 0. Hence, by the identity (5.1), ∂IΨ(Q′(g, g)xJ)
must be nonzero. Therefore Q′(g, g) is nonzero.

Now we are ready to prove Theorem 5.2.

Proof of Theorem 5.2. Suppose that Q(g, g) = 0 holds for g ∈ Ab. As Ψ is an isomorphism,
we have g2ℓa−2b = 0. By applying Lemma 5.3 for

g ∏
j∈[m]

ℓ

⌊
aj−2bj

2

⌋
j

and S = {j ∈ [m] : aj − 2bj is odd}, we have

g ∏
j∈[m]

ℓ

⌊
aj−2bj

2

⌋
j = 0. (5.2)

By multiplying g to both sides of (5.2), we obtain

g2 ∏
j∈[m]

ℓ

⌊
aj−2bj

2

⌋
j = 0.

By repeating in this way, we can reduce the power of ℓjs’ and we eventually obtain
g = 0.

4Since, for any degree a monomial xL, L can be reordered into κ-transversal sequence, the desired
decomposition x2

K = xI xU xJ is obtained by assigning variables in greedy way.
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Now Theorem 5.1 for characteristic 2 is immediate.

Proof of Theorem 5.1 for characteristic 2. Suppose that the field k is of characteristic 2. De-
fine the Lefschetz elements ℓj for j = 1, . . . , m as in Theorem 5.2. Then, Theorem 5.2
implies that the linear map ×ℓa−2b : Ab → Aa−b is injective for every b ≤ a

2 . By multi-
graded Poincaré duality of A, we have dim Ab = dim Aa−b, and thus the map is an
isomorphism.

Theorem 1.1 is readily obtained as a corollary of Theorem 5.1.

Proof of Theorem 1.1. By Theorem 5.1 over a field k of characteristic 2, the composite

Ab
×ℓc−b
−→ Ac

×ℓa−b−c
−→ Aa−b

is an isomorphism. So, the linear map ×ℓc−b : Ab → Ac is injective. Thus, hb =
dim Ab ≤ dim Ac = hc holds.

6 Further results in the full preprint

We end this extended abstract by listing the further contents of the full paper [14]. We
give a proof of Theorem 5.1 for a field of characteristic 0. We further generalize Theo-
rem 5.1 to manifolds and simplicial cycles and doubly Cohen–Macaulay complexes. This
is a multigraded generalization of the almost strong Lefschetz property of manifolds [4,
Section 8] and the strong Lefschetz property of simplicial cycles (after Gorensteinifica-
tion) [2, Theorem I] and the top-heavy strong Lefschetz property for doubly Cohen–
Macaulay complexes [2, Corollary 3.2]. A combinatorial corollary, we obtain a general-
ization of Theorem 1.1 to the flag h′′-vector of manifolds (without boundary), which is a
common generalization of manifold GLBI [13] and balanced manifold GLBI [9].
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