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Abstract. Generalizing the strong Lefschetz property for an IN-graded algebra, we
introduce multigraded strong Lefschetz property for an N™-graded algebra. We show
that, for a € IN"!, the generic N™-graded Artinian reduction of the Stanley—Reisner
ring of an a-balanced homology sphere over a field of characteristic 2 satisfies the
multigraded strong Lefschetz property. A corollary is the inequality h, < he for b <
¢ < a — b for the flag h-vector of an a-balanced simplicial sphere. This can be seen
as a common generalization of the unimodality of the h-vector of a simplicial sphere
by Adiprasito and balanced generalized lower bound inequality by Juhnke-Kubitzke
and Murai. Another combinatorial consequence is that a k-dimensional completely
balanced simplicial complex which is a subcomplex of a simplicial 2k-sphere satisfies

fie < 2fk-1.
Keywords: Lefschetz property, Stanley—Reisner ring, balancedness, multigraded alge-
bra, unimodality

1 Introduction

The f-vector and h-vector of simplicial complexes have been extensively studied in alge-
braic and topological combinatorics in the last decades. Here, for a (d — 1)-dimensional
simplicial complex A, the f-vector of A is a sequence (f_1,...,fs_1), where f; is the
number of i-dimensional faces of A, and the h-vector (ho,...,h;) of A is defined by
Y4 hitt = Y4 fii1t'(1 — t)*~ using a variable t. For the study of f-vector and h-vector
of simplicial complexes, Stanley—Reisner ring (or face ring) has been used. A recent
breakthrough announced by Adiprasito [!] (see also [2, 11, 15]) is the hard Lefschetz the-
orem for the Stanley—Reisner ring of a simplicial (or homology) sphere, generalizing the
work of Stanley [17] for the boundary complex of simplicial polytopes. Among many
combinatorial consequences, this implies the celebrated g-conjecture, in particular gen-
eralized lower bound inequality (GLBI) asserting that the h-vector of a simplicial sphere
is unimodal.
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Adding extra combinatorial constraints to topological (or homological) ones and then
studying behaviors of f- and h-vectors have been of interest (see [5, &, 18] for example).
Juhnke-Kubitzke and Murai [¢] investigated completely balanced (or (1,...,1)-balanced
in the definition below) simplicial spheres, and showed (assuming Hard Lefschetz the-
orem [1]) that the Stanley—Reisner ring of its rank selected subcomplex possesses the
top-heavy strong Lefschetz property (or dual-weak Lefschetz property). A corollary is
a balanced GLBI asserting that the h-vector of a completely balanced simplicial (d — 1)-
sphere satisfies

% < % fori < 2. (1.1)
(5 (&) 2

In this extended abstract of the full preprint [14], we investigate simplicial complexes
with a combinatorial constraint called a-balancedness. For a positive integer vector
a = (ay,...,an) with |a| :== a1 +---+a, = d, a pair (A, «) of a (d — 1)-dimensional
simplicial complex A and a map « : V(A) — [m] := {1,...,m} is a-balanced if each face
of A contains at most 4; vertices of color j for each j = 1,...,m. Stanley [16] initiated a
research of a-balanced simplicial complexes and showed that the Stanley—Reisner ring
of an a-balanced simplicial complex admits a system of parameters homogeneous in the
fine N""-grading induced by the coloring «.

With this in mind, we introduce multigraded strong Lefschetz property for an IN"-
graded algebra, generalizing strong Lefschetz property of an IN-graded algebra of [/].
We then show that the generic IN"-graded Artinian reduction of the Stanley—Reisner
ring of an a-balanced homology sphere over a field of characteristic 2 satisfies the multi-
graded strong Lefschetz property (Theorem 5.1). Note that Theorem 5.1 is a common
generalization of the above mentioned two algebraic results. Our proof of Theorem 5.1
relies on an anisotropy technique, in particular differential identity, over a field of char-
acteristic2in [2, 3, 11, 15].

A corollary of Theorem 5.1 is a combinatorial result on flag h-vector. The flag f-vector
of a-balanced simplicial complex (A, «) is an m-dimensional array (fp)o<p<, Where fp is
the number of faces o € A with |[cNx~1(j)| = bjforj=1,...,m. Here c < d denotes the
component-wise inequality ¢; < d; for all i. The flag h-vector of (A, x) is an m-dimensional
array (hy,)o<p<, defined by

Y. mt’ =Y ftt(1—-1)"7b,

0<b<a 0<b<a

where t = (t1,...,ty) is a vector of variables. Here, we denote ¢ = til <ot for
t=(t,...,tm) and ¢ = (c1,...,cm) € N.

Theorem 1.1. For an a-balanced homology sphere (A, «x) over [F», we have h, < h. for
any b,c € N" withb < c < a —b.
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Note that Theorem 1.1 can be seen as a common generalization of GLBI and balanced
GLBI. GLBI is the case of m = 1 in Theorem 1.1. Balanced GLBI (1.1) follows from the
inequality i, < Iy +1)e; for a = 1+ 2ie; in Theorem 5.1 together with the averaging
argument of Goff, Klee and Novik [0]. See [¢] for details.

Another combinatorial corollary is related to the following balanced version of Griin-
baum-Kalai-Sarkaria conjecture posed by Kalai-Nevo-Novik [10].

Conjecture 1.2 ([10, Conjecture 8.2, Proposition 8.3]). Let A be a k-dimensional com-
pletely balanced simplicial complex embedabble in S?*. Then, f; < 2f;_; holds.

We prove the following significant partial result on Conjecture 1.2.

Theorem 1.3. Let A be a k-dimensional completely balanced simplicial complex such
that there is a simplicial 2k-sphere I' with A C I'. Then, f; < 2f;_1 holds.

The derivation of Theorem 1.3 from Theorem 5.1 is analogous to [!], and we omit it from
the extended abstract because of the length limit. The detailed argument for Theorem 1.3
can be found in the updated version of full preprint [14].

This extended abstract is organized as follows. After preliminaries are given in Sec-
tion 2, Lee’s formula for the evaluation map is recalled in Section 3. In Section 4, generic
IN™-graded Artinian reduction is defined, and differential formula for the evaluation
map in multigraded setting is derived. In Section 5, we derive the main result Theo-
rem 5.1 about multigraded strong Lefschetz property over a field of characteristic 2. In
Section 6, we briefly discuss further results in the full preprint [14].

2 Preliminaries

We highlight some definitions and notations we use (see [19] for general reference). We
denote the set of nonnegative (resp. positive) integers by IN (resp. IN ).

2.1 Simplicial complex and Stanley—Reisner ring

Throughout, by a simplicial complex, we always mean an abstract simplicial complex,
i.e., a downward closed collection of subsets of a finite set. The vertex set of a simplicial
complex A is denoted by V(A).

For an IN"-graded module M and b € IN"", we denote by M, the submodule of all
homogeneous elements of degree b.

Let k be a field and let A be a simplicial complex. Let us denote by kx| the poly-
nomial ring k[x, : v € V(A)]. The Stanley—Reisner ring of A over k is k[A] = k[x]/I,,
where I, is the ideal generated by x; := [],c; X0 over all T ¢ A. It is known that the
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Stanley—Reisner ring of A has Krull dimension dim A + 1. For a (d — 1)-dimensional sim-
plicial complex A, a length d sequence of linear forms ® = (61, ...,6;) of k[A] is called a
linear system of parameters (l.s.o.p. for short) for k[A] if k[A]/(®) = Kk[A]/(01,...,0,) is a
finite dimensional k-vector space. The resulting quotient algebra k[A]/(©) is called an
Artinian reduction of k[A] with respect to ©.

For an a-balanced simplicial complex (A, x) with a € IN", the polynomial ring k|x]
naturally has the IN"-grading, sometimes called the fine grading, defined by degx, =
e.(v), Wwhere e; € IN" denotes the j-th unit coordinate vector. For an a-balanced simplicial
complex (A, k), we say that a system of parameters © for k[A] is IN"-graded (or a-colored)
if each 0; is homogeneous in the fine N™-grading of k[A]. Stanley [16, Theorem 4.1]
showed that if k is an infinite field, every a-balanced simplcial complex (A, x) has an
IN"-graded l.s.0.p. ® for k[A], and (k[A]/(®))p = 0 unless 0 < b < a. Note that for an
IN"-graded l.s.0.p. © for the Stanley—Reisner ring of an a-balanced simplicial complex,
© contains exactly a; elements of degree e; for each j.

2.2 Homological properties

A simplicial complex A is called Cohen—Macaulay over k if there is an Ls.o.p. (61,...,0,)
for k[A] such that k[A] is a free k[, ...,0;]-module. By Reisner’s theorem, a simplcial
complex A is Cohen-Macaulay over k if and only if it is pure and, for every face o € A,
Hi(lky(A);k) = 0 for all i # dimA — |o| (see [19, Corollary 11.4.2]). Here H,(A;k)
denotes the reduced simplicial homology group of A with coefficients in k, and lk;(A) =
{ceA:0NTt=0,0UTt € A} denoted the link with respect to T € A. Note that for an
a-balanced Cohen-Macaulay complex (A, ), the equality dim(k[A]/(©)), = hp holds
for0 <b <a.

For an IN-graded k[x]-module M, its socle is the submodule Soc(M) = {a € M : ma =
0}, where m = (x1,...,%,) is the maximal graded ideal of k[x]. An IN-graded k-algebra
of Krull dimension zero is said to be Gorenstein if its socle is a one-dimensional k-vector
space. Note that an IN-graded finitely generated standard k-algebra A = Ag© --- @ Ay
with A; # 0 is Gorenstein if and only if dim A; = 1 and the multiplication map A; X

Aj_i — Ay S kisa nondegenerate bilinear pairing fori = 0,...,d [4, Lemma 36].

We say that a simplicial complex A is a simplcial (d — 1)-sphere if its geometric real-
ization is homeomorphic to $%~1. Let k be a field. A simplcial complex A is a homology
(d — 1)-sphere over k if H,(lk; A; k) = H, (5?1711, k) for every face T € A. If A is a ho-
mology sphere over k, an Artinian reduction A = k[A]/(®) is Gorenstein with respect
to any Ls.o.p. © [19, Theorem IL.5.1].

A pure (d — 1)-dimensional simplicial complex is strongly connected if for every pair
of facets o and T of A, there is a sequence of facets ¢ = 0p,01,...,0, = T such that
loi1Noil =d—1fori=1,...,m. A (d— 1)-pseudomanifold (without boundary) is a
strongly connected pure (d — 1)-dimensional simplicial complex such that every (d — 2)-
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face is contained in exactly two facets. A (d — 1)-pseudomanifold is orientable over k if
Hy_1(A; k) = Kk, and such a pseudomanifold is said to be oriented if the facets are given
an ordering such that the coefficients of nonzero u € H;_1(A;k) is constant over all
oriented facets.

3 Lee’s formula for the evaluation map

Let k be a field of arbitrary characteristic, and let A be a (d — 1)-dimensional simpli-
cial complex. Let A = Kk[A]/(®) = Ag® --- & Ay be an Artinian reduction of k[A]
with respect to an Ls.o.p. ©. Then, by [0, Corollary 3.2], A; is linearly isomorphic to
Hy 1(A;X%). Thus, for a (d — 1)-pseudomanifold A (without boundary) orientable over

k, A; is a one-dimensional linear space. The linear isomorphism ¥ : A, > k which is
determined unique up to the scaling is called the evaluation map (or degree map, volume
map, Brion’s isomorphism). Lee [17] gave an explicit description of the evaluation map ¥
with the appropriate scaling. We shall recall this formula below.

Let us prepare some conventions and notations used throughout. We always assume
that V(A) = [n] :={1,...,n} and let k[x] = k[xy, ..., x,]. For a sequence | = (v1,...,v)
of vertices, we denote x; = xy, ---x,,. We abbreviate the projection from k[x] to an
Artinian reduction A of k[A] as long as it is not confusing. So, for example, the composite

k[x]s — Ay 5 ks also denoted as ¥. An Ls.o.p. ® = (64,...,0;) for k[A] is identified
with a map p : V(A) — k? through the relation 6; = Yocv(a) P(O)kxo for k =1,...,d.
The map p is called a point configuration. For an (oriented) facet o = [vy,...,v4] of A, let
o] = det (p(v1) -+ p(va)).

We also need the following notations to state Lee’s formula. Let v* be a new vertex
not in V(A) with an associated position! p’(v*) € k?, and for an (oriented) facet o =
v1,...,04, let [0 — v; 4+ v*| be the determinant of the matrix obtained by replacing the i-th
column of the matrix (p(v1) --- p(vy)) with p’(v*).

Now we are ready to state Lee’s formula.

Lemma 3.1. Let A be an orientable (d — 1)-pseudomanifold over a field k. Let A be an
Artinian reduction of k[A] with respect to ©®, and let ¥ : A; — k be the evaluation
map. Then, under suitable normalization, for any length d sequence of vertices | =

Here, p’(v*) has to be in sufficiently general position so that none of [o — v; + v*] vanishes. One may
need to extend the field to choose such a vector.
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H,‘le [0+ v* — vy
[Tocolo +0* — 9]

‘I’(x]) == Z ‘I’(xg)
oEA: facet containing {J}
1 szl [0+ v* — v
_ _ 1
L [0] TToeolo + v* — 0] .

o€A: facet containing {J}

holds. Here {]} denotes the set {v1,...,v;}, and the sum is taken over all oriented facets
of A containing {J}.

Throughout, we assume that the evaluation map ¥ is normalized so that (3.1) holds.

4 Generic Artinian reduction

4.1 Generic N"-graded Artinian reduction

For an a-balanced simplicial complex (A,x) with a € N and |a| = d, we define the
generic IN"-graded Artinian reduction of k[A] as follows. Fix a partition Z; U - - - U Z,, of
[d] with |Z;| = a; for j = 1,...,m. Consider the set of new auxiliary indeterminates

{Pk,v 1k € [d],v € V(A),k € IK(U)}

and let k = k( Pkv) be the rational function field of these indeterminates with coefficients
in k. Define the IN"'-graded ls.o.p. © = (64,...,6;) by

where the (k,v)-th entry of the coefficient matrix P is py, if k € Z,(,) and 0 otherwise.

The quotient N"-graded algebra A = k[A]/(®) is called the generic IN"-graded Artinian
reduction of k[A] (with respect to a coloring ). Note that, when m = 1, the generic
IN-graded Artinian reduction coincides with the generic Artinian reduction in the sense
of [15]. We remark that to be consistent with the definition of [15], A = ﬁ[A] /(©®) is
called the generic N"-graded Artinian reduction of k[A], not of k[A], though A is the
Artinian reduction of k[A] in the usual sense. By [16, Theorem 4.1], as an N"-graded
algebra, A is decomposed into IN"-homogeneous components as A = @g<p<, Ap. The
homogeneous decomposition as IN-graded algebra is denoted as A = GB?:O A;.
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4.2 Differential formula in characteristic 2

In the generic IN-graded Artinian reduction, the right-hand-side of (3.1) in Lee’s formula
is a rational function of new indeterminates py ,. Papadakis-Petrotou [15] considered
taking partial derivative of (3.1) with respect to new indeterminates py ,, and they prove
a remarkable formula in characteristic 2. This formula is later generalized by Karu-
Xiao [11, Theorem 4.1]. We recall this formula.

In this subsection, we assume that the field k is of characteristic 2. Then automatically
every pseudomanifold is orientable. For a pseudomanifold A, let A = k[A]/(©) be the
generic (N-graded) Artinian reduction of k[A], where k = k(py, : k € [d],v € V(A)).
For a length d sequence I = (vy,...,v,) of vertices, define the differential operator o; by
E)ml 0---00dp 4o, where 9y, denoted the (formal) partial derivative with respect to py,.
Under these notations, the following holds.

Theorem 4.1. [11, Theorem 4.1] Let A be a (d — 1)-pseudomanifold, and let k be a field
of characteristic 2. Let A = k[A]/(®) be the generic N-graded Artinian reduction of
k[A], where k = k(pio : 1 <k < d, v € V(A)). Let ¥ : A; — k be the evaluation map
normalized as in Lemma 3.1. Then, for any length d sequences I and ] of vertices,

ot (xy) =¥ (yxrx;)?

holds. Here, for a monomial x;, define its square root /x1 by x if there is a monomial
Xk with x% = x;, and 0 otherwise.

We generalize the formula in Theorem 4.1 in the setting of generic IN"-graded Ar-
tinian reduction by a simple trick of substitution. Let (A, k) be an a-balanced pseudo-
manifold and let A = Kk[A]/(®) be the generic N"-graded Artinian reduction of k[A],
where k = Kk(py,). We call a length d sequence of vertices I = (vy,...,04) (possibly
with repetition) x-transversal if k € Iy (,,) for k =1,...,d. Note that [ = (vy,...,74) is a
k-transversal sequence if and only if there exist corresponding variables p1y,,..., P4,
Note also that for every degree a monomial x; in k[x], | can be reordered into a -
transversal sequence. For a x-transversal sequence I = (vy,...,v,), define the differen-
tial operator d; by aml 0--+00dp do,° The following differential formula for the map ¥
holds.

Lemma 4.2. Let (A, k) be an a-balanced (d — 1)-pseudomanifold for a € IN" with |a| = d
and let k be a field of characteristic 2. Let A = k[A]/(®) be the generic IN""-graded
Artinian reduction of k[A]. Let ¥ : A, — k be the evaluation map normalized as
in Lemma 3.1. Then, for any «-transversal sequence I and any length d sequence | of
vertices,

aI‘I’(x]) = ‘f(‘ /X]X])Z
holds. Here, for a monomial x;, define its square root /X1 by xi if there is a monomial
Xk with x%( = x;, and 0 otherwise.
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Proof. When m = 1, this formula coincides with the formula in Theorem 4.1. For general
case, the identity is obtained by substituting py , to 0 in the formula in Theorem 4.1 for all
indeterminates corresponding to pairs (k,v) with k & Z,). Note that this substitution
is a valid one since the denominator of (3.1) does not vanish after the substitution by the
Kind-Kleinschmidt’s criterion on l.s.0.p. for Stanley—Reisner ring [19, Lemma I11.2.4]. [

Lemma 4.2 can be readily strengthened as below.

Corollary 4.3. Let (A,«), d, A, ¥ be as in Lemma 4.2. For a x-transversal sequence I, an
element ¢ € A; with i < 4, and a length d — 2i sequence | of vertices,

oY (g°xy) = ¥(g/x1x))
holds.
Proof. Writing ¢ = Y x Axxx (Ax € &)2, we have

oY (¢%xy) = 0¥ (Z /\KxKx]) (by characteristic 2)
= 281 (ARY (x%x7)) (by linearlity of ¥, d;)
= 2/\ oY (x%x7) (by 9y, ,(f*8) = f*0p,,(8) for f,g € Ik in char. 2)
= Z/\K‘I’ (xk/X1%])? (by Lemma 4.2)
K
=¥ (g/x1x))".
]

5 Multigraded strong Lefschetz property via anisotropy

Throughout this section, we assume that I is a field of characteristic 2 and (A, «) is an
a-balanced homology sphere over IF; for a € N7 with |a| = d. Let A = k[A]/(©) be the
generic IN"-graded Artinian reduction of k[A], where k = k(py,). By Gorensteiness, the

multiplication map A; X Aj_; — Ay i kis a nondegenerate for each 0 <i < d. Hence,

the multiplication map A, x A,_p — A, X Kis nondegenerate for each b € IN" with
b < a. We call this property as multigraded Poincaré duality.

Let k be a field and let A = @Py<p<, Ap be an Artinian Gorenstein standard IN"-
graded k-algebra® with Ag = A, = k. We say that A has the multigraded strong Lefschetz

2Recall that we are abbreviating the projection from the polynomial ring to A.
3An N™-graded algebra is standard if it is generated by A, @ - -+ @ A,
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property (as an IN"-graded algebra) if there is an element {; € A, foreach j =1,...,m
such that the multiplication map

Xea_Zb Ay — Aalp

is an isomorphism for all b € N with b < 7, where ej € IN" is the j-th unit coordinate
vector. We prove the following.

Theorem 5.1. Let k be a field of characteristic 0 or 2 and let (A, x) be an a-balanced ho-
mology sphere over [F,. Then the generic IN"-graded Artinian reduction A = k[A]/(©)
of the Stanley—Reisner ring k[A] has the multigraded strong Lefschetz property.

Here K is a purely transcendental field extension of k resulted in the generic IN"*-graded
Artinian reduction.

Our proof of Theorem 5.1 relies on anisotropy technique used in [2, 3, 11, 15]. For a
vector space W over a field k, a bilinear form ¢ : W x W — k is anisotropic if ¢(u,u) # 0
holds for any nonzero u € W. Note that a bilinear form is anisotropic if and only if
the restriction ¢|w.p is nondegenerate for any nonzero subspace W' of W. We prove
the following combination of anisotropy and multigraded strong Lefschetz property in
a field of characteristic 2 with the explicit Lefschetz elements.

Theorem 5.2. Let (A, x) be an a-balanced homology sphere over IF,, and let k be a field
of characteristic 2. Let A = Kk[A]/(®) be the generic N"-graded Artinian reduction of
k[A]. Define l= Zvek—l(]’) Xy € Ag forj =1,...,m. Then, for any b € N" with b < £,
the bilinear form Q : A, x A, — k defined by

Q(g,h) =¥ (ghe" )
is anisotropic, where ¥ : A, — Kk is the evaluation map.

Toward the proof of Theorem 5.2, we first prove an auxiliary lemma, which can
be seen as the combination of a multigraded version of weak Lefschetz property and
anisotropy.

Lemma 5.3. Let (A,x), a, k, A, Ej be as in Theorem 5.2. Let S be a (possibly empty)
subset of [m] and let es = Y jcse; € IN™ be the characteristic vector of S. For b € N™
with 2b + eg < a, define the bilinear form Q' : A, x A, — Adptes DY

Q' (g,1) = ghet

Then Q'(g,g) # 0 for any nonzero g € Ay,
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Proof. Suppose that g is a nonzero element of A,. As A,y is generated by monomials,
by multigraded Poincaré duality of A, there is a monomial xx of degree a — b such that
gxx # 0in A,. Its square x% is of degree 2a — 2b, where 2a — 2b > a + es by assumption.
Hence there is a x-transversal sequence I and a set of vertices U € Vs := []ics xk1(f)
and a length d — 2|b| — |S| sequence of vertices | satisfying x3 = xx»x;*.

Now we have the following identity:

¥ (Q'(g,8)x) = Y, or¥(g*xux)) (by linearity of ¥, 9y and €% =} xy)
UeVs UeVs
= Y ¥(g /xmxux))? (by Corollary 4.3)
Uevs
® Y (gv/xrxu))? = ¥(gxk)? (5.1)

Here, in (x), we are using the fact that, by the definition of square root, for a fixed
monomial xjxj, there is a unique squarefree monomial xyy with /XX X] # 0. By our
choice of U*, this is achieved by x;y = xy;+. As monomials xy; for U € Vs are all distinct
and squarefree, the equality (*) holds. Now, gxk is a nonzero element in A, and ¥ is
an isomorphism, so we have ¥ (gxx)? # 0. Hence, by the identity (5.1), 9,¥(Q'(g, )x])
must be nonzero. Therefore Q’'(g, g) is nonzero. O

Now we are ready to prove Theorem 5.2.

Proof of Theorem 5.2. Suppose that Q(g,g) = 0holds for g € Ap. As ¥ is an isomorphism,
we have ¢2¢4-2Y = (. By applying Lemma 5.3 for

I

g ]I
j€lm]
and S = {j € [m] : a; — 2b; is odd }, we have

1 =
2

g 1:[} EJJ =0. (5.2)
jelm

By multiplying ¢ to both sides of (5.2), we obtain

] =

4:—2b;
g2 H gj{ 22 J =0.
j€[m

By repeating in this way, we can reduce the power of /;s” and we eventually obtain
g=0. O

4Since, for any degree a monomial x, L can be reordered into x-transversal sequence, the desired
decomposition x2 = x;x;;x; is obtained by assigning variables in greedy way.
K J y assig y way.
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Now Theorem 5.1 for characteristic 2 is immediate.

Proof of Theorem 5.1 for characteristic 2. Suppose that the field k is of characteristic 2. De-
fine the Lefschetz elements ¢; for j = 1,...,m as in Theorem 5.2. Then, Theorem 5.2
implies that the linear map X032 Ay — A,y is injective for every b < 7. By multi-
graded Poincaré duality of A, we have dim A, = dim A, 3, and thus the map is an
isomorphism. O

Theorem 1.1 is readily obtained as a corollary of Theorem 5.1.
Proof of Theorem 1.1. By Theorem 5.1 over a field k of characteristic 2, the composite

c—b a-b—c
Ay A S AL,
is an isomorphism. So, the linear map X0l Ay — Ag s injective. Thus, h, =
dim A < dim A, = h holds. O

6 Further results in the full preprint

We end this extended abstract by listing the further contents of the full paper [14]. We
give a proof of Theorem 5.1 for a field of characteristic 0. We further generalize Theo-
rem 5.1 to manifolds and simplicial cycles and doubly Cohen-Macaulay complexes. This
is a multigraded generalization of the almost strong Lefschetz property of manifolds [4,
Section 8] and the strong Lefschetz property of simplicial cycles (after Gorensteinifica-
tion) [2, Theorem I] and the top-heavy strong Lefschetz property for doubly Cohen-
Macaulay complexes [?, Corollary 3.2]. A combinatorial corollary, we obtain a general-
ization of Theorem 1.1 to the flag h"-vector of manifolds (without boundary), which is a
common generalization of manifold GLBI [13] and balanced manifold GLBI [“].
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