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Abstract. The valley delta square conjecture proposes that the coefficients of the sym-
metric function [n−k]q

[n]q
∆en−k ω(pn) can be expressed in terms of a certain class of decorated

square paths with respect to the bistatistic (dinv, area). Inspired by recent positivity re-
sults of Corteel, Josuat-Vergès, and Vanden Wyngaerd, we study the evaluation of this
enumerator at q = −1. By considering a cyclic group action on the decorated square
paths, we show that

〈
[n−k]q
[n]q

∆en−k ω(pn), hn
1

〉∣∣∣
q=−1

is 0 whenever n − k is even, and is a

positive polynomial related to the Euler numbers when n − k is odd. We also show
that the combinatorics of this enumerator is closely connected to that of the Dyck path
enumerator for ⟨∆′

en−k−1
en, hn

1⟩ considered by Corteel–Josuat Vergès–Vanden Wyngaerd.

Keywords: Square paths, delta conjecture

1 Introduction

The symmetric function ∇en, also known as the Frobenius characteristic of the ring of
diagonal coinvariants [11], has been the subject of a multitude of papers in algebraic
combinatorics and related fields in the last three decades. In [8], the authors proposed
a combinatorial formula of this remarkable function in terms of decorated Dyck paths,
which was proved a decade later in [1]. This result is known as the shuffle theorem. Many
special cases of this formula lead to interesting combinatorics: ⟨∇en, en⟩, ⟨∇en, en−dhd⟩,
⟨∇en, h1n⟩ are the q, t-Catalan numbers, q, t-Schröder numbers and q, t-parking functions,
respectively (see [6, 7]).

Many generalizations and analogues to the shuffle formula have been studied. In [9],
the authors provide conjectural formulas for the symmetric function ∆′

en−k−1
en, in terms

of decorated Dyck paths, which reduces to the shuffle theorem when k = 0. In this work,
we consider the Hilbert series of the valley version of the Delta conjecture, which can be
stated as follows

⟨∆′
en−k−1

en, hn
1⟩ = ∑

P∈stLD(n)•k

tarea(P)qdinv(P),
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where the sum is over valley-decorated standardly labeled Dyck paths.
Another result related to this story is the square theorem, which gives a formula for

∇ωpn in terms of square paths (conjectured in [18] and proved in [20]). A “Delta gener-
alization” of the square theorem was proposed in [4]. Its Hilbert series is:

[n − k]q
[n]q

〈
∆en−k ω(pn), hn

1
〉
= ∑

P∈stLSQ(n)•k

qdinv(P)tarea(P), (1.1)

where the sum is over valley-decorated standardly labeled square paths.
A number of elegant results have been found by setting one of the q, t-variables to 0

or 1 [15, 19, 14]. In [3], the authors study

Dn,k := ∑
P∈stLD(n)•K

(−1)dinv(P)tarea(P),

i.e. the specialization of the combinatorial enumerator of the valley Delta conjecture at
q = −1, which has nicer properties than one might expect. They prove that

n−1

∑
k=0

Dn,kzk = ∑
σ∈Sn

tinv3(σ)zmonot(σ), (1.2)

where inv3 and monot are certain permutation statistics. When z = 0, the shuffle theo-
rem implies that

⟨∇en, h1n⟩|q=−1 = Dn,0 = t⌊n2/4⌋En(t),

where En(t) is a known t-analog of the Euler numbers introduced in [12] and further
studied in [2, 17]: it t-counts alternating permutations1 with respect to 31 − 2 patterns2.
This polynomial identity is itself a t-refinement of a more classical identity relating the
Euler numbers En to an alternating sum over the set of parking functions (c.f. [3]).

Inspired by [3], in this work we study

Sn,k := ∑
P∈stLSQ(n)•k

(−1)dinv(P)tarea(P),

i.e. the square paths enumerator in the valley delta square conjecture at q = −1, and find
that it also has well-behaved combinatorics by providing two cancellation-free interpre-
tations of the sum: one in terms of permutation enumeration (Theorem 4.5) and another
in terms of equivalence classes of lattice paths (Theorem 5.5).

Moreover, we show that Sn,k = 0 when n − k is even and that

n−1

∑
k=0

Sn,kzk = ∑
σ∈Sn

trevmaj(σ)zparity−dec(σ), (1.3)

1A permutation σ is said to be alternating if σ1 > σ2 < σ3 > · · · .
2A 31− 2-pattern of a permutation σ ∈ Sn is a pair (i, j) such that 1 < i + 1 < j ≤ n and σi+1 < σj < σi.
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where parity− dec is a combinatorial quantity (the number of decorations resulting from
the parity decorating algorithm, see Proposition 4.6). The z = 0 case, combined with the
square theorem, becomes

⟨∇ωpn, h1n⟩|q=−1 = Sn,0 =

{
[n]tt⌊(n−1)2/4⌋En−1(t), if n is odd,
0, if n is even

,

and specializing to t = 1 yields

∑
P∈stLSQ(n)

(−1)dinv(P) =

{
nEn−1, if n is odd
0, if n is even

,

which are the coefficients of xn

n! in the Taylor series of x
cos(x) (OEIS sequence A009843).

We also discuss the strong connection between the valley Delta conjecture and the
valley Delta square conjecture at q = −1. By Theorems 4.11 and 4.12 in [4], we have

n−1

∑
k=0

[n − k]q
[n]q

∆en−k ω(pn)

∣∣∣∣∣
q=−1

=
n−1

∑
k=0

∆′
en−k−1

en

∣∣∣∣∣
q=−1

= ∇en|q=0

Taking the scalar product with hλ yields the multinomial coefficient [nλ]q. When λ = 1n,
we establish on the combinatorial side that

Proposition 1.1.
n−1

∑
k=0

Sn,k =
n−1

∑
k=0

Dn,k = [n]t!

by exhibiting an explicit bijection of the combinatorial enumerators of both sides.
Moreover, we show that we have the following recursive relationship:

Theorem 1.2. For all n, k ∈ N, we have

Sn,k =

{
[n]t(Dn−1,k + Dn−1,k−1), if n − k is odd
0, if n − k is even

,

where D−1,k = Dn,−1 = 0.

The rest of the abstract is organized as follows: in Section 2, we define all the neces-
sary combinatorics of lattice paths to state the Valley Delta square conjecture. In Section 3
we recall the notion of schedule numbers, which are a crucial tool in our proofs. Section 4
contains the motivation and statement of one enumerative formula for Sn,k, and a proof
of the relationship between the enumerators of decorated Dyck paths and square paths
at q = −1. In Section 5 we discuss a cyclic group action on the decorated labeled square
paths, which yield the other formula for Sn,k. We think this group action will also be of
independent interest.
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(a) An element of LSQ(7)•3.
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(b) An element of stLSQ(7)•3.

Figure 1: Labeled square paths.

2 Labeled lattice paths

In this section we give the definitions necessary to state the lattice path results in the
Introduction. These definitions were introduced in [9, 4].

Definition 2.1. A square is any area-1 square in the plane whose vertices have integer
coordinates. We will always consider steps of paths to be either left or top edges of
squares, so we can refer to the square of a step without ambiguity. We refer to the
collection of squares that have two vertices on the line y = x + i as the i-th diagonal. The
0-diagonal is sometimes referred to as the main diagonal. The bottom diagonal of a path is
the lowest diagonal that intersects with the path.

Definition 2.2. A square path of size n is a lattice path in the plane from (0, 0) to (n, n),
consisting of unit north and east steps, such that the final step is an east step. A square
path is called a Dyck path if it stays weakly above the main diagonal.

Definition 2.3. Given a square path π, a labeling of π is a word w of positive integers
whose i-th letter labels the i-th vertical step of π such that, when the label is placed in
the square of its step, the labels appearing in squares of the same column are increasing
from bottom to top. Such a pair (π, w) is called a labeled square path. The set of labeled
square (respectively, Dyck) paths of size n is denoted by LSQ(n) (respectively LD(n)).

A labeling of a path of size n is said to be standard if its labels are exactly [n]. The set
of standardly labeled square (respectively, Dyck) paths is denoted stLSQ(n) (stLD(n)).

Definition 2.4. The area word of a square path of size n is the word a of n integers whose
i-th letter equals j if the starting point of the i-th vertical step lies on the line y = x + j.
The shift of a square path π of area word a, is the absolute value of the minimum letter of
its area word. Notice that the shift of a Dyck path is always 0. The area of a square path
π with shift s is the number of whole squares between the paths and the line y = x − s.

Example 2.5. The path in Figure 1a has area word (−1,−2,−1, 0, 0, 0, 0), shift 2, area 10.
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Definition 2.6. Given P := (π, w) ∈ LSQ(n), the i-th vertical step of P is called a con-
tractible valley if it is preceded by a horizontal step and the following holds: after replac-
ing the two steps with (and accordingly shifting the i-th label one cell to the left),
we still get a valid labeled path where labels are increasing in each column.

Definition 2.7. A valley decorated labeled square (respectively, Dyck) path is a triple (π, w, dv)
where (π, w) ∈ LSQ(n) (respectively LD(n)) and dv is some subset of the contractible
valleys of (π, w). The elements of dv are called decorations, and we visualize them by
drawing a • to the left of these contractible valleys. The set LD(n)•k denotes the deco-
rated labeled Dyck paths with exactly k decorations.

Example 2.8. The path in Figure 1a has 4 contractible valleys: the vertical steps of indices
1, 2, 6, 7. Three of them (2, 6 and 7) have been decorated.

Definition 2.9. Let P := (π, w, dv) ∈ LSQ(n)•k with area word a and (i, j) a pair of
indices of vertical steps with 1 ≤ i < j ≤ n. These steps are said to attack each other, or
to be in an attack relation if either ai = aj, wi < wj and i ̸∈ dv; or ai = aj + 1, wi > wj and
i ̸∈ dv. The set of such pairs of indices is denoted by Attack(P). An attack relation of the
first kind is referred to as primary dinv and of the second kind as secondary dinv.

Definition 2.10. Given a path P ∈ LSQ(n)•k with area word a, we define its dinv to be

dinv(P) := #Attack(P) + #{i | ai < 0} − k.

The second term of this sum is the number of labels in negative diagonals and is referred
to as tertiary or bonus dinv.

Example 2.11. The attack relations for the path in Figure 1a are (1, 2), (5, 6) and (5, 7)
(the first is secondary and the other two primary dinv). There are 3 labels under the line
x = y, so 3 units of tertiary dinv. There are 3 decorated valleys so dinv = 3 + 3 − 3 = 3.

k S1,k D1,k S2,k D2,k S3,k D3,k
0 1 1 0 t t3 + t2 + t t3 + t2

1 t + 1 1 0 t2 + 2t
2 t2 + t + 1 1

Table 1: Values of Sn,k and Dn,k for small n, k.

3 Schedule numbers

In our work, we make extended use of schedule numbers, which allow us to factor the
q, t-enumators of Dyck and square paths. They were introduced in [13] and have proven
to be a very useful tool (see [21, 10, 16]).



6 Corteel, Lazar, and Vanden Wyngaerd

Definition 3.1. Given P ∈ stLSQ(n)•k with shift s, set ρi to be the labels of P that lie
in the (i − s)-th diagonal, written in decreasing order. Add a •-symbol on top of each
label that belongs to a decorated step. We define the diagonal word of P to be the word
dw(P) := ρ0ρ1 · · · . The shifted diagonal word of P is the pair sdw(P) = (dw(P), s).

Example 3.2. The diagonal word of the path in Figure 1b is 4
.
165

.
3
.
27.

The diagonal word of such a path is a decorated permutation.

Definition 3.3. The set of decorated permutations S•
n is the set of permutations of n

where some letters are decorated with a •. The subset where exactly k letters are deco-
rated is denoted by S•k

n .

For all P ∈ stLSQ(n)•k, dw(P) ∈ S•k
n , but not every decorated permutation is the

diagonal word of a path. We recall the following classical definition.

Definition 3.4. Given a permutation σ of n, its major index is

maj(σ) = ∑
i:σi>σi+1

i.

We denote by revmaj(σ) the major index of the permutation σnσn−1 · · · σ1.

Proposition 3.5. All paths with a common diagonal word σ share the same area, revmaj(σ).
Paths with the same shifted diagonal word have the same bonus dinv.

Definition 3.6. Given a decorated permutation σ ∈ S•
n such that σ = ρ0ρ1 · · · ρl and the

ρi are the decreasing runs of σ. Given a shift s ∈ {0, . . . , l − 1}, we call a run ρi negative,
zero or positive with respect to s, if i < s, i = s or i > s, respectively.

Let ρ̃i be the subword of undecorated letters of ρi. For c ∈ σ, define its (shifted)
schedule number to be

wσ,s(c) =


#{d ∈ ρ̃i | d > c}+ 1, ρi is zero and c is undecorated
#{d ∈ ρ̃i | d > c}+ #{d ∈ ρ̃i−1 | d < c}, ρi is positive and c is undecorated
#{d ∈ ρ̃i | d < c}+ #{d ∈ ρ̃i+1 | d > c}, ρi is negative or c is decorated

For ease of notation, wσ,s(c) = 0 for any s ∈ N with s ≥ l. For a path P ∈ stLSQ(n)•k, its
schedule word sched(P) is the word whose letters are wsdw(P)(c) for c ∈ sdw(P).

Example 3.7. Let σ be the diagonal word of the path in Figure 1b. Then

c 4
.
165

.
3
.
27

wσ,1(c) 2212112
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The following is a specialization of [16, Theorem 5] to standardly labeled paths.

Theorem 3.8. For all n, s, k ∈ N and σ ∈ S•k
n we have

∑
P∈stLSQ(n)•k

sdw(P)=(σ,s)

qdinv(P)tarea(P) = trevmaj(σ)qu(σ,s) ∏
c∈[n]

[ws(c)]q

where u(σ, s) is the number of undecorated letters in negative runs.

Corollary 3.9. Given (σ, s) ∈ S•k
n × N

∏
c∈[n]

wσ,s(c) = #{P ∈ stLSQ(n)•k | sdw(P) = (σ, s)}.

4 Enumeration of decorated square paths at q = −1

Setting q = −1 in Theorem 3.8, we notice that if (σ, s) ∈ S•
n × N has an even sched-

ule number, the sum over paths with shifted diagonal word (σ, s) evaluates to 0. The
following lemma tells us the same is true if (σ, s) has at least one schedule > 1.

Lemma 4.1. Let (σ, s) ∈ Sn × N such that wσ,s(c) > 0 for all c ∈ σ. Then there exists a
j ∈ N such that {wσ,s(c) | c ∈ σ} = [j].

By Lemma 4.1 and Theorem 3.8 we conclude that when evaluating (1.1) at q = −1,
we are left only with paths whose schedule word is 1n:

Sn,k = ∑
P∈stLSQ(n)•k

sched(P)=1n

(−1)dinv(P)tarea(P). (4.1)

Unfortunately, this formula is not yet cancellation-free. In view of Corollary 3.9, we know
that a path whose schedule word is 1n is entirely determined by its shifted diagonal word
(σ, s). By Theorem 3.8, we know that the dinv of such a path is entirely accounted for
by u(σ, s). Thus, we may reformulate (4.1) as follows:

Sn,k = ∑
(σ,s)∈S•k

n
wσ,s(σi)=1 ∀i

(−1)u(σ,s)trevmaj(σ). (4.2)

A permutation σ appears on the right-hand side once for each shift for which its sched-
ules are 1. We can show that each σ has a net contribution of 1. This motivates the
following definition.



8 Corteel, Lazar, and Vanden Wyngaerd

Definition 4.2. A permutation σ ∈ S•k
n is an alternating dinv representative (ADR) if, for

some shift s, (σ, s) has all (shifted) schedule numbers equal to 1. It is called a Dyck alter-
nating dinv representative if this shift may be 0. Denote the sets of such representatives
by ADRn,k and DADRn,k, respectively.

Example 4.3. For example, σ =
.
784

.
23561 is an alternating dinv representative, since for

shift 2 and 3 all the schedule numbers equal 1. It is not a Dyck alternating dinv repre-
sentative because wσ,0(8) = 0. See Example 5.6 for more details.

In [3], the authors established an enumeration formula for Dn,k in terms of DADRs.

Theorem 4.4. For all n, k ∈ N, we have

Dn,k = ∑
σ∈DADRn,k

trevmaj(σ)

Theorem 4.5 (Cancellation Theorem – word formulation). For all n, k ∈ N, we have

Sn,k =

 ∑
σ∈ADRn,k

trevmaj(σ) if n − k is odd

0 if n − k is even.

The following is proved via an explicit bijection, and gives a correspondence between
the combinatorics at q = −1 of the Hilbert series of the valley Delta conjecture and the
valley Delta square conjecture. Along with Theorem 4.5, it yields Formula (1.3).

Proposition 4.6. For each permutation σ ∈ Sn, there exists exactly one Dyck ADR with under-
lying permutation σ; and exactly one ADR with underlying permutation σ and an odd number
of undecorated letters.

The next result allows us to prove Proposition 1.1. The proof of Theorem 1.2 uses
related techniques, but is somewhat more involved.

Corollary 4.7. There exists a bijection

ϕ :
⊔

k∈[n−1]
n−k is odd

ADRn,k →
⊔

k∈[n−1]

DADRn,k.

The underlying permutations of σ and ϕ(σ) coincide, so revmaj(σ) = revmaj(ϕ(σ)).

We can describe ϕ explicitly as follows. Let σ be an ADR with an odd number of
undecorated letters. If the first decreasing run of σ contains no undecorated letters,
remove the decoration from σ1; if it contains exactly one undecorated letter, do nothing;
and if it contains two undecorated letters, decorate σ1.

Example 4.8. For n = 3 the bijection is given by the following correspondence

σ 123 231
.
1
.
32 312

.
2
.
13

.
3
.
21

ϕ(σ) 123 231 1
.
32

.
312 2

.
13

.
3
.
21.
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1
2
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(a) P = ψ3(P)

3
1
2

•

(b) ψ1(P)

3
1
2

•

(c) ψ2(P)

Figure 2: An element of LSQ(3)•1 and its images by the ψi. CC(P) = {P, ψ1(P)}.

5 Cutting cycles

Definition 5.1. Given P ∈ LSQ(n)•k and i ∈ [n], split P into two decorated labeled
subpaths P1P2 where P1 ends with the i-th east step of P. Define ψi(P) to be P2P1.

Note that ψi(P) is not always a valid decorated labeled square path. In Figure 2,
we draw a path P ∈ LSQ(3)•1 and its images by the ψi. We see that ψ2(P) /∈ LSQ(3)•1

because its first step is not a contractible valley, but is decorated. If the step following the
i-th horizontal step of P ∈ stLSQ(n)•k is not a decorated valley then ψi(P) ∈ LSQ(n)•k.

Definition 5.2. For any path P ∈ LSQ(n)•k its cutting cycle is the subset of the ψi(P)
which are valid decorated square paths; i.e., CC(P) := {ψi(P) | i ∈ [n]} ∩ LSQ(n)•k.

Observations 5.3.

1. The cutting cycles partition LSQ(n)•k.

2. For all P ∈ LSQ(n)•k, #CC(P) = n − k.

3. Elements in the same cutting cycle have the same diagonal word and area.

Definition 5.4. Define an equivalence relation ∼ on LSQ(n)•k by P ∼ Q iff Q ∈ CC(P).
For n, k ∈ N,

Sn,k := {P ∈ stLSQ(n)•k | sched(P) = 1n}/ ∼ .

For C ∈ Sn,k we denote by area(C) and dw(C) the area and diagonal word of C.

Theorem 5.5 (Cancellation Theorem – path formulation). We have

Sn,k =

 ∑
C∈Sn,k

tarea(C) if n − k is odd

0 if n − k is even
.

Example 5.6. In Figure 3, we show the cutting cycle of a schedule 1n path P ∈ S8,2. Here
we compute the schedule numbers for all possible shifts: there are 5 runs in the diagonal
word

.
784

.
23561, so the nonzero schedules occur for shifts between 0 and 4:

c
.
784

.
23561 c

.
784

.
23561 c

.
784

.
23561

wσ,0(c) 10111111 wσ,1(c) 11121111 wσ,2(c) 11111111
wσ,3(c) 11111111 wσ,4(c) 11111112
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2
3
5
6

1
4

7
8

•
•
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(f) ψ7(P)

Figure 3: The equivalence class of a path P of schedule word 1n

We confirm that P (see Figure 3a) has shift 2 and schedule word 1n. There are no paths
with diagonal word

.
784

.
23561 and shift 0, since one of the schedule numbers is 0. In P’s

cutting cycle there are 2 paths of shift 1, 1 of shift 3, and 2 of shift 4.

Lemma 5.7. Take P ∈ stLSQ(n)•k such that sched(P) = 1n. There is an ordering Q0, . . . ,
Qn−k−1 of the elements of CC(P) such that dinv(Qi) = i.

Corollary 5.8. If P ∈ stLSQ(n)•k such that sched(P) = 1n then

∑
Q∈CC(P)

sched(Q)=1n

(−1)dinv(Q) =

{
1 if n − k is odd
0 if n − k is even

.

Proposition 5.9. Theorem 5.5 is equivalent to Theorem 4.5.

6 Open questions and future work

In [16], the authors formulate a “modified” version of the valley Delta square conjecture,
using the novel Theta operators from [5]: Θek∇ω(pn−k) is given in terms of the subset
of labelled decorated square paths that have at least one non-decorated vertical step on
its lowest diagonal. The symmetric functions of both versions are related as follows:

[n]t
[n − k]t

Θek∇ω(pn−k) =
[n − k]q
[n]q

∆en−k ω(pn).
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When q = −1, the Hilbert series of Θek∇ω(pn−k) seems to also always be t-positive and
to equal 0 whenever n − k is even. When trying to adapt the arguments of this paper to
the “modified” setting, the combinatorics seem to behave less nicely. In particular, the
sum over k does not yield [n]t!.

Inspired by Theorem 1.2, we have the following conjectural formula.

Conjecture 6.1. For all positive integers n and partitions λ of n − 1, we have〈
[n − k]q
[n]q

∆en−k ω(pn), h(λ,1)

〉∣∣∣∣
q=−1

=

[n]t
(〈

∆′
e(n−1)−k−1

en−1 + ∆′
e(n−1)−(k−1)−1

en−1, hλ

〉)∣∣∣
q=−1

if n − k is odd

0 if n − k is even.

Computational evidence suggests that setting q = −1 yields t-positive results for
many other polynomials related to the shuffle theorem and Delta conjectures (as in [3]).

The following line of questions was generously suggested by an anonymous referee:

Question 6.2. Suppose that ⟨F, hn
1⟩
∣∣
q=−1 is t-positive. Can it be realized as the graded Euler

characteristic of a complex which arises from the Sn-module whose Frobenius characteristic is F?
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