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The monopole-dimer model on high-dimensional
cylindrical, toroidal, Möbius and Klein grids
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Abstract. The dimer (monomer-dimer) model deals with weighted enumeration of
perfect matchings (matchings). The monopole-dimer model is a signed variant of the
monomer-dimer model whose partition function is a determinant. In 1999, Lu and
Wu [12] evaluated the partition function of the dimer model on two-dimensional grids
embedded on a Möbius strip and a Klein bottle. While the partition function of the
dimer model has been known for the two-dimensional grids with different bound-
ary conditions, we present a similar product formula for the partition function of the
monopole-dimer model on higher dimensional cylindrical and toroidal grid graphs.
We also evaluate the same for the three-dimensional Möbius and Klein grid graphs
and show that the formula does not generalise for the higher dimensions. Further, we
present a relation between the product formula for the three-dimensional cylindrical
and Möbius grid.

Keywords: Monopole-dimer model, Loop-vertex model, Determinantal formula, Bous-
trophedon labelling, Möbius strip, Klein bottle, Boundary conditions, Grid graphs.

1 Introduction

The dimer model is the study of the physical process of adsorption of diatomic molecules
(like oxygen) on a solid surface. Its partition function can be interpreted as enumerating
weighted perfect matchings in an edge-weighted graph. Kasteleyn [8] solved the prob-
lem completely for planar graphs, by showing that the partition function of the dimer
model can be written as a Pfaffian of a certain adjacency matrix built using a special class
of orientations called Pfaffian orientations on the graph. One immediate consequence
of Kasteleyn’s result is that the Pfaffian is unaffected by the choice of orientation on
the planar graph. For the case of two-dimensional grid graphs Qm,n, Kasteleyn [9] and
Temperley–Fisher [4, 14] independently gave an explicit product formula for the parti-
tion function. For example, when m and n are even, horizontal (resp. vertical) edges
have weight a (resp. b), the partition function of the dimer model on Qm,n can be written
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as
m/2

∏
i=1

n/2

∏
j=1

(
4a2 cos2 iπ

m + 1
+ 4b2 cos2 jπ

n + 1

)
. (1.1)

This formula is remarkable because although each factor is a degree-two polynomial
in a and b with coefficients that may not be rational, the product turns out to be a
polynomial with nonnegative integer coefficients. In particular, when a = b = 1, the
result is an integer.

A similar product formula for the weighted enumeration of the perfect matchings
has been given by McCoy and Wu [13] for the cylindrical and toroidal boundary con-
ditions and by Lu and Wu [12] for the Möbius and Klein boundary conditions. Tesler
[15] showed that the partition function of the dimer model on graphs embedded on
non-orientable surfaces can be enumerated as a linear combination of some Pfaffians.
Brankov and Priezzhev [3] gave explicit expressions for the free energy of the dimer
model on finite quadratic lattices embedded on a Möbius strip.

Efforts have been made to generalise and extend the dimer model while preserving
this elegant structure. The natural physical generalisation is the monomer-dimer model,
which represents adsorption of a gas cloud consisting of both monoatomic and diatomic
molecules. In the more abstract sense, it is the weighted enumeration of all matchings in
a graph. Heilmann and Lieb [6] showed that the monomer-dimer model does not exhibit
phase transitions. However, this problem is known to be computationally difficult to
handle [7] and the partition function associated with it lacks a simple formula. A lower
bound for the partition function of the monomer-dimer model for d-dimensional grid
graphs has been obtained by Hammersley–Menon [5] by generalising the method of
Kasteleyn and Temperley–Fisher.

In another direction, a signed variant of the monomer-dimer model called the loop-
vertex model has been introduced by Ayyer [2] for oriented graphs. Configurations of
the loop-vertex model can be thought of as superposition of two monomer-dimer con-
figurations (matchings) having monomers (unmatched vertices) at the same locations.
Consequently, loop-vertex configurations consist of even loops and isolated vertices. The
loop-vertex model is less physical because of the presence of signs in their weights. On
the other hand, the partition function here can be expressed as a determinant. Ayyer also
provided an orientation-independent interpretation of this model called the monopole-
dimer model for planar graphs. This interpretation has been extended by the author and
Ayyer [1] for the Cartesian product of planar graphs.

The aim of this paper is to generalise the product formulas for the partition function
of the dimer model on two-dimensional grids embedded on different surfaces to higher
dimensions. We begin by introducing some notations and background results in Sec-
tion 2. We define high-dimensional cylindrical and toroidal grid graphs and compute the
partition function of the monopole-dimer model on them in Section 3. We also give the
product formula for the partition function of the monopole-dimer model on the three-
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dimensional grids with Möbius and Klein boundary condition in Theorems 4.3 and 5.1.
We show that the formulas do not hold for higher dimensions by providing counterex-
ample in Example 4.4. Further, we establish a relationship between three-dimensional
grids with cylindrical and Möbius boundary conditions in Theorem 4.5.

2 Background

A graph is an ordered pair G = (V(G), E(G)), where V(G) is the set of vertices of G
and E(G) is a collection of two-element subsets of V(G), known as edges. We will only
consider finite undirected labelled graphs. Unless stated otherwise, graphs will have
the natural labelling {1, 2, . . . , |V(G)|}. An orientation on a graph G is the assignment of
arrows to its edges. A graph G with an orientation O is called an oriented graph and will
be denoted as (G,O). A canonical orientation on a labelled graph is obtained by orienting
its edges from a lower labelled vertex to a higher labelled vertex. Recall that a planar
graph is a graph which can be drawn in such a way that no edges will cross each other.
Such an embedding of a planar graph is referred as a plane graph and it divides the whole
plane into regions, each of which is called a face.

Definition 2.1. Let G1 and G2 be two graphs. The Cartesian product of G1 and G2 is the graph
denoted G1□G2 with vertex set V(G1)× V(G2) and edge set{

((u1, u2), (u′
1, u′

2))

∣∣∣∣∣either u1 = u′
1 and (u2, u′

2) ∈ E(G2)

or u2 = u′
2 and (u1, u′

1) ∈ E(G1)

}
.

The above definition generalises to the Cartesian product of k graphs G1, . . . , Gk, denoted
G1□ · · ·□Gk. Throughout the text, we will denote the path graph and the cycle graph on
n vertices as Pn and Cn, respectively. Pn and Cn are associated with canonical orientation,
unless stated otherwise. We write Qn1,...,nd for the d-dimensional grid graph which is the
Cartesian product Pn1□ · · ·□Pnd .

Definition 2.2 ([1, Definition 3.5]). The oriented Cartesian product of naturally labeled and
oriented graphs (G1,O1), . . . , (Gk,Ok) is the graph G1□ · · ·□Gk with orientation O given as
follows. For each i ∈ [k], if ui → u′

i in Oi, then O gives orientation (u1, . . . , ui, . . . , uk) →
(u1, . . . , u′

i, . . . , uk) if ui+1 + ui+2 + · · ·+ uk + (k − i) ≡ 0 (mod 2) and (u1, . . . , u′
i, . . . , uk)

→ (u1, . . . , ui, . . . , uk) otherwise.

The graph in Figure 1 can be thought of as an oriented Cartesian product of path P3
with itself which is naturally labeled consecutively from one leaf to another.

Definition 2.3. An orientation on a plane graph G is said to be Pfaffian if it satisfies the property
that each simple loop enclosing a bounded face has an odd number of clockwise oriented edges.
This property is also known as the clockwise-odd property.
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Figure 1: A Pfaffian orientation on grid graph, Q3,3 induced from boustrophedon
labelling.

For example, the orientation in Figure 1 is a Pfaffian orientation. Kasteleyn has shown
that every plane graph possesses a Pfaffian orientation [8]. A dimer covering (perfect
matching) is a collection of edges in the graph G such that each vertex is covered in
exactly one edge. The set of all dimer coverings of G will be denoted as M(G). Let G
be an edge-weighted graph on 2n vertices with edge-weight we for e ∈ E(G). Then the
dimer model is the collection of all dimer covers together with the weight of each dimer
covering M ∈ M(G) given by w(M) = ∏e∈M we. The partition function of the dimer
model on G is then defined as

ZG := ∑
M∈M(G)

w(M),

which is basically the weighted enumeration of perfect matchings in G. Kasteleyn has
shown that ZG, for a plane graph G, can be written as Pfaffian of a skew-symmetric
matrix defined using a Pfaffian orientation on the plane graph G.

McCoy and Wu obtained a product formula for the two-dimensional grid graphs
embedded on a cylinder and a torus similar to the one by Kasteleyn and Temperley–
Fisher’s formula in (1.1) for the two-dimensional grid graphs.

Theorem 2.4 ([13]). The partition function of the dimer model on the two-dimensional grid
graph Q2m,2n where horizontal (resp. vertical) edges have weight a (resp. b) with cylindrical and
toroidal boundary conditions is given by

ZCyl
Q2m,2n

=
m

∏
i=1

n

∏
j=1

(
4a2 sin2 (2i − 1)π

2m
+ 4b2 cos2 jπ

2n + 1

)
, (2.1)

and

ZTor
Q2m,2n

=
m

∏
i=1

n

∏
j=1

(
4a2 sin2 (2i − 1)π

2m
+ 4b2 sin2 (2j − 1)π

2n

)
, (2.2)

respectively.

Lu and Wu have obtained the similar closed-form expressions for the partition func-
tion of the dimer model on 2m × 2n grids embedded on non-orientable surfaces like
Möbius strip and Klein bottle.
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(A) 4 × 2 grid on a cylinder
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(B) 4× 2 grid on a Möbius strip
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(C) 4 × 2 grid on a Klein bottle

Figure 2: 2D grid with different boundary conditions

Theorem 2.5 ([12]). Let Q2m,2n = P2m□P2n denote the two-dimensional grid graph with hori-
zontal (resp. vertical) edges having weight a (resp. b). The partition function of the dimer model
on Q2m,2n embedded on a Möbius strip and on a Klein bottle is given by

ZMöb
Q2m,2n

=
m

∏
i=1

n

∏
j=1

(
4a2 sin2 (4i − 1)π

4m
+ 4b2 cos2 jπ

2n + 1

)
, (2.3)

and

ZKlein
Q2m,2n

=
m

∏
i=1

n

∏
j=1

(
4a2 sin2 (4i − 1)π

4m
+ 4b2 sin2 (2j − 1)π

2n

)
, (2.4)

respectively.

Figure 2 shows a two-dimensional grid embedded on different surfaces.
In this work, we will generalise Theorems 2.4 and 2.5 for a more general model called

the monopole-dimer model. Let us first recall the loop-vertex model [2]. Loops in the
configurations will refer to directed cycles in the graph. We assume all the weights are
real and positive. Let G be a simple weighted graph on n vertices with an orientation
O, vertex-weights x(v) for v ∈ V(G) and edge-weights av,v′ ≡ av′,v for (v, v′) ∈ E(G). A
loop-vertex configuration C of G is a subgraph of the graph G consisting of

• directed loops of even length (with length ≥ 4),

• doubled edges (which can be thought of as loops of length 2),

• isolated vertices,

with the condition that each vertex of G is either covered in exactly one loop or is an
isolated vertex. We will denote the set of all loop vertex configurations of G as L(G).
Figure 3 shows a loop-vertex configuration on the grid graph Q3,3 (see Figure 1).

The sign of an edge (v, v′) ∈ E(G), is defined as

sgn(v, v′) :=

{
1 if v → v′ in O,
−1 if v′ → v in O.

(2.5)
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Figure 3: A loop-vertex configuration on Q3,3 consisting of a doubled edge at (1, 2), a
directed cycle (456789) and an isolated vertex at 3.

Let ℓ = (v0, v1, . . . , v2k−1, v2k = v0) be a directed even loop in G. The weight of the loop ℓ
is given by

w(ℓ) := −
2k−1

∏
i=0

sgn(vi, vi+1) avi,vi+1 . (2.6)

A loop-vertex configuration, C = (ℓ1, . . . , ℓj; v1, . . . , vk) consisting of loops ℓ1, . . . , ℓj and
isolated vertices v1, . . . , vk, is given the weight

w(C) =
j

∏
i=1

w(ℓi)
k

∏
i=1

x(vi). (2.7)

Then the loop-vertex model on the oriented graph (G,O) is the collection L(G) where the
weight of each configuration, C ∈ L(G) is assigned a weight as specified in (2.7). The
(signed) partition function of the loop-vertex model is defined as

ZG,O := ∑
C∈L(G)

w(C).

Theorem 2.6 ([2, Theorem 2.5]). The partition function of the loop-vertex model on (G,O) is

ZG,O = det (KG,O),

where KG,O is a generalised adjacency matrix of (G,O) defined as:

KG,O(v, v′) =


x(v) if v = v′,
av,v′ if v → v′ inO,
−av,v′ if v′ → v inO,

0 if (v, v′) /∈ E(G).

(2.8)

We will use KG instead of KG,O whenever the underlying orientation is clear.

Remark 2.7. In the case of oriented Cartesian product of plane graphs each with a Pfaffian
orientation, the loop-vertex model is known as the monopole-dimer model and the weight of
a loop ℓ = (v0, v1, . . . , v2k−1, v2k = v0) can be written independent of the orientation [1,
Theorem 3.8].
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The author and Ayyer [1, Theorem 6.1] have extended the product formula in (1.1)
for the monopole-dimer model on the higher dimensional grids, we present a particular
case of their result.

First, let us define the boustrophedon labelling. Recall that Pn denotes the path graph
on n vertices and Qn1,...,nd is the d-dimensional grid graph with side lengths n1, . . . , nd
which can be regarded as the Cartesian product of Pn1 , . . . , Pnd denoted as Pn1□ · · ·□Pnd .
We will associate the boustrophedon labelling Ld (defined inductively) on Qn1,...,nd as
follows:

For d = 1, label L1 is 1, 2, . . . , n1. For d > 1, Qn1,...,nd consists of nd copies of (d − 1)-
dimensional grid graph Qn1,...,nd−1 . Successive copies (with successive last coordinate
1, 2, . . . , nd) are labelled consecutively as Ld−1, L′

d−1, Ld−1, L′
d−1, . . . where L′

d−1 represents
the labelling of (d − 1)-dimensional grid graph in reverse order of Ld−1. Figure 4 shows
this labelling on the graph Q4,2,2. Any snake-like labelling like the one above is a called
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Figure 4: The boustrophedon labelling on P4□P2□P2.

a boustrophedon labelling.

Theorem 2.8 ([1, Theorem 6.1]). Let G be the d-dimensional grid graph Q2m1,...,2md with bous-
trophedon labelling. Let (G,O) be obtained from G by orienting the edges from a lower-labelled
vertex to a higher-labelled vertex. Let the vertex weights be x for all vertices of G, and edge
weights be a1, . . . , ad for the edges along the different coordinate axes. Then the partition func-
tion of the monopole-dimer model on G is given by

ZG ≡ Zm1,...,md =
m1

∏
i1=1

· · ·
md

∏
id=1

(
x2 +

d

∑
q=1

4a2
s cos2 iqπ

2mq + 1

)2d−1

. (2.9)

The monopole-dimer model reduces to the so-called double-dimer model [10, 11]
when vertex weights are zero for all the vertices and there is only one plane graph in
the Cartesian product. When x = 0 and d = 2 in (2.9), the partition function of the
monopole-dimer model is the square of the partition function of the dimer model. In
the following sections, we will extend the product formulas in Theorems 2.4 and 2.5
for the monopole-dimer model on higher dimensional grids with different boundary
conditions. This attempt parallels the approach in Theorem 2.8 for higher dimensional
grids. Recall the definition of the Kronecker product of two matrices.
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Definition 2.9. Let A = (ai,j) be an m × n matrix and B = (bi,j) be a p × q matrix, then the
Kronecker product, A ⊗ B, is an mp × nq block matrix defined as a11B · · · a1nB

...
. . .

...
am1B · · · amnB

 .

If A and B are square matrices of order n and p, respectively, then

det A ⊗ B = (det A)p(det B)n.

3 High-dimensional cylindrical and toroidal grid graphs

Let us now delve into the discussion regarding the partition function of the monopole-
dimer model on higher dimensional grids with cylindrical and toroidal boundary con-
ditions.

Definition 3.1. We define an ℓ-cylindrical grid denoted Qℓ
n1,...,nd

as the graph Cn1□ · · ·□Cnℓ

□Pnℓ+1□ · · ·□Pnd . For ℓ = 1 (ℓ = d), we call it a cylindrical (toroidal) grid and use the
notation QCyl

n1,...,nd (QTor
n1,...,nd

).

We sometimes refer to Qℓ
n1,...,nd

as the d-dimensional grid Qn1,...,nd with cylindrical,
toroidal and mixed boundary conditions depending on whether ℓ is 1, d or in between,
respectively. Note that Qℓ

n1,...,nd
with canonical orientation induced from boustrophedon

labelling can be regarded as the oriented cartesian product of Cn1 , . . . , Cnℓ
, Pnℓ+1 , . . . , Pnd .

Thus, the loop-vertex model on an ℓ-cylindrical grid is nothing but the monopole-dimer
model.

Theorem 3.2. Let G be the ℓ-cylindrical grid graph Qℓ
2m1,...,2md

with boustrophedon labelling in
d dimension. Let (G,O) be obtained from G by orienting the edges from a lower-labelled vertex
to a higher-labelled vertex. Let the vertex weights be x for all vertices of G, and edge weights
be a1, . . . , ad for the edges along the different coordinate axes. Then the partition function of the
monopole-dimer model on G is given by

ZMix
2m1,...,2md

=
m1

∏
i1=1

· · ·
md

∏
id=1

(
x2 +

ℓ

∑
s=1

4a2
s sin2 (2is − 1)π

2ms
+

d

∑
t=ℓ+1

4a2
t cos2 itπ

2mt + 1

)2d−1

.

Figure 5 shows a three-dimensional grid graph with boustrophedon labelling and
cylindrical boundary conditions. Using [1, Corollary 3.9], ZCyl

G remains independent of
the various Pfaffian orientations on C2n1 , P2n2 , . . . , P2nd . The formula for cylindrical and
toroidal grids can be obtained from Theorem 3.2 using ℓ = 1 and ℓ = d, respectively.

For the rest of the paper, we will focus on higher dimensional Möbius and Klein grid
graphs.
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Figure 5: The boustrophedon labelling on the cylindrical grid QCyl
4,2,2.

4 High-dimensional Möbius grid graphs

In this section, we will extend the product formula (2.3) for three-dimensional grids and
show that the formula doesn’t extend to higher dimensions in the obvious way.

Definition 4.1. Let Qn1,...,nd be the d-dimensional grid graph, we add an edge between the ver-
tices (1, k2, . . . , kd) and (n1, n2 − k2 + 1, . . . , nd − kd + 1) for all 1 ≤ ki ≤ ni (2 ≤ i ≤ d) to
obtain Qn1,...,nd with Möbius boundary condition along the first direction. We call these edges
as dashed edges and the remaining as solid edges. We call this new graph as d-dimensional
Möbius grid graph and denote it as QMöb

n1,...,nd
.

Let G = QMöb
n1,...,nd

be the d-dimensional Möbius grid graph with boustrophedon la-
belling. Orient the solid edges from lower-labelled vertex to higher-labelled vertex,
orient the dashed edge at 1 outward and the remaining dashed edges such that each
two-dimensional square satisfies the clockwise-odd property. Let us denote the result-
ing oriented graph as (G,O). We will always orient the edges coming from the Möbius
boundary condition as described above. Figure 6 shows such an orientation over the
Möbius grid graph QMöb

4,2,2 .

Definition 4.2. We define the monopole-dimer model on the d-dimensional Möbius grid graph
G as the loop-vertex model on G with the above orientation O. The partition function of the
monopole-dimer model is then the partition function of the loop-vertex model.

Theorem 4.3. Let G be the three-dimensional Möbius grid graph QMöb
2m1,2m2,2m3

with boustrophe-
don labelling. Let the vertex weights be x for all vertices of G, and edge weights be a1, a2 and a3
for the edges along the x-,y- and z- coordinate axes respectively. Then the partition function of
the monopole-dimer model on G is given by

ZMöb
2m1,2m2,2m3

=
m1

∏
i1=1

m2

∏
i2=1

m3

∏
i3=1

(
x2 + 4a2

1 sin2 (4i1 − 1)π
4m1

+ 4a2
2 cos2 i2π

2m2 + 1
+ 4a2

3 cos2 i3π

2m3 + 1

)4

.

The product formula in Theorem 4.3 remains unchanged even if one starts by orienting
the dashed edge at 1 inward and the remaining dashed edges such that each two-dimensional
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Figure 6: The three-dimensional Möbius grid graph QMöb
4,2,2 .

square satisfies the clockwise-odd property. Note that the oriented d-dimensional Möbius grid
QMöb

2m1,...,2md
can be regarded as the oriented Cartesian product of P2m1 , . . . , P2md (oriented from

one leaf to another) together with some additional dashed edges oriented in the specified way. We
believe that the partition function of the monopole-dimer model remains unchanged regardless of
the orientation on the path graphs. That’s the reason for naming it as the monopole-dimer model.

The idea of the proof is to compute the determinant of the generalised adjacency
matrix defined in (2.8), which can be written as a sum of four terms; each is a Kronecker
product of three matrices. We use some unitary transforms to reach a stage where
the partition function is the product of the determinant of some 2 × 2 block matrices.
We now provide an example showing that the formula does not generalise for higher
dimensions.

Example 4.4. Let G = QMöb
2,2,2,2 be the four-dimensional Möbius grid . The solid edges are oriented

from lower labelled vertex to higher labelled vertex and dashed edges are oriented as described in
the paragraph just below Definition 4.1. Let the vertex weight be 0 for all the vertices and edge
weights be a1, a2, a3 and a4 for the edges along the different coordinate axes. Then, the partition
function of the monopole-dimer model on G is

(4a2
1 + a2

2 + a2
3 + a2

4)
4(a2

2 + a2
3 + a2

4)
4

which is not an 8th power. This leads us to conclude that the product formula in (2.3) does not
generalise to higher dimensions.

The generalized relationship between the partition function of the monopole-dimer
model on the three-dimensional Möbius and cylindrical grid graphs, akin to the rela-
tionship between the partition function of the dimer model on two-dimensional grids
embedded on a cylinder and a Möbius strip [12, (24)] is given by the following result.

Theorem 4.5. Let ZCyl
4n1,2n2,2n3

and ZMöb
2n1,2n2,2n3

be the partition function of the monopole-dimer

model on the three-dimensional Möbius grid QMöb
4n1,2n2,2n3

and cylindrical grid QCyl
2n1,2n2,2n3

with
boustrophedon labelling, respectively. Then

ZCyl
4n1,2n2,2n3

=
(
ZMöb

2n1,2n2,2n3

)2
. (4.1)
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5 High-dimensional Klein grid graphs

A d-dimensional Klein grid is defined similar to a d-dimensional Möbius grid by starting
with Pn1□Cn2□ · · ·□Cnd instead of Qn1,...,nd = Pn1□Pn2□ · · ·□Pnd . In other words, a d-
dimensional grid is considered to have Klein boundary conditions if it exhibits Möbius
boundary conditions along the first direction and cylindrical boundary conditions along
the remaining directions. We define the monopole-dimer model on the d-dimensional Klein
grid graph G similar to one defined for the Möbius grid.

Figure 7 shows an orientation over the Klein grid graph QKlein
4,2,2 .
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Figure 7: The three-dimensional Klein grid graph QKlein
4,2,2 .

Theorem 5.1. Let G = QKlein
2m1,2m2,2m3

be the three-dimensional Klein grid graph. Let vertex
weights be x for all vertices of G, and edge weights be a1, a2 and a3 for the edges along the x-,y-
and z- coordinate axes respectively. Then the partition function of the monopole-dimer model on
(G,O) is given by

ZKlein
2m1,2m2,2m3

=
m1

∏
i1=1

m2

∏
i2=1

m3

∏
i3=1

(
x2 + 4a2

1 sin2 (4i1 − 1)π
4m1

+ 4a2
2 sin2 (2i2 − 1)π

2m2
+ 4a2

3 sin2 (2i3 − 1)π
2m3

)4

.

We conclude by raising a pertinent question of whether is it possible to define the
non-orientable boundary conditions such that the product formulas for higher dimen-
sions still hold while preserving the relationship in (4.1).
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