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Abstract. We establish the ultra-log-concavity of P-Eulerian polynomials for naturally
labeled posets P of width two. This takes a step towards resolving a log-concavity con-
jecture of Brenti (1989) and completes the story of the Neggers–Stanley conjecture in
this special case. We do so by introducing rook matroids, the bases of which are certain
restricted rook placements on a skew Ferrers board. The associated generating poly-
nomial of these rook placements is ultra-log-concave. We exhibit a bijection between
bases of the rook matroid and linear extensions of a width two poset from which the
main result follows. Along the way, we study the structure theory of rook matroids
and note that they form a subclass of transversal matroids and positroids. They also
enjoy a strong correspondence with lattice path matroids.
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1 Introduction

In 1972, Heilmann and Lieb established a landmark result in the context of the appli-
cation of the geometry of polynomials in algebraic combinatorics, by proving that the
matching polynomial of a graph is a real-rooted [25]. Shortly thereafter, Nijenhuis re-
proved the same result in the special case of bipartite graphs, albeit in the language
of rook placements on boards [30]. Contemporarily, Stanley introduced the notion of
(P, ω)-Eulerian polynomials—modeled after the ubiquitous Eulerian polynomials—that
are denoted by WP,ω and defined as the generating polynomial of the descent statistic
of the set of linear extensions of the the labeled poset (P, ω). Following Neggers [29],
he conjectured that this polynomial has only real roots [36]. This conjecture came to be
known as the Neggers–Stanley conjecture, or simply the Poset conjecture; much work
thereafter went in establishing this conjecture in special cases [34, 19, 39, 23]. The Poset
conjecture was eventually disproved in the early 2000s—first by Brändén who treated
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Stanley’s formulation [13] and then by Stembridge who gave a counterexample to Neg-
gers’s original statement [38]. The question then turned to determining the strongest
distributional properties for this family of polynomials. Reiner and Welker [32] showed
that in the case of naturally labeled, graded posets, one can associate a simplicial poly-
topal sphere to P the h-polynomial of which coincides with the P-Eulerian polynomial
of P. The g-theorem for polytopes then implies that WP is symmetric and unimodal.
Brändén later extended that result by showing gamma-positivity of WP for the larger
class of sign-graded posets [15].

In the last two decades, the technology with which one can probe the distributional
properties—real-rootedness, log-concavity and unimodality—of combinatorially defined
polynomials has flourished. On the one hand, the geometry of polynomials has offered
sophisticated multivariate techniques including the theory of stable polynomials, the
apotheosis of which is the work of Brändén, Borcea and Liggett that established a pow-
erful theory of negative dependence [11, 12, 10]. On the other hand, the perspective of
Hodge theory has provided deeper algebro-geometric reasons behind these properties
and also served as guiding motivation for the current frontier of the subject [26, 1, 4,
5, 33]. The theory of Lorentzian polynomials [17, 18] represents a synthesis of these
two approaches; its advantage is its ability to streamline negative dependence results
in disparate contexts — from convex and algebraic geometry to matroid theory and
knot theory — into the language of polynomials and linear algebra. One such exam-
ple of this is recent work establishing the log-concavity of the Alexander polynomial
of special alternating links [24]. The work presented here continues that trend by set-
tling the log-concavity part of the Neggers–Stanley conjecture in the case of naturally
labeled width two posets. The polynomial in question turns out to have an interpreta-
tion as the generating polynomial of certain restricted rook placements, and in the spirit
of Heilmann–Lieb, we probe the distributional properties of this polynomial. Our main
tool is the construction of a a new matroid arising from non-nesting rook placements
on a skew-shaped board. We show that the bases of this matroid are in bijection with
linear extensions of a width two poset. Along the way, we highlight the rich structural
properties of the rook matroid and describe their relation to other well-studied classes
of matroids including transversal matroids, lattice path matroids, and positroids. This
is an extended abstact of the preprint [2], where full proofs and further results can be
found.

2 Rook matroids

2.1 Structural properties

Let λ/µ be a skew shape contained in an r×c-rectangle. Throughout we draw and
refer to Young diagrams λ and µ in terms of the English convention, that is as a left-
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justified array of boxes. We index the rows of λ/µ by {1, 2, . . . , r} and the columns by
{r + 1, . . . , r + c}, and we set

Eλ/µ := {1, 2, . . . , r} ∪ {r + 1, . . . , r + c}.

Two rooks in a non-attacking rook placement on a board form a nesting if one rook lies
South-East of another. Hereafter, a non-nesting rook placement (or just rook placement,
when it is clear that the setting is a non-nesting one) on a board B is a non-attacking
rook placement such that no pair of rooks forms a nesting.

Given a non-nesting rook placement ρ on λ/µ, we associate to it the set R(ρ) ∪ C(ρ)
where R(ρ) is the set of row indices occupied by ρ and C(ρ) is the set of column indices
that are not occupied by ρ. Note that for each non-nesting rook placement ρ, we have
that |R(ρ) ∪ C(ρ)| = c, the number of columns of the shape. We gather these sets into
a single collection: Rλ/µ := {R(ρ) ∪ C(ρ) : ρ ∈ NNλ/µ}, where NNλ/µ is the set of
non-nesting rook placements on λ/µ. We note that the correspondence ρ 7→ R(ρ)∪C(ρ)
is bijective.

Given a skew shape, we may define a set system as follows. For j ∈ [c], let Aj be the
set of row indices occupied by column r + j together with the index r + j itself; that is

Aj := {i ∈ [r] : (i, r + j) ∈ λ/µ} ∪ {r + j}.

Then Aλ/µ := (A1, . . . , Ac) is a set system on Eλ/µ which defines a transversal matroid,
which we also denote by Aλ/µ.

Example 2.1. Consider the skew shape λ/µ = 77553/42. The corresponding set system
is

A1 = {3, 4, 5, 6} A2 = {3, 4, 5, 7} A3 = {2, 3, 4, 5, 8} A4 = {2, 3, 4, 9}
A5 = {1, 2, 3, 4, 10} A6 = {1, 2, 11} A7 = {1, 2, 12}.

6 7 8 9 10 11 12
1
2
3
4
5

6 7 8 9 10 11 12
1 R

2 R

3
4 R

5 R

Figure 1: The skew shape λ/µ and non-nesting rook placement ρ on λ/µ with R(ρ) ∪
C(ρ) = {1, 2, 4, 5, 8, 9, 12}, a transversal of Aλ/µ.

Theorem 2.2. The set Rλ/µ is the set of maximal partial transversals of the set system Aλ/µ.
In particular, Rλ/µ is the set of bases of a transversal matroid on the ground set Eλ/µ.
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Identifying the resulting matroid by its set of bases, we call Rλ/µ the rook matroid on
λ/µ; for any matroid M, we say that M is a rook matroid if it is isomorphic to a rook
matroid of the form Rλ/µ. For example, the uniform matroid Uk,n corresponds to the
rook matroid on the (n − k)×k rectangle.

Remark 2.3. It is natural to ask if the skew shape assumption is necessary in the above
theorem. Indeed, it is necessary; in upcoming work [27] it is shown that skew shaped
boards are the only boards on which the the set of non-nesting rook placements forms
the bases of a matroid. For a concrete example of this, consider the board B in Figure 2.
If NN(B) denotes the set of non-nesting rook placements on B, then the collection of
would-be bases of the rook matroid on B is (with same order as in Figure 2):

{R(ρ) ∪ C(ρ) : ρ ∈ NN(B)} = {456, 146, 256, 246, 245, 346, 126, 234}.

However, this does not satisfy the basis-exchange axiom: 6 ∈ {1, 4, 6} \ {2, 3, 4} but
neither of {1, 4, 2} or {1, 4, 3} are contained in the collection above.

4 5 6
1
2
3

R
R R R

R

R
R R

R

Figure 2: Board which does not admit a rook matroid structure, and the seven addi-
tional non-nesting rook placements.

Theorem 2.4. The class of rook matroids R has the following properties:

1. R is closed under taking duals, direct sums but not under taking minors, free extensions,
or truncations.

2. R contains the class of Schubert matroids (also known as generalized Catalan matroids).

3. The lattice path matroid Pλ/µ is isomorphic to the non-nesting rook matroid Rλ/µ if and
only if λ/µ is a 332/1-avoiding skew shape.

4. The Tutte polynomials of the rook matroid Rλ/µ and the lattice path matroid Pλ/µ are
equal.

5. Every lattice path matroid can be obtained as the contraction of some rook matroid.

6. The rook matroid Rλ/µ is a positroid.

A few remarks are in order to contextualize Theorem 2.4. The failure of the class
of rook matroids to be minor-closed can be partly explained by the presence of Q6, the
quaternary matroid on six elements, that is isomorphic to R332/1, and a known excluded
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minor of the class of lattice path matroids [7, Theorem 3.1]. Lattice path matroids form
a well-studied class of transversal matroids [8, 9, 7] that are also supported on a skew
shape. Property 3 yields a precise characterization for when the rook matroid is isomor-
phic to the lattice path matroid, that surprisingly hinges on whether Q6 is a minor of the
rook matroid. The correspondence between rook matroids and lattice path matroids is
further strengthened by Property 4, which we conjecture in [2] holds more generally for
all valuative invariants of matroids. Finally, and again in parallel to the lattice path ma-
troid Pλ/µ [31], the rook matroid Rλ/µ can be seen to be a positroid. However, while the
proof of this is straightforward for lattice path matroids due to their cyclically transversal
presentation ([28, Theorem 4.6], [6, Theorem 5.2]), the rook matroid case requires the use
of Oh’s theorem characterizing positroids in terms of Grassmann necklaces of matroids
[31]. Finally, Property 5 shows that rook matroids generalize lattice path matroids; in
particular, we can obtain the positroidal structure of lattice path matroids using that of
rook matroids and property (5).

2.2 Distributional properties

Let λ/µ be a skew shape with r rows and c columns, and let rk(λ/µ) be the number of
non-nesting rook placements on λ/µ of size k. The univariate non-nesting rook polyno-
mial of λ/µ is defined as

Mλ/µ(t) :=
c

∑
k=0

rk(λ/µ)tk. (2.1)

One motivating feature of this definition is that we can obtain the Narayana polynomials
of type A and B (A001263 and A008459 respectively) as well as the Fibonacci polynomials
(A011973) from Mλ/µ(t) by choosing the skew shape appropriately.

The basis-generating polynomial rλ/µ(x, y) of Rλ/µ serves as the appropriate mul-
tivariate generalization of Mλ/µ, the univariate non-nesting rook polynomial in (2.1).
To emphasize the role played by row and column variables separately, we use x =
(x1, . . . , xr) and y = (yr+1, . . . , yr+c) for the row and column variables of rλ/µ respec-
tively. By Theorem 2.2, bases of rook matroids correspond to occupied row indices taken
together with unoccupied column indices of rook placements; we can thus write

rλ/µ(x, y) = ∑
ρ∈NNλ/µ

∏
i∈R(ρ)

xi ∏
j∈C(ρ)

yj, (2.2)

where as before NNλ/µ denotes the set of non-nesting rook placements on λ/µ and
R(ρ), C(ρ) correspond to the set of row indices occupied by ρ and the set of column
indices that are not occupied by ρ respectively.

We use Lorentzian polynomials [17] to deduce the ultra-log-concavity of the non-
nesting rook numbers.

http://oeis.org/A001263
http://oeis.org/A008459
http://oeis.org/A011973
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Theorem 2.5. For every skew shape λ/µ, the coefficient sequence of the non-nesting rook poly-
nomial Mλ/µ(t) = ∑d

k=0 rk(λ/µ)tk is ultra-log-concave with no internal zeros. That is,(
rk

(d
k)

)2

≥ rk−1

( d
k−1)

· rk+1

( d
k+1)

for all 1 ≤ k ≤ d − 1,

where d is the degree of Mλ/µ(t). Moreover, there exists a skew shape α/β such that Mα/β is
not real-rooted.

Proof. The first part of the theorem follows from the fact that rλ/µ, being the basis-
generating polynomial of the rook matroid, is Lorentzian [17, Theorem 3.10]. Specializ-
ing the x variables to t and the y variables to s in rλ/µ(x, y) yields a bivariate homoge-
neous Lorentzian polynomial [17, Theorem 2.10], the coefficients of which are rk(λ/µ).
This is equivalent to the coefficients of Mλ/µ(t) being ultra-log-concave with no internal
zeros. The second part of the theorem follows from the skew shape – poset corre-
spondence detailed in Theorem 3.4 together with Stembridge’s counterexample to the
Neggers–Stanley conjecture [38].

We note the parallel between the non-nesting rook polynomial and the classical rook
polynomial: both are ultra-log-concave, but while the the full rook polynomial is real-
rooted [25, 30], its non-nesting counterpart is in general not real-rooted. The context of
this failure of real-rootedness is the Neggers–Stanley conjecture, see Section 3.1 below.

Real-rooted polynomials have a natural generalization in terms of stable polynomials.
A polynomial P(x1, . . . , xn) ∈ C[x1, . . . , xn] is stable if P(x1, . . . , xn) ̸= 0 whenever all xi
lie strictly in the upper half-plane. If all the coefficients of P are real we say that P is real
stable. See [40, 16] for a survey of the theory of stable polynomials and applications in
the fields of combinatorics, probability theory, statistical mechanics, and optimization.
One context in which real-rootedness of a polynomial holds is if its multivariate analog
is stable. Given our matroidal set-up, the multivariate analog of Mλ/µ is the basis-
generating polynomial of Rλ/µ in Equation (2.2). This question thus fits naturally into
the theory of matroids: A matroid M is to have the half-plane property (HPP), if the basis-
generating polynomial of M = (E,B) defined as

PM(x) = ∑
B∈B

∏
i∈B

xi,

is stable. The class of HPP matroids was introduced and studied in [21], where a number
of connections were drawn between matroids and stable polynomials, and the question
was raised as to whether all transversal matroids are HPP. Although this was disproved
shortly after [22], the counterexample given was not a lattice path matroid. The following
result shows that even Catalan matroids [3]—lattice path matroids (or rook matroids) on
the Ferrers shape (n, n − 1, . . . , 1)—do not satisfy the half-plane property in general.
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Theorem 2.6. If M is a Catalan matroid of rank at least 10, then M is not HPP—it contains the
lattice path matroid N = P666333 as a minor1, and PN is not stable.

Theorem 2.5 and the theorem above suggest that Mλ/µ is unlikely to be real-rooted
in general; in the next section we see why this is true.

3 Neggers–Stanley conjecture

Recall that given a poset P, the width of P is the size of the largest antichain in P. A
labeling of a poset P on n elements is a bijection ω : P → [n]. We say that ω is a natural
labeling, or linear extension of P, if i ≺ j implies ω(i) < ω(j). The Jordan–Hölder set
L(P, ω) of (P, ω) is the set of all permutations σ ∈ Sn such that for every relation i ≺ j
in P, we have that ω(i) precedes ω(j) in the one-line notation of the permutation σ.

In his PhD thesis [35], Stanley introduced the (P, ω)-Eulerian polynomial, also known
as the W-polynomial of P, as the descent-generating polynomial of the Jordan–Hölder set
of the labeled poset (P, ω):

WP,ω(t) := ∑
σ∈L(P,ω)

tdes(σ).

When ω is natural, we simply write WP, since the polynomial is independent of the
choice of natural labeling. Observe that in the definitions of the multivariate analogs that
follow, there is a dependence on the choice of natural labeling that we make explicit.

The distributional properties of WP,ω were of early interest to combinatorialists work-
ing in poset theory. The following conjecture was first formulated by Neggers in 1978
for natural labelings; in 1986, Stanley extended it to arbitrary labelings. Subsequent ref-
erences to this conjecture also called it the Poset conjecture [19]. For further background,
see [16] or [19].

Conjecture 3.1 (Neggers–Stanley conjecture [29, 36]). Let (P, ω) be a labeled poset. Then
WP,ω is real-rooted.

The Neggers–Stanley conjecture was of central importance to algebraic combinatorics
until its resolution in the negative in the 2000s: first by Brändén [13] who found a family
of counterexamples to Stanley’s formulation and then Stembridge [38] who disproved
Neggers’ counterpart as well. In both cases, the counterexample furnished was of a
width two poset; Brändén’s construction was non-naturally labeled while Stembridge’s
(larger) counterexample was naturally labeled. Despite this breakthrough, the question
of unimodality or log-concavity of WP,ω for general (P, ω) remained open. In particular,
the following conjecture of Brenti has been open since 1989.

1If a matroid is HPP then all its minors are as well [21].
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Conjecture 3.2 ([19, Conjecture 1.1]). Let (P, ω) be a labeled poset. Then WP,ω is log-concave
with no internal zeroes.

There have been two positive results towards this end. Reiner and Welker proved that
when P is naturally labeled and graded, WP is unimodal and symmetric [32]. Brändén
then gave an elegant combinatorial proof of the same fact by demonstrating a stronger
property: namely that WP is γ-positive for the larger class of sign-graded posets [14, 15].

In the next subsection, we show a strengthening of Conjecture 3.2 for special posets
P. Namely, we show that when P is naturally labeled and of width two, then WP is
ultra-log-concave. We do so by formulating an appropriate multivariate analog of WP
and recognizing it as the basis-generating polynomial of a rook matroid.

3.1 Matroidal lifts of P-Eulerian polynomials

Given a skew shape λ/µ, our goal is to obtain a suitable poset P such that the W-
polynomial of P agrees with the non-nesting rook polynomial of λ/µ. We do so in
Theorem 3.4. Before we state this, we introduce a multivariate analog of WP for width
two P. Our choice is inspired by, but slightly different from, the multivariate P-Eulerian
polynomials considered by Brändén and Leander in [20], developed in order to place the
Neggers–Stanley conjecture in a multivariate context.

For a naturally labeled poset (P, ω) of width two, we define the multivariate analog
of a P-Eulerian polynomial. Let (P, ω) be a naturally labelled poset of width two. To
simplify presentation, we assume throughout that P has two minimal elements and two
maximal elements. Fix a decomposition of P into two chains, C1 on r elements and C2
on c elements. With respect to this chain decomposition2, define W̃P,ω ∈ N[xe, ye′ : e ∈
C1, e′ ∈ C2] as

W̃P,ω(x, y) = ∑
σ∈L(P,ω)

∏
i∈DB(σ)

xi ∏
j∈CA(σ)

yj, (3.1)

where

• DB(σ) := {σi ∈ [r + c] : σi−1 > σi} is the set of descent bottoms of σ,

• CA(σ) := {σi ∈ [r + c] : σi < σi+1, σi ∈ C2} is the set of column ascents, i.e. ascent
bottoms of σ lying in C2 and σr+c+1 := ∞.

The latter condition implies that the element σr+c is an ascent bottom if and only if
σr+c = r + c. Here CA stands for column ascent (made clear in Example 3.5). Note that
W̃P,ω is multi-affine and homogeneous of degree |C2|.

2We emphasize that when (P, ω) is naturally labeled and of width two, the multivariate polynomial
W̃P,ω depends on the choice of chain decomposition of P, but the univariate polynomial WP,ω does not.
Irreducible width two posets have a unique decomposition into two (maximal) chains [38, Proposition
5.1].
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Example 3.3. Suppose (P, ω) is the width two poset on [5] with cover relations 1 ≺· 3, 1 ≺·
5, 2 ≺· 4, 4 ≺· 5, 2 ≺· 3 and chains C1 = {1, 3} and C2 = {2, 4, 5}. The Jordan–Hölder set is
L(P, ω) = {24153, 21453, 12453, 21435 24135, 12435, 21345, 12345}. The polynomial W̃P,ω
is a polynomial in the variables x1, x3, y2, y4, y5 and is equal to

W̃P,ω = x1x3y2 + x1x3y4 + x3y2y4 + x1x3y5 + x1y2y5 + x3y2y5 + x1y4y5 + y2y4y5.

Also, recall that if rλ/µ is the basis-generating polynomial of the rook matroid on
λ/µ, then we can express it in terms of row variables x1, . . . , xr and column variables
yr+1, . . . , yr+c as

rλ/µ(x, y) = ∑
ρ∈NNλ/µ

∏
i∈R(ρ)

xi ∏
j∈C(ρ)

yj.

We can now state the main theorem of the section, which interprets the polynomial
W̃P,ω as the basis-generating polynomial of a rook matroid.

Theorem 3.4. There is a bijective correspondence between skew shapes λ/µ and naturally labeled
posets (P, ω) of width two. Under this correspondence if rλ/µ is the basis-generating polynomial
of the rook matroid on λ/µ then rλ/µ(x, y) ∼= W̃P,ω(x, y), where ∼= denotes equality up to
reindexing of the variables. In particular, we also have

WP(t) = Mλ/µ(t). (3.2)

Hence3 the P-Eulerian polynomial WP is ultra-log-concave for naturally labeled width two P.

The fact that linear extensions of a poset are in bijection with lattice paths contained
inside a compact polyhedral set is standard in the theory of distributive lattices [37,
p. 296]. This idea underpins the above correspondence between skew shapes and posets
of width two. We briefly illustrate one direction of this correspondence and the associ-
ated rooks-to-descents bijection in the following example. The reader can refer to [2] for
the full proof.

Example 3.5. Consider the skew shape λ/µ = 54421/31 shown in Figure 3a. We trace
the innermost path of λ/µ with dashes and label the rows and columns according to
the indices of the steps in this path. The labeled rows and columns become the chains
C1 and C2 of the poset (P, ω) shown in Figure 3b. One can verify that ω here is indeed
natural. The non-trivial cover relations of (P, ω) correspond to the inner and outer
corners of the skew shape, as indicated. This correspondence between skew shapes and
posets of width two is one-to-one. Non-nesting rook placements on λ/µ are in bijection
with lattice paths contained inside λ/µ by specifying the valleys of the path precisely
at the positions of the rook; this is shown in Figure 3c. The path permutation of the
resulting lattice path is obtained by recording the row or column indices corresponding
to the North or East steps of the path, as it is traversed from bottom to top. The path

3Since W̃P,ω is Lorentzian, so is its univariate specialization WP(t).
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permutations are exactly the elements of L(P, ω). This bijection sends the occupied row
indices of rook placements to the descent bottoms of the inverses of linear extensions
and unoccupied column indices to column ascents.

4 6 7 9 10
8
5
3
2
1

(a) Skew shape λ/µ with in-
nermost path marked with
dashes.

a11
C1

a22

a33

a45

a58

a6 4
C2

a7 6

a8 7

a9 9

a1010

(b) Naturally labeled width
two poset (P, ω) correspond-
ing to skew shape λ/µ.

4 6 7 9 10
8 R

5 R

3 R

2
1 R

(c) Non-nesting rook place-
ment on λ/µ with its corre-
sponding lattice path in gray.

Figure 3: Skew shape — poset correspondence. Indices of North and East steps of
the dashed path in (a) form two disjoint chains, C1 and C2 in (b). Blue and red cover
relations correspond to outer and inner corners respectively. The lattice path in (c) has
path permutation σ = 41263759 10 8. Here DB(σ) = {1, 3, 5, 8} and CA(σ) = {9}. The
set DB(σ) ∪ CA(σ) represents the rook placement in (c).

Conjecture 3.1 follows from Theorem 3.4 for all naturally labeled posets of width two.
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