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Abstract. We study the biased random transposition shuffle, a natural generalization
of the classical random transposition shuffle studied by Diaconis and Shahshahani.
Using the representation theory of the symmetric group, we diagonalize the transition
matrix of the shuffle. We use these eigenvalues to prove that the shuffle exhibits total
variation cutoff at time tN = 1

2b N log N with window N. We also prove that the limiting
distribution of the number of fixed cards near the cutoff time is Poisson.
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1 Introduction

The study of card shuffling with the help of representation theory was initially intro-
duced by Diaconis and Shahshahani [12] for the random transpositions shuffle. In this
shuffle, consider a deck of N distinct cards. Pick two cards uniformly at random with
repetition and swap them. Diaconis and Shahshahani proved that it takes 1

2 N log N repe-
titions until the deck is shuffled sufficiently well. This model is now famously known as
the random transpositions shuffle, and to this day, it is considered the best approximation
of the Markov chain that genes in DNA sequences follow [5]. Following Diaconis and
Shahshahani, there has been a variety of other card shuffles that have been studied with
the use of representation theory (see [15, 17, 13, 8, 2, 23, 9, 10]).

In this extended abstract, we consider a generalization of random transpositions,
where we partition the cards into two sets and pick cards with probabilities depending
on which half of the deck they belong. More precisely, consider a deck of N = 2n distinct
cards and denote [N] := {1, . . . , N}. We partition the cards into two sets [N] = A ⊔ B.
Fix numbers 0 < b ≤ a satisfying a|A|+ b|B| = N. Let µa,b be the probability measure
on [N] given by

µa,b(x) =

{
a
N if x ∈ A
b
N if x ∈ B.
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We pick two cards uniformly at random with repetition according to µa,b and swap them.
By identifying all of the configurations of our deck with elements in SN, we can think of
the shuffle as a random walk on SN. We refer to it as the biased random transpositions
shuffle to emphasize its connection to the classical case of random transpositions consid-
ered in [12]. Indeed, in the case a = b = 1, we recover the original random transposition
shuffle.

For x ∈ SN, let Pt(x, •) be the distribution of our deck configuration after t shuffles
starting from the initial configuration x. For two probability measures µ, ν on SN, let
dTV(µ, ν) be the total variation distance between µ and ν. Explicitly, the total variation
distance is equal to

dTV(µ, ν) :=
1
2 ∑

x∈SN

|µ(x)− ν(x)|.

We prove that the biased random transposition shuffle exhibits total variation distance
cutoff at time 1

2b N log N by diagonalizing the transition matrix P = (P(x, y))x,y∈SN and
using this spectral information to produce lower and upper bounds for the mixing time.
We are ready to state our main result, where for simplicity we assume N = 2n is even.

Theorem 1.1. Let |A| = |B| = n. Let c > 0 be a positive real number. For sufficiently large N
and some universal constant C > 0, we have

dTV
(

P
N
2b (log N+c)(id, ·), U

)
≤ C · e−c and

dTV
(

P
N
2b (log N−c)(id, ·), U

)
≥ 1 − e−

1
2

(√
1+ 1

2 ec−1
)2

+ o(1),

where U is the uniform measure on SN.

Theorem 1.1 describes the occurrence of the cutoff phenomenon. A family of Markov
chains on SN is said to have (total variation) cutoff at tN with window wN = o(tN) if

lim
c→∞

lim
N→∞

d(tN − cwN) = 1 and lim
c→∞

lim
N→∞

d(tN + cwN) = 0.

Figure 1 is a schematic picture of the cutoff phenomenon. The curve shown is the graph
of the function d(t) representing the total variation distance from our deck of cards at
time t to the uniform distribution. The cutoff phenomenon concerns the curve outside
of the window [tN − cwN, tN + cwN], specifically its convergence to a step function. The
question about the limiting curve of d(t) within the window [tN − cwN, tN + cwN] con-
cerns the limit profile. In this extended abstract, we do not discuss the limit profile and
direct the interested reader to [24].

The occurrence of cutoff is a central question in Markov chain mixing, see more in
[25]. The first instances of cutoff were in card shuffling in works by Aldous, Diaconis
and Shahshahani [1, 12], and since then cutoff has been studied in terms of many other
card shuffles [3, 6, 8, 17, 19].
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Figure 1: The cutoff phenomenon

The biased random transposition shuffle was also studied in [7], where the authors
focused on separation distance. Their proof relied on analyzing the behavior of a stop-
ping time, that unfortunately turned out not to be a strong stationary time as explained
in Section 5.3 of [26]. In this paper, we follow a spectral approach to prove the behavior
that was predicted in [7].

The upper bound of Theorem 1.1 is proven by an ℓ2-bound, which makes use of
the eigenvalues of the transition matrix P. Our second theorem explicitly describes the
eigenvalue spectrum of P. The statement involves the diagonal index of a partition λ,
defined to be

Diag(λ) := ∑
i≥0

(
λi

2

)
− ∑

i≥0

(
λ∗

i
2

)
.

Here, λ∗ is the partition conjugate to λ. The eigenvalue spectrum of P is given by the
following theorem.

Theorem 1.2. The transition matrix P has eigenvalues

a2|A|+ b2|B|
N2 +

2(a2 − ab)
N2 Diag(µ) +

2(b2 − ab)
N2 Diag(ν) +

2ab
N2 Diag(λ),

with multiplicities fλ fµ fνcλ
µ,ν for all partitions λ ⊢ N, µ ⊢ |A|, and ν ⊢ |B|, where fλ is the

number of standard Young tableaux of shape λ and cλ
µ,ν is the Littlewood–Richardson coefficient.

The lower bound of Theorem 1.1 is proven by studying the number of fixed cards at
time t. Let Fixc be the number of fixed points after shuffling our deck of cards using
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the biased random transposition shuffle 1
2b N(log N − c) times. Let Fix be the number

of fixed points of a uniformly chosen permutation. The random variable Fixc has the
following limiting distribution.

Theorem 1.3. Suppose that b < 1. Then, we have

Fixc
dist−−→ Poiss

(
1 +

1
2

ec
)

, as N → ∞. (1.4)

where the convergence is convergence in distribution. Also, we have

dTV (Fixc, Fix) −→ dTV

(
Poiss(1), Poiss

(
1 +

1
2

ec
))

, as N → ∞. (1.5)

Note that Equation 1.5 follows immediately from Equation 1.4 by definition of con-
vergence in distribution. Theorem 1.3 is analogous to [22, Equation 1.6] which was
proven for random transpositions.

Remark 1.6. Our proof is motivated by the proof in [12] for random transpositions. How-
ever, in the biased case we run into several difficulties which require new ideas. Since our
shuffle is not conjugacy class invariant, we need another way to diagonalize our shuffle.
In terms of the analysis, we need an understanding of the positivity of the Littlewood–
Richardson coefficients, which plays no role in random transpositions. Finally, we pro-
vide an algebraic proof of the fixed point result of [22] which also generalizes to the
biased case.

2 Spectral Analysis

In this section, we prove Theorem 1.2, which gives an explicit description of the eigen-
value spectrum of the biased random transposition shuffle. We will do this by relating
the card shuffle with the representation theory of the symmetric group. We first define
some relevant elements in the group algebra which encode the transition matrix.

Definition 2.1. For disjoint subsets S, T ⊆ [N], let Flip(S) be the set of transpositions
swapping two elements in S and let Flip(S, T) be the set of transpositions swapping one
element of S with one element in T. Define the group algebra elements

TS := ∑
x∈Flip(S)

x, and TS,T := ∑
x∈Flip(S,T)

x. (2.2)

We also define the group algebra element

A :=
(

a2|A|+ b2|B|
N2

)
· id+

2a2

N2 TA +
2b2

N2 TB +
2ab
N2 TA,B. (2.3)
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The proof of Theorem 1.2 involves diagonalizing the linear operator on C[SN] given
by left multiplication by A . The definition of A in Equation 2.3 exactly encodes the
transition probabilities of our card shuffle. Specifically, if we begin with a probability
distribution π on SN, the distribution after one shuffle will be A π. Thus, the eigen-
value spectrum of the transition matrix will be equal to the eigenvalue spectrum of left
multiplication by A on C[SN]. To describe the eigenvalues of our transition matrix, we
define Eigλ

µ,ν as

Eigλ
µ,ν :=

a2|A|+ b2|B|
N2 +

2(a2 − ab)
N2 Diag(µ) +

2(b2 − ab)
N2 Diag(ν) +

2ab
N2 Diag(λ),

for all partitions λ ⊢ N, µ ⊢ |A|, and ν ⊢ |B|. The following result states that the
eigenvalues of A are exactly Eigλ

µ,ν for various triples of partitions (λ, µ, ν).

Theorem 2.4. Left multiplication by A on C[SN] has eigenvalue spectrum Eigλ
µ,ν with multi-

plicities fλ fµ fνcλ
µ,ν for all λ ⊢ N, µ ⊢ |A|, and ν ⊢ |B|.

Proof. From Maschke’s theorem, we can decompose the group algebra C[SN] as SN-
representations as

C[SN] =
⊕
λ⊢N

(Sλ)⊕ fλ , (2.5)

where Sλ is the Specht module corresponding to the partition λ. Since subrepresenta-
tions are invariant under left multiplication by A , it is enough to diagonalize A on Sλ.
We can rewrite Equation 2.3 as

A =

(
a2|A|+ b2|B|

N2

)
· id+

2(a2 − ab)
N2 TA +

2(b2 − ab)
N2 TB +

2ab
N2 TA∪B. (2.6)

It is well known (see [14, Exercise 27.9]) that T[N] acts on Sλ for λ ⊢ N by scalar multipli-
cation by Diag(λ). Since the outer two terms in Equation 2.6 act by scalar multiplication
on Sλ, it is enough to diagonalize the sum of the inner two terms. To this end, we view
Sλ as a SA ×SB representation. It follows from the Littlewood–Richardson rule [27,
Proposition 1] that

ResSN
SA×SB

Sλ =
⊕

µ⊢|A|
ν⊢|B|

(Sµ ⊠ Sν)⊕cλ
µ,ν (2.7)

as SA ×SB modules. The sum of the inner two terms in Equation 2.6 act on each copy
of Sµ ⊠ Sν by scalar multiplication by

2(a2 − ab)
N2 Diag(µ) +

2(b2 − ab)
N2 Diag(ν). (2.8)

Adding the scalar which the sum of the outer two terms in Equation 2.6 act on Sλ, we
get the desired eigenvalue. The multiplicity is given by the fact that dim(Sµ ⊠ Sν) = fµ fν

and Sµ ⊠ Sν appears fλcλ
µ,ν times in C[SN]. This completes the proof to the theorem.
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Proof of Theorem 1.2. As mentioned in the paragraph after Equation 2.3, the eigenvalue
spectrum of the transition matrix is exactly the eigenvalue spectrum of left multiplication
of A on C[SN]. Theorem 1.2 follows immediately from Theorem 2.4.

3 Lower Bound

In this section, we prove the lower bound of Theorem 1.1. This will follow from the
limiting behavior of the number of fixed points described by Theorem 1.3.

3.1 Asymptotics of fixed points

For the rest of this section, let V be the defining representation of SN. For any permu-
tation π ∈ SN, let Fix(π) be the number of fixed points of π. The following lemma
gives a representation-theoretic interpretation of the moments of Fix(π) for a random
permutation π.

Lemma 3.1. Let θ : SN → [0, 1] be a probability distribution on SN and let ϑ ∈ C[SN] the
corresponding element in the group algebra.

(a) The expected number of fixed points of a permutation picked according to θ is the trace of ϑ

on V.

(b) The pth moment of the number of fixed points of a permutation picked according to θ is the
trace of ϑ on V⊗p.

Proof. The group algebra element ϑ is given by ∑ θ(π)π ∈ C[SN] where the sum ranges
over all permutations. Viewing π as an element of End(V), the trace tr(π) is equal to
the number of fixed points of π. Thus, we have

tr(ϑ) = ∑
π∈SN

θ(π) tr(π) = ∑
π∈SN

θ(π) Fix(π) = Eθ[Fix(π)]. (3.2)

This proves (1). To prove (2), observe that Fix(π) = tr(π) = χV(π) where χV is the
character of V. The character of the tensor product V⊗p is equal to χ

p
V . Thus, viewing

each π as an element of End(V⊗p), we have

tr(ϑ) = ∑
π∈SN

θ(π) tr(π) = ∑
π∈SN

θ(π) Fix(π)p = Eθ[Fix(π)p]. (3.3)

To prove Theorem 1.3 we also need the following lemma from [4, Equation 5.5] de-
scribing the irreducible subrepresentations of tensor powers of the defining representa-
tion. Let S(p, t) denote the Stirling number of the second kind, and let Kλ,µ denote the
Kostka number.
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Lemma 3.4. As SN-representations, we have the decomposition

V⊗p =
⊕

λ

mλ
pSλ, where mλ

p :=
N

∑
t=0

S(p, t)Kλ,(N−t,1t),

We are ready for the proof of Theorem 1.3.

Proof of Theorem 1.3. Since the Poisson distribution is determined by its moments [11,
Example 6.3], it is enough to show that the pth moment of Fixc converges to the pth

moment of a Poiss(1+ ec/2) random variable. From Lemma 3.1, the pth moment of Fixc
is exactly the trace of A K on V⊗p. From Lemma 3.4, Equation 2.7, and Theorem 2.4, we
have

tr
(
A K

)
= ∑

λ⊢N
∑

µ,ν⊢n
mλ

pcλ
µ,ν f µ f ν(Eigλ

µ,ν)
K (3.5)

=
p

∑
j=0

∑
λ⊢N

λ1=N−j

mλ
p

{
∑

µ,ν⊢n
cλ

µ,ν f µ f ν(Eigλ
µ,ν)

K

}
. (3.6)

Since we are fixing p and letting N tend to infinity, there are only finitely many partitions
(depending on p) which appear in the sum. These partitions are of the form λ = (N −
j, T) where 0 ≤ j ≤ p, and T is a partition of j. Take any partition λ = (N − j, T) of this
form. We first compute the asymptotics of

∑
µ,ν⊢n

cλ
µ,ν f µ f ν(Eigλ

µ,ν)
K. (3.7)

Suppose that µ, ν ⊢ n satisfy cλ
µ,ν > 0. Then, [24, Lemma 2.52] implies that they must be

of the form

µ = (n − i1, T1), ν = (n − i2, T2), i1 + i2 ≤ j, T1 ⊢ i1, T2 ⊢ i2.

In particular, the number of non-zero summands in Equation 3.7 is bounded above by a
constant depending only on p. From [24, Lemma 2.25], we have the asymptotics

Eigλ
µ,ν = 1 −

Bi1,i2,j

N
+ O

(
1

N2

)
where Bi1,i2,j := i1a2 + i2b2 + (2j − i1 − i2)ab. Using the approximation 1 − x = e−x +

O(x2), the contribution of all copies of Sµ ⊠ Sν in Sλ to the trace is

cλ
µ,ν fµ fν(Eigλ

µ,ν)
K =

Ni1+i2

2i1+i2(i1)!(i2)!
fT1 fT2cλ

µ,ν ·
e

Bi1,i2,j
2b c

N
Bi1,i2,j

2b

+ o(1) (3.8)

= C · N
2b(i1+i2)−Bi1,i2,j

2b + o(1) (3.9)

= C · NEi1,i2,j + o(1), (3.10)
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where we define Ei1,i2,j :=
2b(i1+i2)−Bi1,i2,j

2b . In Equation 3.9 we consolidated all constants
which are of constant order with respect to N in the constant C.

We study the maximum value of Ei1,i2,j depending on the values of i1, i2, j. The fol-
lowing lemma implies that Ei1,i2,j is will less than or equal to 0, and it will be equal to
zero for a single choice of the pair (i1, i2).

Lemma 3.11. Let a > b.

(a) We have Ei1,i2,j ≤ 0. If Ei1,i2,j = 0, then i1 = 0, i2 = j, and Bi1,i2,j = 2jb.

(b) Let i1 = 0 and i2 = j. Then cλ
µ,ν > 0 if and only if µ = (n) and ν = (n − j, T). If this

happens, then cλ
µ,ν = 1.

From Lemma 3.11, the asymptotics of Equation 3.7 for any partition λ = (N − j, T)
are given by

∑
µ,ν⊢n

cλ
µ,ν fµ fν

(
Eigλ

µ,ν

)K
=

fT

j!

(
ec

2

)j
+ o(1).

From Equation 3.5, we have

tr
(
A K

)
= o(1) +

p

∑
j=0

∑
T⊢j

fT

j!

(
ec

2

)j p

∑
t=j

S(p, t)
(

t
j

)
fT (3.12)

= o(1) +
p

∑
t=0

S(p, t)
t

∑
j=0

(
t
j

)(
ec

2

)j
[

∑T⊢j f 2
T

j!

]
(3.13)

= o(1) +
p

∑
t=0

S(p, t)
(

1 +
ec

2

)t
. (3.14)

From [16, Equation 1.3-14], the right hand side of Equation 3.14 is exactly the pth moment
of a Poisson random variable of rate 1 + ec

2 . This suffices for the proof.

Remark 3.15. In Theorem 1.3, it is important that b < a. Indeed, the condition that b < a
plays an important role in limiting the sources that contribute to the trace of A K. In
contrast, in the case a = b = 1 corresponding to the random transposition shuffle, it is
shown in [22, Equation 1.6] that

Fixc
dist−−→ Poiss (1 + ec) . (3.16)

This illustrates the clear difference between the a < b case and the a = b = 1 case.



Cutoff for the Biased Random Transposition Shuffle 9

3.2 Proof of lower bound

We can now prove the lower bound of Theorem 1.1 by comparing the distribution of our
shuffle to the distribution of its fixed points.

Proof of lower bound of Theorem 1.1. For 0 ≤ k ≤ N, let S(k)
N be the subset of permutations

with exactly k fixed points. Then we have

dTV(U, Pt(id, ·)) = 1
2

N

∑
k=0

∑
π∈S(k)

N

|U(π)− Pt(id, π)|

≥ 1
2

N

∑
k=0

∣∣∣U(S
(k)
N )− Pt(id,S(k)

N )
∣∣∣

= dTV(Fix, Fixc)

= dTV

(
Poiss(1), Poiss

(
1 +

ec

2

))
+ o(1),

where the last equality follows from Theorem 1.3 and the classical problème des rencontres.
The lower bound follows from [20, p. 44] giving

dTV

(
Poiss(1), Poiss

(
1 +

ec

2

))
≥ H2

(
Poiss(1), Poiss

(
1 +

ec

2

))
, (3.17)

where H2 is the (squared) Hellinger distance. The right hand side of the lower bound
of Theorem 1.1 is an explicit computation of the Hellinger distance between two Poisson
random variables.

4 Upper Bound

In this section, we make a few comments on the upper bound of Theorem 1.1. From [21,
Lemma 12.18(ii)] along with Theorem 1.2, we get the following upper bound.

Lemma 4.1. Let |A| = |B| = n and N = 2n. Let U be the uniform distribution on SN. Then,
any time t ≥ 0, we have the bound

dTV(Pt(x, ·), U)2 ≤ 1
4 ∑

λ⊢N
λ ̸=(N)

∑
λ:cλ

µ,ν>0

cλ
µ,ν fλ fµ fν · |Eigλ

µ,ν |
2t. (4.2)

We prove the upper bound in Theorem 1.1 by splitting up the sum in Equation 4.2
into several zones based on the indexing partition. Approximately, we split up the space
of partitions of N into approximately three zones. These zones are as follows:
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Definition 4.3. Let a∗ := 2 − a−1. We define the Red, Blue, and Yellow zones explicitly
by

ZoneR := {λ : λ1, λ∗
1 ≤ n},

ZoneB := {λ : n ≤ λ1 ≤ a∗n, λ∗
1 ≤ n} ∪ {λ : n ≤ λ∗

1 ≤ a∗n, λ1 ≤ n},
ZoneY := {λ : 2n − 1 ≥ λ1 ≥ a∗n} ∪ {λ : λ∗

1 ≥ a∗n}.

Diagrammatically, these zones are depicted in Figure 2 where the space of partitions
is represented as a two-dimensional plane where the x-axis corresponds to the length of
the first row and the y-axis corresponds to the length of the first column. In the analysis,
we also partition each zone into several subzones.

λ1

λ∗
1

n a∗n 2n

n

a∗n

2n

a∗ := 2 − a−1

R B

B

Y

Y

Figure 2: Cartesian plane with x-axis λ1 and y-axis λ∗
1

Over each sub-zone, we bound the maximum value of Eigλ
µ,ν and the dimension of

cλ
µ,ν fλ fµ fν depending on the length of the first row and first column. The main terms in

the sum come from partitions with long first row. To show that the contribution coming
from the other partitions is negligible, we need a good understanding of when cλ

µ,ν > 0.
Equivalently, we need to understand the triples (λ, µ, ν) which appear non-trivially in
Equation 4.2. To do this, we rely on the theory of hives [18] and more generally the
representation theory of semisimple Lie algebras.

Remark 4.4. For random transpositions, Diaconis and Shahshahani use zones similar to
Figure 2. However, in the biased case, the analysis is considerably more delicate and we
need to divide the red, blue, and yellow zones into additional sub-zones. Some of these
sub-zones then need to be divided into even smaller sub-zones, where these sub-zones
are determined dynamically. For more details of this analysis, we direct the reader to the
preprint [24].



Cutoff for the Biased Random Transposition Shuffle 11

Acknowledgements

The authors thank Ezra Edelman for introducing us to the Hellinger distance. The au-
thors thank Lauren Williams for helpful comments on the extended abstract. The au-
thors also thank Johnny Gao, Laura Colmenarejo, and Grant Barkley for enlightening
conversations about Littlewood–Richardson coefficients and the hive model. Finally, the
authors thank the anonymous reviewers for their helpful comments.

References

[1] D. Aldous and P. Diaconis. “Shuffling cards and stopping times”. Amer. Math. Monthly 93.5
(1986), pp. 333–348. doi.

[2] M. E. Bate, S. B. Connor, and O. Matheau-Raven. “Cutoff for a one-sided transposition
shuffle”. Ann. Appl. Probab. 31.4 (2021), pp. 1746–1773. doi.

[3] D. Bayer and P. Diaconis. “Trailing the dovetail shuffle to its lair”. Ann. Appl. Probab. 2.2
(1992), pp. 294–313. Link.

[4] G. Benkart, T. Halverson, and N. Harman. “Dimensions of irreducible modules for par-
tition algebras and tensor power multiplicities for symmetric and alternating groups”. J.
Algebraic Combin. 46.1 (2017), pp. 77–108. doi.

[5] N. Berestycki and R. Durrett. “A phase transition in the random transposition random
walk”. Probab. Theory Related Fields 136.2 (2006), pp. 203–233. doi.

[6] N. Berestycki and B. ¸ Sengül. “Cutoff for conjugacy-invariant random walks on the per-
mutation group”. Probab. Theory Related Fields 173.3-4 (2019), pp. 1197–1241. doi.

[7] M. Bernstein, N. Bhatnagar, and I. Pak. “Cutoff for biased transpositions”. 2017. arXiv:
1709.03477.

[8] M. Bernstein and E. Nestoridi. “Cutoff for random to random card shuffle”. Ann. Probab.
47.5 (2019), pp. 3303–3320. doi.

[9] P. Bidigare, P. Hanlon, and D. Rockmore. “A combinatorial description of the spectrum for
the Tsetlin library and its generalization to hyperplane arrangements”. Duke Math. J. 99.1
(1999), pp. 135–174. doi.

[10] K. S. Brown and P. Diaconis. “Random walks and hyperplane arrangements”. Ann. Probab.
26.4 (1998), pp. 1813–1854. doi.

[11] A. DasGupta. Asymptotic theory of statistics and probability. Springer Texts in Statistics.
Springer, New York, 2008, pp. xxviii+722.

[12] P. Diaconis and M. Shahshahani. “Generating a random permutation with random trans-
positions”. Z. Wahrsch. Verw. Gebiete 57.2 (1981), pp. 159–179. doi.

[13] A. B. Dieker and F. V. Saliola. “Spectral analysis of random-to-random Markov chains”.
Adv. Math. 323 (2018), pp. 427–485. doi.

https://dx.doi.org/10.2307/2323590
https://dx.doi.org/10.1214/20-aap1632
http://links.jstor.org/sici?sici=1050-5164(199205)2:2<294:TTDSTI>2.0.CO;2-F&origin=MSN
https://dx.doi.org/10.1007/s10801-017-0748-4
https://dx.doi.org/10.1007/s00440-005-0479-7
https://dx.doi.org/10.1007/s00440-018-0844-y
https://arxiv.org/abs/1709.03477
https://arxiv.org/abs/1709.03477
https://dx.doi.org/10.1214/19-AOP1340
https://dx.doi.org/10.1215/S0012-7094-99-09906-4
https://dx.doi.org/10.1214/aop/1022855884
https://dx.doi.org/10.1007/BF00535487
https://dx.doi.org/10.1016/j.aim.2017.10.034


12 E. Nestoridi and A. Yan

[14] P. Etingof. “Lie groups and Lie algebras”. 2024. arXiv:2201.09397.

[15] L. Flatto, A. M. Odlyzko, and D. B. Wales. “Random shuffles and group representations”.
Ann. Probab. 13.1 (1985), pp. 154–178. Link.

[16] F. A. Haight. Handbook of the Poisson distribution. Vol. No. 11. Publications in Operations
Research. John Wiley & Sons, Inc., New York-London-Sydney, 1967, pp. xi+168.

[17] B. Hough. “The random k cycle walk on the symmetric group”. Probab. Theory Related Fields
165.1-2 (2016), pp. 447–482. doi.

[18] A. Knutson and T. Tao. “The honeycomb model of GLn(C) tensor products. I. Proof of the
saturation conjecture”. J. Amer. Math. Soc. 12.4 (1999), pp. 1055–1090. doi.

[19] H. Lacoin. “Mixing time and cutoff for the adjacent transposition shuffle and the simple
exclusion”. Ann. Probab. 44.2 (2016), pp. 1426–1487. doi.

[20] L. Le Cam and G. L. Yang. Asymptotics in statistics. Second. Springer Series in Statistics.
Some basic concepts. Springer-Verlag, New York, 2000, pp. xiv+285. doi.

[21] D. A. Levin and Y. Peres. Markov chains and mixing times. Second. With contributions by
Elizabeth L. Wilmer, With a chapter on “Coupling from the past” by James G. Propp and
David B. Wilson. American Mathematical Society, Providence, RI, 2017, pp. xvi+447. doi.

[22] P. Matthews. “A strong uniform time for random transpositions”. J. Theoret. Probab. 1.4
(1988), pp. 411–423. doi.

[23] E. Nestoridi and K. Peng. “Mixing times of one-sided k-transposition shuffles”. 2021.
arXiv:2112.05085.

[24] E. Nestoridi and A. Yan. “Cutoff for the Biased Random Transposition Shuffle”. 2024.
arXiv:2409.16387.

[25] J. Salez. “Cutoff for non-negatively curved Markov chains”. J. Eur. Math. Soc. (JEMS) 26.11
(2024), pp. 4375–4392. doi.

[26] G. R. White. Combinatorial Methods in Markov Chain Mixing. Thesis (Ph.D.)–Stanford Uni-
versity. ProQuest LLC, Ann Arbor, MI, 2017, p. 69. Link.

[27] A. V. Zelevinsky. “A generalization of the Littlewood-Richardson rule and the Robinson-
Schensted-Knuth correspondence”. J. Algebra 69.1 (1981), pp. 82–94. doi.

https://arxiv.org/abs/2201.09397
http://links.jstor.org/sici?sici=0091-1798(198502)13:1<154:RSAGR>2.0.CO;2-0&origin=MSN
https://dx.doi.org/10.1007/s00440-015-0636-6
https://dx.doi.org/10.1090/S0894-0347-99-00299-4
https://dx.doi.org/10.1214/15-AOP1004
https://dx.doi.org/10.1007/978-1-4612-1166-2
https://dx.doi.org/10.1090/mbk/107
https://dx.doi.org/10.1007/BF01048728
https://arxiv.org/abs/2112.05085
https://arxiv.org/abs/2409.16387
https://dx.doi.org/10.4171/jems/1348
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:28115580
https://dx.doi.org/10.1016/0021-8693(81)90128-9

	Introduction
	Spectral Analysis
	Lower Bound
	Asymptotics of fixed points
	Proof of lower bound

	Upper Bound

