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Abstract. A permutation of the multiset t1m, 2m, . . . , nmu is a canon permutation if the
subsequence formed by the jth copy of each element of rns :“ t1, 2, . . . , nu is identical
for all j P rms. Canon permutations were introduced by Elizalde and are motivated by
pattern-avoiding concepts, such as (quasi-)Stirling permutations. He proved that the
descent polynomial of canon permutations exhibits a surprising product structure; as a
further consequence, it is palindromic. Our goal is to understand canon permutations
from the viewpoint of Stanley’s pP, ωq-partitions, along the way generalizing Elizalde’s
definition and results. We start with a labeled poset P and extend it in a natural way to
canon labelings of the product poset P ˆ rns. The resulting descent polynomial has a
product structure which arises naturally from the theory of pP, ωq-partitions. When P
is graded, this theory also implies palindromicity. We include results on weak descent
polynomials, an amphibian construction between canon permutations and multiset
permutations, as well as γ-positivity and interpretations of descent polynomials of
canon permutations.

Résumé. Una permutación del multiconjunto t1m, 2m, . . . , nmu es una permutación canon
si la subsecuencia formada por la j-ésima copia de cada elemento de rns :“ t1, 2, . . . , nu

es idéntica para todo j P rms. Las permutaciones canon fueron introducidas por
Elizalde y están motivadas por conceptos que evitan patrones, como por ejemplo
permutaciones (cuasi-)Stirling. Elizalde demostró que el polinomio de descensos de
cualquier permutación canon exhibe una sorprendente estructura de producto; por lo
tanto, es palindrómico. Nuestro objetivo es entender las permutaciones canon desde el
punto de vista de las pP, ωq-particiones de Stanley, generalizando, a medida que avan-
zamos, la definición y los resultados de Elizalde. Partiendo de un poset etiquetado P,
lo extendemos de manera natural a etiquetamientos canon del poset producto P ˆ rns. El
polinomio de descensos resultante tiene una estructura de producto que surge natu-
ralmente de la teoría de pP, ωq-particiones. Cuando P es graduado, esta teoría también
implica palindromicidad. Incluimos resultados sobre polinomios de descensos débiles,
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una construcción que generaliza permutaciones canon y permutaciones de multicon-
juntos, así como la γ-positividad e interpretaciones de polinomios de descensos de
permutaciones canon.

Keywords: labeled poset, canon permutation, Eulerian polynomial, Narayana number,
gamma positivity.

1 Introduction

A permutation π of the multiset t1m, 2m, . . . , nmu is a canon permutation if the subsequence
formed by the jth copy of each element of rns :“ t1, 2, . . . , nu is identical for all j P rms.
For instance, 223143213144 is a canon permutation of t13, 23, 33, 43u, with the sequence
formed by the jth copy being 2314. Canon permutations were introduced by Elizalde [7]
and are motivated by pattern-avoiding permutations of the multiset t1, 1, 2, 2, . . . , n, nu,
such as Stirling [9] and quasi-Stirling [1] permutations. For m “ 2, canon permutations
are sometimes called nonnesting permutations; they are precisely the permutations of the
multiset t1, 1, 2, 2, . . . , n, nu avoiding the patterns 1221 and 2112. Following the notation
in [7], we denote by Cm,σ

n the set of canon permutations whose jth copy of each entry
forms the permutation σ P Sn and by Cm

n the set of all canon permutations for given m, n.
Here, Sn denotes the set of permutations of rns.

As usual, we call j a descent of π if πpj ` 1q ă πpjq and denote by despπq the number
of descents of π. We further denote by wdespπq the number of weak descents of π,
i.e., the number of positions j such that πpj ` 1q ď πpjq. Elizalde’s work centered on
understanding the distribution of descents of canon permutations by studying the descent
polynomial

Cm
n pxq :“

ÿ

πPCm
n

xdespπq.

Let Anpxq be an Eulerian polynomial (i.e., the descent polynomial of permutations
on rns) and Nnpxq a Narayana polynomial, enumerating high peaks in Dyck paths (we
give a precise definition later). Both of these polynomials are palindromic, that is, their
coefficient sequences are symmetric. Elizalde found that the descent polynomial C2

npxq

has the following surprisingly simple structure [7, Theorem 2.1].

Theorem 1.1 (Elizalde). For n ě 1, C2
npxq “ Anpxq Nnpxq. In particular, C2

npxq is palindromic.

As Elizalde noted, the palindromicity of C2
npxq is a priori unexpected. Elizalde proved

a bivariate generalization of Theorem 1.1, involving also the number of the so-called
plateaus of permutations. Another consequence of the bivariate extension of Theorem 1.1
is that the number of canon permutations with r weak descents is the same as that for
2n ´ r descents. (We will see an explanation of this palindromicity in Proposition 5.2.)
In a follow-up paper [8], Elizalde extended Theorem 1.1 from m “ 2 to the general case.
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Here the Narayana polynomial is generalized so that the role of Dyck paths is replaced
by standard Young tableaux of rectangular shape. Elizalde’s proofs are bijective, and
the resulting descent polynomial Cm

n pxq is, again surprisingly, palindromic, due to the
(older) fact that the generalized Narayana polynomials are palindromic [12].

Our goal is to understand Theorem 1.1 and its extensions from the viewpoint of Stan-
ley’s pP, ωq-partitions [10], along the way generalizing Elizalde’s definition and results.
We describe our ansatz next. Consider a poset P with m elements and a labeling ω (i.e.,
a bijection ω : P Ñ rms). We extend this labeling, via a given σ P Sn, to the canon labeling
ω ˆ σ of the poset P ˆ rns (here we think of rns as a poset—a chain) defined by

pω ˆ σqpp, jq :“ ωppq ` pσpjq ´ 1qm .

A linear extension of P ˆ rns is defined, as usual, as an order-preserving bijection π :
rmns Ñ P ˆ rns; writing π as a word in terms of the canon labeling ω ˆ σ of P ˆ rns, it
is a short step to view π as a permutation of the multiset t1m, 2m, . . . , nmu. Let CP,ωˆσ

n
consist of all such multiset permutations, and define

CP,ω
n :“

!

CP,ωˆσ
n : σ P Sn

)

which we call the set of all canon permutations of the labeled poset pP, ωq. The classical
canon permutations Cm

n stem from the case that P “ rms is a chain and ω is the identity
(i.e., rms is naturally labeled). For instance, starting with the 2-element chain poset, P “ r2s,
and the identity permutation of r4s, id P S4, the canon labeling ω ˆ σ of the product poset
r2s ˆ r4s is shown in Figure 1 (left). In this example, CP,ω

4 is identified with the set C2
4 of

canon permutations of t1, 1, 2, 2, 3, 3, 4, 4u.
Finally, we define the canon polynomial

CP,ω
n pxq :“

ÿ

πPCP,ω
n

xdespπq.

Again, we note the special case Cm
n pxq “ Crms,id

n pxq. Indeed, in all but one of our appli-
cations, we will use a natural labeling for ω. The one exception (at least in this current
work) is captured by the weak descent polynomial CP,υ

n pxq, where the labeling υ is reverse
natural. In the case P “ rms, this corresponds to the polynomial enumerating weak
descents in canon permutations of t1m, 2m, . . . , nmu. We will see that it is a translate
of CP,ω

n pxq for the posets that we study (Proposition 5.2 below). Our generalization of
Theorem 1.1 and its extensions is as follows.

Theorem 1.2. Let P be a poset with a natural labeling ω. Then CP,ω
n pxq “ Anpxq h˚

Pˆrns
pxq.

Furthermore, if P is graded then CP,ω
n pxq is palindromic.
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Here P being graded means that all maximal chains have the same length, and
h˚

Pˆrns
pxq is the numerator of the rational generating function of the order polynomial of

P ˆ rns, which is in a sense the descent polynomial of P ˆ rns; we will give detailed defi-
nitions in Section 3. In fact, Theorem 1.2 is a special case of a general result (Theorem 3.5
below).

In Section 2, we give a poset model whose descent polynomial is the Narayana poly-
nomial. The underlying posets turn out to be structured such that all labeled versions
of them, in the sense of pP, ωq-partitions, have similar descent polynomials, from which
Theorem 1.1 follows in a few short steps, as we outline in Section 3. The philosophy of
our ansatz is that we consider the poset from Section 2, whose descent polynomial is the
Narayana polynomial, and then sum pP, ωq-descent polynomials over certain labelings
ω of this fixed poset, which gives rise to the product structure exhibited in Theorem 1.1.
Our proof generalizes immediately to the canon polynomial Cm

n pxq for general m. The
palindromicity of canon polynomials follows organically from the structure of the in-
volved posets; indeed, we give three direct explanations for this palindromicity (Theo-
rem 3.5, Proposition 3.6, and Theorem 4.2 below).

In Section 4, we extend our results to subposets of P ˆ rns with some relations missing
between different copies of P, i.e., those of the form pp, jq ă pp, j ` 1q. These subposets
give intermediary descent polynomials situated between those for canon permutations
and multiset permutations. We show that palindromicity extends to this class.

A distributional property that is stronger than palindromicity (and unimodality [5])
is γ-positivity: a palindromic polynomial of degree d is γ-positive if its coefficients are
non-negative when expressed in the γ-basis txipx ` 1qd´2i : 0 ď i ď td{2uu (see, for
instance, [2]). In Section 5, we show that our viewpoint implies that the descent polyno-
mials of canon permutations are γ-positive and give a combinatorial interpretation for
their coefficients, based on a result of Brändén. We conjecture the intermediate class of
polynomials constructed in Section 4 to have γ-positive descent polynomials and ask for
a γ-coefficient interpretation, which would recover γ-positivity exhibited by both canon
permutations and multiset permutations.

2 Narayana Polynomials as Descent Polynomials

We start, as a warm-up of sorts, by realizing the Narayana polynomials as descent poly-
nomials of the posets r2s ˆ rns. As usual, the set Dn of Dyck paths consists of all lattice
paths from p0, 0q to pn, nq with steps e :“ p1, 0q and n :“ p0, 1q that do not go above the
diagonal y “ x. A peak in a Dyck path is an occurrence of two adjacent steps en. A peak
is called a high peak if these steps do not touch the diagonal. We denote the number
of high peaks of D P Dn by hpeapDq. For example, the Dyck path from p0, 0q to p4, 4q

appearing in Figure 1 has three peaks out of which one is a high peak. We refer to
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the polynomial Nnpxq :“
ř

DPDn
xhpeapDq as a Narayana polynomial. (Our convention is

slightly nontraditional, as the Narayana numbers are the coefficients of x Nnpxq.)

1

2 3

4 5

6 7

8

Figure 1: The poset r2s ˆ r4s with a natural labeling (left). The Dyck path corresponding
to the linear extension 12354678 of r2s ˆ r4s (right).

The following can be proved bijectively.

Theorem 2.1. The linear extensions of the poset r2s ˆ rns are in bijection with the Dyck paths
in Dn. Furthermore, the descents of a linear extension of r2s ˆ rns, labeled via id ˆ id, are in
bijection with the high peaks of the corresponding Dyck path.

For example, the linear extension 12354678 P Lpr2s ˆ r4s, id ˆ idq corresponds to the
Dyck path shown in Figure 1.

Corollary 2.2. Let Lpr2s ˆ rnsq denote the set of linear extensions of r2s ˆ rns. Then
ÿ

πPLpr2sˆrnsq

xdespπq
“ Nnpxq .

The analogy between descents of linear extensions and high peaks of Dyck paths
extends to weak descents and (ordinary) peaks, and the bijection discussed extends
similarly.1

Remark 2.3. Viewing the descent polynomial of r2s ˆ rns as the Ehrhart h˚-polynomial
of the order polytope of r2s ˆ rns, it is a curious fact that the positive root polytope of
type An´1 has the same h˚-polynomial [6, Example 6].

3 Order Polynomials of Labeled Posets

We now recall some fundamental definitions and results on labelled posets and their
order polynomials and generating functions [10].

1We note that Corollary 2.2 also follows from work of Sulanke [12].



6 Matthias Beck and Danai Deligeorgaki

Definition 3.1. Let P be a poset of cardinality m with a given labeling ω : P Ñ rms. A
pP, ωq-partition is a map σ : P Ñ Zě0 satisfying the following conditions:

• If s ď t in P, then σpsq ď σptq; in other words, σ is order-preserving.2

• If s ă t and ωpsq ą ωptq, then σpsq ă σptq.

Let ΩP,ωpjq be the number of pP, ωq-partitions σ : P Ñ rjs0 :“ t0, 1, . . . , ju.

The function ΩP,ωpjq turns out to be a polynomial of degree m, called the order polyno-
mial of pP, ωq.3 Subsequently, we may define the h˚-polynomial of a labeled poset pP, ωq,
h˚

P,ωpxq, via
ÿ

jě0

ΩP,ωpjq xj
“

h˚
P,ωpxq

p1 ´ xqm`1 .

When ω is a natural labeling, we denote h˚
P,ωpxq by h˚

Ppxq. For example, we can rephrase
Corollary 2.2 as h˚

r2sˆrns
pxq “ Nnpxq.

Parallel to the classical case, we may think of a linear extension σ of P as a permuta-
tion of ω; we denote the set of all such linear extensions by LpP, ωq. The fundamental
property of order polynomials is the following [10, Proposition 13.3].

Theorem 3.2 (Stanley). h˚
P,ωpxq “

ÿ

σPLpP,ωq

xdespσq.

Given a poset P with a labeling ω and a chain C of P, a descent of C is any occurrence
of a cover relation a ă b in C with ωpaq ą ωpbq. We define DespC, ωq to be the set
of descents in C and let despC, ωq denote the cardinality of DespC, ωq. The following
theorem, which was stated in [11, Theorem 4.1] using the notion of shift equivalence,
provides a sufficient condition for the h˚-polynomials corresponding to two different
labelings of a given poset to be the same up to a shift.

Theorem 3.3 (Stembridge). Let P be a poset with two labelings ω and ω1 such that for each
j P P there exists tj with the following conditions:

• if j is minimal then tj “ 0;

• if j covers i then for any maximal chain C containing i and j

tj ´ ti “

$

’

&

’

%

1 if i P DespC, ωqz DespC, ω1q ,
´1 if i P DespC, ω1qz DespC, ωq ,
0 otherwise;

2Stanley defines pP, ωq-partitions in an order-reversing fashion; the present definition mirrors that of
the usual order polynomial.

3This definition is found in the literature most frequently for the case where ω is a natural (i.e., order-
preserving) labeling.
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• there exists k such that tj “ k for any maximal j.

Then h˚
P,ωpxq “ xk h˚

P,ω1pxq .

We note that our conditions in Theorem 3.3 imply that every maximal chain C in the
order ideal xjy satisfies tj “ despC, ωq ´ despC, ω1q. By choosing ω1 to be natural (and so
there are no descents) and tj “ despC, ωq for any choice of maximal chain C in xjy for a
given j P P, we obtain the following result which appeared in [3, Corollary 2.4], phrased
there in the language of sign-graded posets.4

Corollary 3.4. Consider a poset P with a labeling ω such that all maximal chains have the same
number k of descents. Then h˚

P,ωpxq “ xk h˚
Ppxq.

Our results in the remainder of this section concern posets with maximal chains with
the same number of descents for the sake of simplicity, but most arguments extend to
the situation described in Theorem 3.3. The next theorem follows from Corollary 3.4 and
the fact that the h˚-polynomial of a naturally labeled poset is palindromic if and only if
the poset is graded [10, Proposition 19.3].

Theorem 3.5. Consider a poset P with a labeling ω such that all maximal chains have the
same number k of descents. Then CP,ω

n pxq “ xk Anpxq h˚
Pˆrns

pxq. Moreover, if P is graded then

CP,ω
n pxq is palindromic.

Starting with P ˆ rns, we now construct a new poset Pqˆrns of cardinality pm ` 1qn by
adding n elements with no relation among them but which cover all maximal elements
of P ˆ rns. The poset in Figure 2 gives an example where P “ r2s and n “ 3. We extend
a given labeling ω of P, first to a labeling ω ˆ id of P ˆ rns, and then, to a labeling ω qˆ id
of Pqˆrns, by giving the new elements any labels that are larger than those in ω ˆ id.

1

2 3

4 5

6

7
8

9

Figure 2: A labeled poset pPqˆrns, ω qˆ idq such that h˚

P qˆrns,ω qˆ idpxq “ C2
3pxq.

4The notion that all maximal chains of pP, ωq have the same number of descents is slightly different
than pP, ωq being sign-graded; when P is graded, the two notions coincide.
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Proposition 3.6. CP,ω
n pxq “ h˚

P qˆrns,ω qˆ idpxq .

This gives a direct proof for the palindromicity of CP,ω
n for ω “ id as Pqˆrns is graded.

4 Amphibians

In this section, we will study a broader family of linear extensions/multiset permutations
whose descent polynomials are also palindromic.

Throughout this section, we denote by Q a subposet of P ˆ rns with some relations
missing between different copies of P, i.e., those of the form pp, jq ă pp, j ` 1q. The
motivation for studying these subposets comes from the following observation. When
P “ rms, the linear extensions of Q can be interpreted (in the same way as before) as
a collection of multiset permutations of t1m, 2m, . . . , nmu, where conditions weaker than
those for canon permutations are imposed. When P “ rms and we remove all relations
of the form pp, jq ă pp, j ` 1q for all j P rmszt1u (where 1 can be replaced with any
other element of rms), we recover the set of multiset permutations of t1m, 2m, . . . , nmu

whose subsequence formed by the first copy of each element in rns is fixed. Similarly to
canon permutations, summing over the corresponding descent polynomials for all canon
labelings id ˆσ of Q for σ P Sn gives the descent polynomial of multiset permutations of
t1m, 2m, . . . , nmu. Since the descent polynomials corresponding to t1m, 2m, . . . , nmu and Cm

n
are both palindromic, it is natural to ask if palindromicity extends to more subposets Q of
P ˆ rns. Theorem 4.2 below confirms this. We note that the notion of palindromicity here
might involve polynomials with zero constant terms (or even more zero coefficients),
and so we state, in each case, the relevant functional equation.

Let Q be a subposet of P ˆ rns with some of the cover relations of the form pp, jq ă

pp, j ` 1q removed. We define the dissonant canon polynomial

CQ,ω
pxq :“

ÿ

σPSn

h˚
Q,ωˆσpxq .

The name is inspired from the case when P “ rms and Q is a subposet of rms ˆ rns with
some of the edges of the form pp, jq ă pp, j ` 1q removed, where p P Pztqu for some fixed
q P P. This last condition fixes one of the subsequences and therefore ensures that CQ,ω

is counting multiset permutations of t1m, . . . , nmu without doublecounting.
If all maximal chains in pP, ωq have the same number k of descents, then any maximal

chain in pQ, ω ˆ σq will contain between k and k ` despσq descents. In particular, from
Theorem 3.3 we can deduce the following.

Corollary 4.1. Consider a poset P with a labeling ω such that all maximal chains in pP, wq have
the same number k of descents. Then, for any Q as above

h˚
Q,ωˆσpxq “ xk h˚

Q,id ˆσpxq .
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Corollary 4.1 is used to prove the following theorem.

Theorem 4.2. Consider a poset P with a labeling ω such that all maximal chains in pP, wq

have the same number k of descents. Then, for any Q as above, the dissonant canon polynomial
CQ,ωpxq is palindromic, in the sense that

xmpn´1q`2k CQ,ω
p 1

x q “ CQ,ω
pxq .

A key point in the proof of Theorem 4.2 is the decomposition of the mentioned poly-
nomial into (a total of n!

2 ) palindromic polynomials. A natural question is to identify the
corresponding bijections between the permutations captured by the coefficients, which
would result in a bijective proof of Theorem 4.2. This would also yield bijections in the
subcase of canon permutations, addressing questions raised by Elizalde [7, Problem 4.1].
The palindromicity of the dissonant canon polynomial CQ,idpxq in Theorem 4.2 also gives
rise to the following problem.

Question 4.3. For which subposets Q of Pˆrns is CQ,idpxq γ-positive? Can we describe
the γ-coefficients in a unified way?

In the next section (Corollary 5.1), we will see that the answer to Question 4.3 is pos-
itive for canon permutations, which correspond to the poset Q “ rms ˆ rns. The answer
is also positive for the poset corresponding to all multiset permutations, i.e., the poset
where all conditions of the form pp, jq ă pp, j ` 1q are removed. This follows from [3]
by realizing the set of multiset permutations of t1m, 2m, . . . , nmu as linear extensions of
the poset consisting of n m-element chains, labeled with the regular canon labeling. A
combinatorial interpretation for those γ-coefficients is given in [4]. The two combina-
torial interpretations (corresponding to the set of multiset permutations and to canon
permutations) rely on partitioning permutations into classes, but the classes are differ-
ent in each case. Question 4.3 asks for a unified interpretation of the γ-coefficients for
both corresponding polynomials, as well as other γ-positive polynomials that arise for
different subposets Q. We conjecture that this class will contain all such Q, at least for
P “ rms.

Conjecture 4.4. The dissonant canon polynomial CQ,idpxq is γ-positive whenever P “ rms.

5 γ-positivity of Canon Permutations

Theorem 1.2 shows that certain distributional properties shared among the polynomi-
als Anpxq and h˚

Pˆrns
pxq, such as palindromicity and γ-positivity, transfer to the canon

polynomial CP,ω
n pxq. A direct proof of the γ-positivity of Cm

n pxq can be derived from
Brändén’s work in [3] using the poset rmsqˆrns constructed in Proposition 3.6 (here
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P “ rms). Below, we discuss a combinatorial interpretation of the γ-coefficients of Cm
n pxq,

a consequence of a group action on permutations due to Foata and Strehl extended to
posets by Brändén [4].

Following the notation in [4], we consider the map ρ : rmsqˆrns Ñ Z2 with values
ρpqq “ 0 if the maximal chains in the poset ideal xqy have even length and ρpqq “ 1
if the length is odd. For a permutation π “ π1 ¨ ¨ ¨ πpm`1qn P Lprmsqˆrnsq, let us call
j P rpm ` 1qn ´ 1s a ρ-descent of π if πj`1 ă πj or ρpπj`1q ă ρpπjq. We say that a ρ-descent
j P rpm ` 1qn ´ 1s of π is a double ρ-descent if j ´ 1 and j are both ρ-descents in π, or j “ 1.
The following result can now be derived from [4, Section 6].

Corollary 5.1. Writing

Cm
n pxq “ h˚

rmsqˆrns
pxq “

t
mpn´1q

2 u
ÿ

i“0

γi xi
p1 ` xq

mpn´1q´2i,

the coefficient γi equals the number of linear extensions π “ π1 ¨ ¨ ¨ πpm`1qn P Lprmsqˆrnsq such
that, for d “ tm`n´1

2 u,

• π has exactly i ` d ρ-descents,

• π has no double ρ-descents,

• πpm`1qn´1 ă πpm`1qn if ρpπpm`1qn´1q “ ρpπpm`1qnq “ 1.

The weak-descent polynomial of canon permutations is palindromic and γ-positive
with a combinatorial interpretation specified by Corollary 5.1, as discussed in the fol-
lowing proposition. (The palindromicity of the weak-descent polynomial of canon per-
mutations for the multiset t1, 1, 2, 2, ..., n, nu was first observed in [7, Corollary 2.3].)

Proposition 5.2.
ÿ

σPCm
n

xwdespσq
“ xm´1Cm

n pxq “ xm´1Anpxq h˚
rmsˆrns .

Let Q be a subposet of rms ˆ rns with some of the edges of the form pp, jq ă pp, j ` 1q

removed, where p P Pztqu for some fixed q P P. It follows by similar arguments as in the
proof of Proposition 5.2 that the dissonant canon polynomial CQ,idpxq (resp. CQ,υpxq) is
the descent (resp. weak-descent) polynomial of the set of permutations of t1m, 2m, ..., nmu

that satisfy the constraints imposed by the edges of Q between copies of rms.

Corollary 5.3. Let Q and υ be as above. The dissonant canon polynomial CQ,idpxq is palindromic
in the sense that

xmpn´1q CQ,id
p 1

x q “ CQ,id
pxq .
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The dissonant canon polynomial CQ,υpxq corresponding to weak descents of multiset permu-
tations is palindromic, in the sense that

xmpn`1q´2 CQ,ω
p 1

x q “ CQ,ω
pxq .

Corollary 5.3 provides a class of sets of permutations of t1m, 2m, ..., nmu with palin-
dromic (weak) descent polynomial, which simultaneously generalizes canon permuta-
tions and the collection of all permutations of t1m, 2m, ..., nmu.
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