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Geometric Realizations of ν-Associahedra via
Brick Polyhedra (Extended Abstract)
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Abstract. Brick polytopes constitute a remarkable family of polytopes associated to
the spherical subword complexes of Knutson and Miller. They were introduced for
finite Coxeter groups by Pilaud and Stump, who used them to produce geometric
realizations of generalized associahedra arising from the theory of cluster algebras
of finite types. In this paper, we present an application of the vast generalization of
brick polyhedra for general subword complexes (not necessarily spherical) recently
introduced by Jahn and Stump.

More precisely, we show that the ν-associahedron, a polytopal complex whose edge
graph is the Hasse diagram of the ν-Tamari lattice introduced by Préville-Ratelle and
Viennot, can be geometrically realized as the complex of bounded faces of the brick
polyhedron of a well chosen subword complex. We also present a suitable projection
to the appropriate dimension, which leads to an elegant vertex-coordinate description.

Keywords: Coxeter groups, subword complexes, brick polyhedra, associahedra,
Tamari lattices.

1 Introduction

The purpose of this work is to present an application of brick polyhedra of general
subword complexes to produce geometric realizations of ν-associahedra.

There are several known connections between brick polytopes and generalizations
of the associahedron. A main core for such connections is Knutson and Miller’s theory
of subword complexes. Subword complexes are certain simplicial complexes motivated
by the study of Gröbner geometry of Schubert varieties [11, 10]. One of the first con-
nections between subword complexes and associahedra was discovered by Pilaud and
Pocchiola in [12] using a slightly different terminology (of sorting networks), which was
rediscovered using the subword complex terminology in [16]. A generalization for ar-
bitrary finite Coxeter groups is due to Ceballos, Labbé and Stump in [3], who showed
that c-cluster complexes arising in the theory of cluster algebras of finite type [8] can
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be obtained as well chosen subword complexes. The dual graph of the cluster complex,
also known as the mutation graph for cluster algebras, is the edge graph of a well known
polytope called the generalized associahedron [7].

This last connection motivated the introduction of brick polytopes for spherical sub-
word complexes by Pilaud and Stump [14], who generalized the notion of brick poly-
topes in type A by Pilaud and Santos in [13]. One of the main results in [14] provides a
geometric realization of the generalized associahedron as the brick polytope of a spher-
ical subword complex. Later on, Jahn and Stump presented a generalization of brick
polyhedra for arbitrary subword complexes (not necessarily spherical) of finite type [9],
who nicely connected them to the combinatorics and geometry of Bruhat intervals and
Bruhat cones in Coxeter groups. Our work presents the first application of brick polyhe-
dra to produce geometric realizations of ν-associahedra.
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FIGURE 1. Comparison ν-brickpolyhedra and ν-associahedraFigure 1: Comparison of the ν-brick polyhedron and ν-associahedron for ν = ENEEN
(top) and for ν = EENEN (bottom).

Given a lattice path ν, consisting of finitely many north steps N and east steps E, the
ν-associahedron [4] is a polytopal complex whose edge graph is the Hasse diagram of
the ν-Tamari lattice introduced by Préville-Ratelle and Viennot in [15], and whose face
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poset is the poset of interior faces of the corresponding ν-Tamari complex [4] ordered
by reverse inclusion. The case ν = (NE)n recovers the classical associahedron, whose
edge graph is the Hasse diagram of the classical Tamari lattice, which can be defined as
the rotation poset of rooted binary trees and plays a fundamental role in many areas in
mathematics, computer science and physics. The case ν = (NEm)n recovers the m-Tamari
lattices of Bergeron [1], whose interval enumeration has beautiful conjectural connections
to the theory of trivariate diagonal harmonics in representation theory. Using techniques
from tropical geometry, Ceballos, Sarmiento and Padrol produced the first geometric
realizations of ν-associahedra [4], solving an open problem of Bergeron in this more
general set up.

In this paper, we present a second geometric realization of the ν-associahedron as
the complex of bounded faces of the brick polyhedron of a well chosen (non-spherical)
subword complex. We also provide a suitable projection, in the special case where ν has
non consecutive north steps, which provides a realization of the appropriate dimension,
with a beautiful and elegant vertex-coordinate description. The brick polyhedron and
the projection are illustrated for two examples in Figure 1. A 3-dimensional example
(resulting dimension after projecting) is illustrated in Figure 8.

2 Brick polyhedra

Throughout this work, we restrict our study to finite Coxeter groups, subword complexes
and brick polyhedra of type A.

A Coxeter system (W, S) of type An consists of the Coxeter group W := Sn+1 of
permutations of [n + 1], which acts on the space {x ∈ Rn+1 | x1 + · · ·+ xn+1 = 0} by
permuting coordinates. It is finitely generated by simple transpositions S := {sp | p ∈
[n]} with sp = (p, p + 1). The root system is defined by Φ = {ep − eq | p ̸= q ∈ [n + 1]},
and can be partitioned into positive roots Φ+ = {ei− ej | 1 ≤ i < j ≤ n+ 1} and negative
roots Φ− = {ej − ei | 1 ≤ i < j ≤ n + 1}. The simple roots are ∆ = {αp := ep − ep+1 |
p ∈ [n]} and the fundamental weights are ∇ = {ωp := ∑q≤p eq | p ∈ [n]}.

Definition 2.1 (Subword complex [10]). For a Coxeter system (W, S), let Q = (q1, ..., qm)
be a word in the generators S of W and let w ∈ W. The subword complex SC(Q, w) is
the simplicial complex whose facets are subsets I ⊆ [m] such that Q[m]\I is a reduced
expression for w. Here QJ denotes the subword of Q with positions at J.

We can now define two important functions associated with brick polyhedra.

Definition 2.2 (Root and Weight Function [3, 14]). Given a facet I of SC(Q, w), the root
function is the map r(I, ·) : [m] −→ Φ defined by r(I, k) := ∏ Q{1,...,k−1}\I(αqk). We call
R(I) := {{r(I, i) | i ∈ I}} the root configuration of I. The other function is the weight
function ω(I, ·) : [m] −→ Φ, defined by ω(I, k) := ∏ Q{1,...,k−1}\I(ωqk).
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Definition 2.3 (Brick polyhedron [9]). The brick vector of a facet I ∈ SC(Q, w) is

b(I) := −
m

∑
k=1

ω(I, k).

The Bruhat cone of a non-empty subword complex SC(Q, w) is defined by

C+(w, Dem(Q)) := cone{β ∈ Φ+ | w ≺B sβw ≤B Dem(Q)},

where Dem(Q) = max≤B{∏ QX | X ⊆ {1, ..., m}} denotes the Demazure product
of Q [10, Lemma 3.4 (1)], and ≤B,≺B denote the Bruhat order and its cover relation.
The brick polyhedron B(Q, w) is the Minkowski sum of the convex hull of all brick vectors
and the Bruhat cone:

B(Q, w) := conv{b(I) | I facet of SC(Q, w)}+ C+(w, Dem(Q)).

At first glance, brick polyhedra do not seem natural, but they turn out to have very
nice properties related to the combinatorics and geometry of the corresponding subword
complex [9]. We aim to relate this to the combinatorics and geometry of ν-associahedra.

3 The ν-Tamari lattice and the ν-associahedron

We start by introducing the concept of ν-Tamari lattices using the conventions in [5]. We
denote by ν a lattice path with finitely many east and north steps. Let Fν be the Ferrers
diagram weakly above ν, inside the smallest rectangle containing ν. We denote by Aν

the set of lattice points weakly above ν, which are inside Fν. For a lattice point p ∈ Aν,
we denote by d(p) the lattice distance from p to the top-left corner of Fν.

Definition 3.1 (ν-tree [5]). For p, q ∈ Aν, we say that p and q are ν-incompatible, denoted
p ̸∼ q, if and only if p is southwest (SW) of q or p is northeast (NE) of q, and the smallest
rectangle containing p and q lies completely inside Fν. A ν-tree is a maximal collection
of pairwise ν-compatible elements in Aν. Its elements are called nodes and the top left
corner is called root. We associate a rooted binary tree to each ν-tree T by connecting
every p ∈ T other than the root to the next in north or west direction, see Figure 3 (Left).

Definition 3.2 (ν-Tamari lattice [5]). Two ν-trees T, T′ are related by a right rotation
if T′ can be obtained from T by exchanging q ∈ T with q′ ∈ T′ in as in Figure 2 with
p, r ∈ T, T′. The ν-Tamari lattice is the rotation poset of ν-trees. An example of the Hasse
diagram of the ν-Tamari lattice for ν = ENEEN is the edge graph of Figure 4.

Definition 3.3 (ν-Tamari Complex [5]). The ν-Tamari complex is the simplicial complex
T C(ν) of pairwise ν-compatible sets in Aν. The dimension of a face I is dim(I) = |I| − 1.
The facets are the ν-trees.
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Figure 3.2: Example ν=EENEEN.

rotation if T′ can be obtained from T by exchanging q ∈ T with q′ ∈ T′ in as in Figure 3.4 with
p, r ∈ T, T′.

Figure 3.3: Left: ν = EENEEN, Right: ν-tree.
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Figure 3.4: Right rotation.

The inverse is called a left rotation. Clearly the rotation of a ν-tree is also a ν-tree. The rotation
poset of ν-trees is the partial order on the set of ν-trees, which is defined by the cover relation
T < T′ if T′ can be obtained by a right rotation of T. Moreover, the rotation poset of ν-trees is a
lattice, and the rotation poset of ν-trees is connected. All ν-trees have the same number of nodes,
which is the number of lattice points on ν. Two ν-trees differ by a single element if and only if
they are related by a rotation. More remarkable, the following holds, see example in Figure 3.30:

Theorem 3.1: [CPS19]

The ν-Tamari lattice is isomorphic to the rotation poset of ν-trees.

We present a bijection from [CPS20], which induces an isomorphism between the rotation lattice
of ν-trees and the ν-Tamari lattice. We give a short description of the right flush R, which con-
structs a ν-tree from a ν-path µ: Start with labeling all points in the ν-path µ in order they appear
along the path. Now we are constructing the ν-tree from the bottom to the top. The vertices in a
row are placed as rightmost as possible on the same row of the path in assigned order. But we
avoid the x-coordinates that are forbidden by previous flushed rows. We disallow here the coor-
dinates by all flushed points in a row, excepting the last one (leftmost). The obtained points give
us the ν-tree. The Left flush L will work symmetrically, see [CPS20]. This bijection is visualized
in Figure 3.5. The maps and R, L are well defined, and bijective inverse to each other. Moreover,

Figure 2: Right rotation.

Definition 3.4 (ν-subword complex SC(Qν, wν) [5]). Given a lattice path ν we label each
lattice point p ∈ Aν by the transposition sd(p)+1, see Figure 3 (Middle) for an example.
Furthermore, define Qν as the word obtained by reading the associated transpositions
from bottom to top, and the columns from left to right. The element wν is the product of
transpositions in the complement of a ν-tree, see Figure 3 (Right). The complements of
ν-trees are reduced expressions of wν in Qν and the effect of a rotation keeps wν constant.23
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Figure 3.6: Left: ν-tree, Middle: grid for Qν Right: complement of ν-tree, ν = ENENE
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Figure 3.7: Pipe dream for ν-tree, ν=ENENE

By Figure 3.6 (Middle), we obtain Qν = (s3, s2, s1, s4, s3, s2, s4, s3, s5, s4), Figure 3.6 (Right) gives us
wν = s2s3s2s4. The pipe dream in Figure 3.7 illustrates πν = [1, 4, 3, 5, 2, 6].

Definition 3.7

The ν-subword complex is the subword complex SC(Qν, wν).

Theorem 3.8: [CPS19]

The ν-subword complex SC(Qν, wν) is isomorphic to the ν-Tamari complex.

Definition 3.9: Boundary and Interior of ν-Tamari Complex [CPS19]

A co-dimension 1 face A of the ν-Tamari complex1 is in the boundary if it is contained in only one
facet. A general face B is in the boundary if it is contained in some A of co-dimension 1, which is
in the boundary. An interior face is a face that is not in the boundary.

3.3 The ν-associahedron

The Hasse diagram of the ν-Tamari lattice can be geometrically realized as the edge graph of a
polytopal complex called the ν-associahedron [CPS19]. The construction in [CPS19] uses techni-
ques from tropical geometry. The goal of this thesis is to give new realizations in terms of brick
polyhedra. The following is a purely combinatorial definition.

Definition 3.10: ν-Associahedron [CPS19]

The ν-associahedron is a polytopal complex induced by an arrangement of tropical hyperplanes,
whose poset of faces (ordered by containment) is anti-isomorphic to the poset of interior faces of
the ν-Tamari complex.

The interior faces of the ν-Tamari complex can be characterized as follows.

1) The co-dimension of A is given by the maximal dimension minus the dimension of A.

Figure 3: Left: a ν-tree for ν = ENEEN. Middle: lattice points Aν labeled by transpo-
sitions; the corresponding word is Qν = (s3, s2, s1, s4, s3, s2, s4, s3, s5, s4). Right: comple-
ment of ν-tree and its corresponding element wν = s2s3s2s4.

The following result from [5] provides a nice description of the ν-Tamari complex as
a well chosen subword complex.

Theorem 3.5 ([5]). The ν-subword complex SC(Qν, wν) is isomorphic to the ν-Tamari complex.

The interior faces of the ν-Tamari complex can be characterized as follows.

Definition 3.6 ([6]). A node q in a ν-tree T is called an ascent if there exists a node in T
to the north and another to the east of q. Equivalently, ascents of T are the nodes of T
on which we can apply a right rotation.

Lemma 3.7 ([6]). The interior faces I of the ν-Tamari complex are in bijective correspondence
with pairs (T, A), where T is a ν-tree and A is a subset of its ascents, via the map I = T \ A.

As we can observe from Figure 4, the ν-Tamari lattice has a very rich underlying
geometric structure. Its Hasse diagram can be geometrically realized as the edge graph
of a polytopal complex called the ν-associahedron [4]. The construction in [4] uses
techniques from tropical geometry. The goal of this work is to give new realizations in
terms of brick polyhedra. The following is a purely combinatorial definition.



6 Cesar Ceballos and Matthias Müller

Definition 3.8 (ν-Associahedron [4]). The ν-associahedron is a polytopal complex induced
by an arrangement of tropical hyperplanes, whose poset of faces (ordered by contain-
ment) is anti-isomorphic to the poset of interior faces of the ν-Tamari complex.

Corollary 3.9 ([6]). The faces of the ν-associahedron are in correspondence with pairs (T, A),
where T is a ν-tree and A is a subset of its ascents. The dimension of the face corresponding
to (T, A) is the cardinality |A|.

Example 3.10 (ν-Associahedron for ν = ENEEN). Consider the ν-subword complex
for ν = ENEEN, the ν-associahedron is shown in Figure 4, and its edge graph is the
Hasse diagram of the ν-Tamari lattice. The interior face I1 illustrated in Figure 4 cor-
responds to the orange line segment, while the interior face I2 corresponds to the red
pentagon. Note that I2 ⊆ I1, but the face corresponding to I1 is contained in the face
corresponding to I2. The containment poset of interior faces is reversed.

Figure 4: ν-Associahedron for ν = ENEEN.

Example 3.11 (ν-Brick Polyhedron for ν = ENEEN). The word Qν and element wν are
Qν = (s3, s2, s1, s4, s3, s2, s4, s3, s5, s4), and wν = s3s2s3s4. The brick polyhedron B(Qν, wν)
is of dimension 4 in a 5 dimensional space, so we can not really draw it. However, to
get a feeling about how it looks like, we can remove the letters s1 and s5 from Qν. They
are contained in every facet (are non-flippable) and give rays in the brick polyhedron. If
we call Q̃ν the resulting word Q̃ν = (s3, s2, s4, s3, s2, s4, s3, s4) then the brick polyhedron
B(Q̃ν, wν) is of dimension 3 and is illustrated in Figure 5 (Left). The Bruhat cone is given
by C+(wν, Dem(Qν)) = cone{α4, s3(α4)}.
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4 A geometric realization via brick polyhedra

The goal of this work is to show that the ν-associahedron can be geometrically realized
as the complex of bounded faces of a brick polyhedron. For this, we consider the ν-
subword complex from previous section. The ν-brick polyhedron B(Qν, wν) is defined as
the brick polyhedron of the ν-subword complex SC(Qν, wν). The following is our main
result, which can be observed from Examples 3.10 and 3.11, illustrated in Figure 5.

Theorem 4.1. The ν-associahedron is geometrically realized as the polytopal complex of bounded
faces of the ν-brick polyhedron B(Qν, wν). In other words, the poset of bounded faces of B(Qν, wν)
is anti-isomorphic to the poset of interior faces of the ν-subword complex (∼= ν-Tamari complex).
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FIGURE 1. Comparison ν-brickpolyhedra and ν-associahedra

Figure 5: Comparison of the ν-brick polyhedron and ν-associahedron for ν = ENEEN.

4.1 Faces of brick polyhedra

In order to prove Theorem 4.1, it is useful to have a better understanding of the faces
of brick polyhedra in general. For this purpose, we use a notion of modified brick
polyhedra that we define now.

Definition 4.2 (Modified Bruhat Cone C I,+). We denote by SC I(Q, w) the set of all faces
in the subword complex SC(Q, w) that contain a given face I ∈ SC(Q, w):

SC I(Q, w) := {J ∈ SC(Q, w) : I ⊆ J}.

For J ∈ SC I(Q, w), the modified root configuration RI(J) is given by

RI(J) := {r(J, j) | j ∈ J \ I}.
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We define the modified Bruhat cone C I,+ as

C I,+ :=
⋂

J∈SC I(Q,w)

cone RI(J).

Definition 4.3 (Modified Brick Polyhedron B I(Q, w)). For a face I ∈ SC(Q, w) of a non-
empty subword complex, the modified brick polyhedron B I(Q, w) is the polyhedron

B I(Q, w) := conv{b(J) | J facet of SC(Q, w) and I ⊆ J}+ C I,+.

Proposition 4.4. Every face F of a brick polyhedron B(Q, w) is of the form B I(Q, w) for some
face I ∈ SC(Q, w).

This proposition states that every face of a brick polyhedron B(Q, w) is a modi-
fied brick polyhedron B I(Q, w); however, we remark that not every B I(Q, w) is a face
of B(Q, w). The Proposition was essentially proved in [9] using the description of faces
via linear functionals, see [9, Remark 4.11] and [9, Corollary 3.24 and Proposition 4.6].
Our approach is a bit different and is based on the following lemma, cf. [9, Proposi-
tion 4.6 and Remark 4.11]. For a face F of B(Q, w), we denote by VF the vector space
spanned by F.

Lemma 4.5. Consider a face F of the brick polyhedron B(Q, w), let J ∈ SC(Q, w) be a facet
such that the brick vector b(J) ∈ F and JF := {j ∈ J : r(J, j) ∈ VF}. The following hold:

1. for I = J \ JF, we have F = B I(Q, w) and

2. for J′ ∈ SC(Q, w) a facet, we have I ⊆ J′ if and only if b(J′) ∈ F.

4.2 Bounded faces of ν-brick polyhedra

The following result gives a complete characterization of the bounded faces of the ν-brick
polyhedron.

Theorem 4.6. The bounded faces of the ν-brick polyhedron B(Qν, wν) are exactly the B I(Qν, wν),
for I = T \ A, where T is a ν-tree and A ⊆ T is a subset of ascents. Moreover,

B I(Qν, wν) = conv{b(J) | I ⊆ J a facet of SC(Qν, wν)},

and its face poset is the reverse containment poset on the set {J ∈ SC(Qν, wν) : I ⊆ J}.
Our proof of this theorem is based on the following two key lemmas.

Lemma 4.7. Let I = T \ A, where T is a ν-tree and A ⊆ T a subset of ascents, and define
βt :=r(T, t), t ∈ T. There exists a linear functional f such that

f (βa) = 0 for a ∈ A and f (βt) > 0 for t ∈ T \ A.
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We denote by Qν,I the word obtained from Qν by deleting the letters with positions
in I, and consider the corresponding subword complex SC(Qν,I , wν).

Lemma 4.8. Let I = T \A, where T is a ν-tree and A ⊆ T a subset of ascents, then SC(Qν,I , wν)
is a spherical and root independent subword complex.

Our main result, Theorem 4.1, follows from Theorem 4.6.

5 A projection

Since the dimension of the ν-brick polyhedron is usually much higher than the dimen-
sion of the ν-associahedron, it is interesting to study suitable projections to obtain figures
in the appropriate dimension. In this section, we provide an elegant projection in the
case where ν has no two consecutive north steps.

For convenience, we consider paths of the form ν = (NEkn) · · · (NEk1), where ki ≥ 1.
Notice that we are adding a north step N at the beginning and some east steps at
the end of the path, but this does not affect the combinatorics of the bounded com-
ponents of the brick polyhedron. One can double check that the ν-brick polyhedron
B(Qν, wν) ⊆ Rn+2+∑(ki−1). Since the first and last coordinates of the brick vectors b(T)
are constant for every ν-tree T, we omit them, and write b̃(T) for the resulting vectors.
Moreover, we denote by B̃(Qν, wν) the result of omitting the first and last coordinates
of the intersection of the brick polyhedron B(Qν, wν) with the affine subspace defined
by the first and the last coordinates being those constant numbers. In particular, the
bounded components of B(Qν, wν) are in correspondence with the bounded compo-
nents of B̃(Qν, wν). After removing the first and the last coordinates, we have

B̃(Qν, wν) ⊆ Rn+∑(ki−1) = RN.

We denote by xI := ∑i∈I xi. Our projection uses the sets M̃1, . . . , M̃n, which are
defined recursively by setting M̃j to be the last (ki − 1) elements of [N] \ ⋃j−1

i=1 M̃i, and
let Mj = M̃j ∪ {j} for j ∈ [n].

Definition 5.1 (Projection). We define the maps

π1 : RN −→ Rn, (x1, ..., xN) 7→ (xM1 , ..., xMn) ∈ Rn,

π2 : Rn → Rn−1, (xM1 , ..., xMn) 7→ (xM1 , xM1 + xM2 , ..., xM1 + ... + xMn−1).

Finally, the projection π : RN → Rn−1 is defined by the composition π = π2 ◦ π1.

Theorem 5.2. Let ν = (NEkn) · · · (NEk1) with ki ≥ 1 (no consecutive north steps). Then
the projection π : RN → Rn−1 of the bounded components of B̃(Qν, wν) is a realization of the
ν-associahedron of the desired dimension.
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Moreover, the coordinates of the projected vertices can be simply described as follows.
Let T0 be the minimal ν-tree of the ν-Tamari lattice. We denote by

y(T) = (y1, . . . , yn−1) := π(b̃(T))− π(b̃(T0)).

These y-coordinates are the translation of the projection of the bounded components of
the ν-brick polyhedron by the vector −π(b̃(T0)). In particular, y(T0) = (0, . . . , 0).

It turns out that these new coordinates can be described in a very simple and elegant
combinatorial way. First, we label the horizontal lines of the Ferrers diagram determined
by the path ν from 1 to n− 1, from top to bottom, omitting the top most row. We denote
by Pi = Pi(T) the unique shortest path connecting the root to the left most node of T on
the i-th horizontal line, and let area(Pi) be the number of boxes left to Pi. Two examples
are illustrated in Figure 6. Magically, yi = area(Pi).
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FIGURE 2. Comparison of ν-brick polyhedra and ν-associahedra
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P0
2 T0

y0
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Figure 6: The canonical coordinates y(T0) = (y0
1, y0

2, y0
3) = (0, 0, 0), and y(T) =

(y1, y2, y3) = (3, 2, 3) for the two ν-trees T0 and T. The entry yi(T) is the area (i.e.
number of boxes to the left) of the path Pi(T) connecting the root to the leftmost node
of T at level i (increasing from top to bottom).

Theorem 5.3. Let ν = (NEkn) · · · (NEk1) with ki ≥ 1 (no consecutive north steps). For a
ν-tree T we have y(T) = (y1, ..., yn−1), where yi = area(Pi(T)). These coordinates determine a
realization of the ν-associahedron.

Remark 5.4. As a consequence, the projection π : RN → Rn−1 of the bounded com-
ponents of B̃(Qν, wν) is a translation of the canonical realization of the ν-associahedron
described in [2]. This may be regarded as a Loday-like realization of the ν-associahedron,
because in the classical case ν = (NE)n both realizations are affinely equivalent.

Example 5.5. We continue the Examples 3.10 and 3.11, ν = NENEENE. The projected
points coincide with the canonical realization by [2], up to a translation, see Figure 7.
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Figure 7: Projection of the bounded components of B̃(Qν, wν) for ν = NENEENE.

Example 5.6. For ν = NENENEENE = (NE1)(NE1)(NE2)(NE1), we obtain N = n +

∑(ki − 1) = 4 + (0 + 1 + 0 + 0) = 5. Furthermore, M1 = {1}, M2 = {2, 5}, M3 = {3},
and M4 = {4}. So we group coordinates 2 and 5 of b̃(T) together. In order to illustrate
how the projection works, let us consider the two ν-trees T and T0 in Figure 6. We obtain:

b(T) = −(17, 13, 13, 9, 13, 2, 0) b(T0) = −(17, 16, 12, 10, 10, 2, 0)

b̃(T) = −(13, 13, 9, 13, 2) b̃(T0) = −(16, 12, 10, 10, 2)

π1(b̃(T)) = −(13, 15, 9, 13) π1(b̃(T0)) = −(16, 14, 10, 10)

π(b̃(T)) = −(13, 28, 37) π(b̃(T0)) = −(16, 30, 40)

The difference between the corresponding projected brick vectors is

y(T) = (y1, y2, y3) = π(b̃(T))− π(b̃(T0)) = (3, 2, 3).

As we can see from Figure 6, the entry yi = area(Pi) counts the number of boxes left to
the path Pi connecting the root to the left most node of T at level i.

Although the ν-brick polyhedron B(Qν, wν) ⊆ R7, the projection of its bounded
components lies in R3 and is illustrated in Figure 8.
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