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Abstract. We introduce and study several random combinatorial billiard trajectories. Such
a system, which depends on a fixed parameter p ∈ (0, 1), models a beam of light
that travels in a Euclidean space, occasionally randomly reflecting off of a hyperplane
in the Coxeter arrangement of an affine Weyl group with some probability that de-
pends on the side of the hyperplane that it hits. In one case, we (essentially) recover
Lam’s reduced random walk in the limit as p tends to 0. The investigation of our
random billiard trajectories relies on an analysis of new finite Markov chains that we
call stoned exclusion processes. These processes have remarkable stationary distributions
determined by well-studied polynomials such as ASEP polynomials, inhomogeneous
TASEP polynomials, and open boundary ASEP polynomials; in many cases, it was
previously not known how to construct Markov chains with these stationary distribu-
tions. Using multiline queues, we analyze correlations in the stoned multispecies TASEP,
allowing us to determine limit directions for reduced random billiard trajectories and
limit shapes for new random growth processes for n-core partitions.

Keywords: Combinatorial billiards, ASEP, reduced random walk, affine Weyl group,
stoned exclusion process, multiline queue

1 Weyl Groups and Reduced Random Walks

Let Φ be a finite irreducible crystallographic root system spanning a Euclidean space V,
and write Φ = Φ+ ⊔ Φ−, where Φ+ and Φ− = −Φ+ are the set of positive roots and
the set of negative roots, respectively. Let W and W̃ be the Weyl group and affine Weyl
group of Φ, respectively. Let I be an index set so that {αi : i ∈ I} is the set of simple
roots, and let Ĩ = {0} ⊔ I. Write S = {si : i ∈ I} and S̃ = {si : i ∈ Ĩ} for the sets of simple
reflections of W and W̃, respectively. Let θ ∈ Φ be the highest root of W.

Let V∗ be the dual space of V. Each root β ∈ Φ has an associated coroot β∨ ∈ V∗. Let
Q∨ = spanZ{β∨ : β ∈ Φ} ⊆ V∗ denote the coroot lattice of W. For β ∈ Φ+ and k ∈ Z,
we define the hyperplane Hk

β = {γ ∈ V∗ : γ(β) = k} ⊆ V∗. The Coxeter arrangements of

W and W̃ are HW = {H0
β : β ∈ Φ+} and HW̃ = {Hk

β : β ∈ Φ+, k ∈ Z}, respectively.
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There is a faithful right action of W̃ on V∗; each simple reflection si ∈ S acts via the
reflection through the hyperplane H0

αi
, while s0 acts via the reflection through H1

θ. The
closures of the connected components of V∗ \ ⋃

H∈HW
H are called chambers, while the

closures of the connected components of V∗ \ ⋃
H∈HW̃

H are called alcoves. The funda-
mental chamber is C = {γ ∈ V∗ : γ(αi) ≥ 0 for all i ∈ I}, and the fundamental alcove is
A = {γ ∈ C : γ(θ) ≤ 1}. The map u 7→ Cu is a bijection from W to the set of cham-
bers. The map u 7→ Au is a bijection from W̃ to the set of alcoves. Two distinct alcoves
are adjacent if they share a common facet. The alcoves adjacent to Au are precisely the
alcoves of the form Asu for s ∈ S̃. Let H(u,s) denote the unique hyperplane separating
Au and Asu. For γ ∈ V∗ \ {0}, let ⟨γ⟩ denote the unit vector in V∗ that points in the
same direction as γ. By a slight abuse of notation, we write ⟨Au⟩ for the unit vector that
points in the same direction as the center of Au. Let w◦ denote the long element of W.

Consider the |I|-dimensional torus T = V∗/Q∨, and let q : V∗ → T be the natural
quotient map. There is a quotient map W̃ → W, which we denote by w 7→ w, where w
is the unique element of w such that q(Aw) = q(Aw).

In [18], Lam introduced the reduced random walk in W̃, a very natural and intriguing
random walk on the set of alcoves of HW̃ (equivalently, on W̃). The reduced random
walk starts at A. Suppose that at some point in time, the walk is at an alcove Au. A
simple reflection s is chosen uniformly at random from S̃. If H(u,s) separates Au from A,
then the walk stays at the alcove Au; otherwise, it transitions to Asu. Let M̃Lam denote
the reduced random walk in W̃.

Let Ŵ = {w ∈ W̃ : Aw ⊆ C} denote the set of affine Grassmannian elements of W̃. Lam
also introduced the affine Grassmannian reduced random walk in Ŵ, which is the random
walk M̂Lam obtained by conditioning M̃Lam to stay within C. By projecting M̂Lam through
the natural quotient map W̃ → W, Lam obtained an irreducible finite-state Markov chain
MLam on W; when W is of type An−1, it turns out that MLam is isomorphic to the n-species
totally asymmetric simple exclusion process (n-species TASEP) on a ring with n sites. The
Markov chain MLam can also be seen as a certain random walk on the toric alcoves in the
torus T. Let ζLam denote the stationary probability distribution of MLam.

Let AuM and AvM denote the states at time M of the reduced random walk in W̃
and the affine Grassmannian reduced random walk in Ŵ, respectively. Let

ψLam = ∑
w∈W

w−1θ∈Φ+

ζLam(w)θ∨w. (1.1)

Lam [18] proved that with probability 1, we have

lim
M→∞

⟨AvM⟩ = ⟨ψLam⟩ and lim
M→∞

⟨AuM⟩ ∈ ⟨ψLam⟩W.

Thus, the affine Grassmannian reduced random walk almost surely travels asymptoti-
cally in the direction of ψLam, and the reduced random walk almost surely travels asymp-
totically in one of the finitely many directions in ψLamW.
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2 Random Billiards

Dynamical algebraic combinatorics is a field that studies dynamical systems on objects
of interest in algebraic combinatorics (see, e.g., [21, 25, 27]). Mathematical billiards is
a subfield of dynamics concerning the trajectory of a beam of light that moves in a
straight line except for occasional reflections [20, 26]. Combinatorial billiards is a new
topic that combines these two areas, focusing on mathematical billiard systems that
are in some sense rigid and discretized; these billiard systems can usually be modeled
combinatorially or algebraically [1, 5, 13, 14, 15, 28]. Our first goal is to define a random
billiard trajectory that resembles Lam’s reduced random walk and its variants.

Fix a point z0 in the interior of A. For η ∈ V∗ \ {0}, let rη be the ray that starts at z0
and travels in the direction of η. Let Υz0 denote the set of vectors η ∈ Q∨ \ {0} such that
rη does not pass through the intersection of two or more hyperplanes in HW̃ .

Given η ∈ Υz0 , we can record the sequence Au0,Au1, . . . of alcoves through which
rη passes (in particular, Au0 = A); we then define the infinite word wz0(η) = · · · si1si0 ,
where sij is the unique simple reflection such that uj+1 = sij uj (our convention is that
infinite words extend infinitely to the left). The word wz0(η) is necessarily periodic (since
η ∈ Q∨), and we let N = Nη denote its period.

Fix η ∈ Υz0 and p ∈ (0, 1). Shine a beam of light from z0 in the direction of η.
Whenever the beam of light hits a hyperplane in HW̃ that it has not yet crossed, it
passes through the hyperplane with probability p and reflects off of the hyperplane
with probability 1 − p. Whenever the beam of light hits a hyperplane in HW̃ that it has
already crossed, it reflects off of the hyperplane. We call this random process a reduced
random billiard trajectory (see Figure 1). By imposing the extra condition that the beam of
light always reflects when it hits a wall of the fundamental chamber, we obtain a different
random process that we call the affine Grassmannian reduced random billiard trajectory.

We can discretize the reduced random billiard trajectory by only keeping track of the
alcove containing the beam of light and the direction that the beam of light is facing.
Let uM be the alcove containing the beam of light after it hits a hyperplane in HW̃
for the M-th time; at this point in time, the beam of light is facing toward the facet
of AuM contained in the hyperplane H(uM,siM ). In this way, we obtain a discrete-time
Markov chain M̃η whose state at time M is the pair (uM, M) in W̃ × Z/NZ. We call
this Markov chain a reduced random combinatorial billiard trajectory. In a similar manner,
we can discretize the affine Grassmannian reduced random billiard trajectory to obtain
the affine Grassmannian reduced random combinatorial billiard trajectory, which is a discrete-
time Markov chain M̂η with state space Ŵ × Z/NZ. By projecting M̂η through the
natural quotient map W̃ × Z/NZ → W × Z/NZ given by (w, M) 7→ (w, M), we obtain
a Markov chain Mη on W × Z/NZ, which can be seen as a random combinatorial
billiard trajectory in the torus T. Each toric hyperplane of the form q(H) for H ∈ HW̃ has
two sides. When the beam of light (now traveling in the torus) hits q(H), it either passes
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Figure 1: A reduced random billiard trajectory in the affine symmetric group S̃3 = Ã2

with parameter p = 3/4. The (green) beam of light starts in the (yellow) fundamental
alcove traveling in the direction of the vector δ(3) = (1, 1,−2). Occasionally, the beam
of light traverses a small triangle numerous times; however, the number of times it
traverses the small triangle is not discernible from the figure. The six possible asymp-
totic directions of the beam of light are represented by red dotted rays. The six thick
black lines are the hyperplanes in the Coxeter arrangement of the finite Weyl group
S3 = A2; they separate the space into six chambers.

through or reflects; the probability that it passes through is either p or 0, depending on
which side of q(H) it hits. Let ζη denote the stationary probability distribution of Mη.
We stress that ζη depends on the fixed parameter p.

The following theorem is an analogue of the aforementioned result due to Lam.

Theorem 2.1 ([12]). Let η ∈ Υz0 , and let wz0(η) = · · · si1si0 . Let

(uM, M) ∈ W̃ × Z/NηZ and (vM, M) ∈ Ŵ × Z/NηZ
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denote the states of M̃η and M̂η, respectively, at time M. Let

ψη = ∑
(w,k)∈W×Z/NηZ

ik=0
w−1θ∈Φ+

ζη(w, k)θ∨w.

With probability 1, we have

lim
M→∞

⟨AvM⟩ = ⟨ψη⟩ and lim
M→∞

⟨AuM⟩ ∈ ⟨ψη⟩W. (2.1)

Remark 2.2. There is another natural interpretation of the reduced random combinato-
rial billiard trajectory in terms of the Demazure product (see [12, 18] for the definition).
Let (uM, M) be the state of M̃η at time M. Let wz0(η) = · · · si1si0 , and let xM be the word
obtained from siM−1 · · · si1si0 by independently deleting each letter with probability 1− p.
Then uM has the same distribution as the Demazure product of xM.

Remark 2.3. One can view the aformentioned Markov chains introduced by Lam in [18]
as limits of our “billiardized” Markov chains in the regime when p tends to 0.

3 Type A

Assume now that W and W̃ are the symmetric group Sn and the affine symmetric group
S̃n. In this case, Theorem 2.1 becomes much more interesting because, for a particular
choice of η, we can compute the vector ψη explicitly.

We can identify the index set Ĩ with Z/nZ in such a way that sisi+1si = si+1sisi+1
for all i ∈ Z/nZ. Let ei be the i-th standard basis vector in Rn. Then Φ = Φ+ ⊔ Φ−,
where Φ+ = {ei − ej : 1 ≤ i < j ≤ n} and Φ− = −Φ+. The spaces V and V∗ can each be
identified with {(γ1, . . . , γn) ∈ Rn : γ1 + · · ·+ γn = 0}. For i, j, k ∈ Z with 1 ≤ i < j ≤ n,
we have Hk

ei−ej
= {(γ1, . . . , γn) ∈ V∗ : γi − γj = k}.

Let δ(n) = −nen + ∑j∈[n] ej be the vector in V∗ whose last component is −(n − 1) and
whose other components are all equal to 1. As before, fix a point z0 in the interior of A.
One can show that δ(n) ∈ Υz0 . Moreover, Nδ(n) = n, and wz0(δ

(n)) = · · · si1si0 = · · · ccc,
where c = sn−1 · · · s1s0. Thus, ij = j ∈ Z/nZ for all j ≥ 0.

Lam’s Markov chain MLam is isomorphic (in type A) to an instance of a well-studied
interacting particle system known as the multispecies TASEP, which probabilists and sta-
tistical physicists began studying long before Lam’s work [2, 16, 17, 24]. Ferrari and
Martin [17] described the stationary distribution of the multispecies TASEP in terms of
combinatorial objects called multiline queues, and Corteel, Mandelshtam, and Williams
[10] interpreted this distribution in terms of specializations of certain ASEP polynomi-
als. In particular, their results can be used to compute the distribution ζLam. Ayyer and



6 Colin Defant

Linusson [3] used multiline queues to prove that there is a positive scalar κ such that

ψLam = κ ∑
1≤i<j≤n

(j − i)(ei − ej); (3.1)

this settled a conjecture of Lam’s.
Theorem 2.1 motivates us to study Mδ(n) , which we view as a “billiardization” of

MLam. In Section 4, we will define a new variant of the multispecies TASEP called the
stoned multispecies TASEP. Surprisingly, we can compute the stationary distribution of
this Markov chain in terms of ASEP polynomials. In a special case, the stoned multi-
species TASEP is (essentially) the same as Mδ(n) . In the full-length version of this article
[12], we use multiline queues to analyze correlations in the stoned multispecies TASEP.
This in turn allows us to obtain the following analogue of Ayyer and Linusson’s result
from (3.1).

Theorem 3.1. The vector ψδ(n) is a positive scalar multiple of

∑
1≤i<j≤n

(j − i)(2n − (i + j − 1)p)
(n − ip)(n − (i − 1)p)(n − jp)(n − (j − 1)p)

(ei − ej).

Note that sending p to 0 in Theorem 3.1 recovers Ayyer and Linusson’s result.

Example 3.2. Let n = 3 so that δ(3) = (1, 1,−2). Using Theorem 3.1, we compute that
⟨ψδ(n)⟩ = ⟨(3 − 2p, p, p − 3)⟩. Figure 1 illustrates this when p = 3/4; the six red dotted
rays point in the directions of the vectors in ⟨(1.5, 0.75,−2.25)⟩S3.

An n-core is an integer partition that does not have any hook lengths divisible by
n. Such partitions are important due to their prominence in partition theory and rep-
resentation theory. There is a natural one-to-one correspondence between n-cores and
alcoves of HS̃n

inside the fundamental chamber C. Using this correspondence, Lam in-
terpreted his affine Grassmannian reduced random walk as a random growth process
for n-cores. He showed that (3.1) (which Ayyer and Linusson proved later) implies an
exact description of the limit shape of the (appropriately scaled) Young diagrams in this
random growth process. As n tends to ∞, these limit shapes converge to the region

R∞ = {(x, y) ∈ R2 : y ≤ 0 ≤ x,
√

x +
√
−y ≤ 61/4};

see [3, 18]. Note that R∞ is also the limit shape that Rost derived for the corner growth
process, a more classical random growth process for partitions [22, 23].

We can similarly interpret M̂δ(n) as a random growth process for n-cores. In the full-
length version of this article [12], we use Theorem 3.1 to obtain an exact description of
the limit shape of our random growth process. As n → ∞, we find that these limit
shapes converge to the region

R(p)
∞ = {(x, y) ∈ R2 : y ≤ 0 ≤ x,

√
(1 − p)x +

√−y ≤ (6(1 − p))1/4}.
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The remarkably simple form of the region R(p)
∞ is ultimately due to some especially nice

properties of multiline queues.

4 Stoned Exclusion Processes

Let t ∈ [0, 1). Fix a tuple λ = (λ1, . . . , λn) ∈ Zn such that 0 ≤ λ1 ≤ · · · ≤ λn. Let Sλ be
the set of tuples that can be obtained by rearranging the parts of λ. Let µi denote the i-th
part of a tuple µ. Let x = (x1, . . . , xn). Given a tuple y = (y1, . . . , yn) and a permutation
w ∈ Sn, let wy = (yw−1(1), . . . , yw−1(n)). Given integers k, k′ ∈ Z and r ∈ R, let

fr(k, k′) =


1 if k > k′;
r if k < k′;
0 if k = k′.

(4.1)

Corteel, Mandelshtam, and Williams introduced the family (Fµ)µ∈Sλ
of ASEP polyno-

mials. These are certain homogeneous polynomials in C(t)[x] that satisfy certain exchange
equations (see [10, 12] for more details). It follows from the work of Cantini, de Gier, and
Wheeler [9] that the polynomial Pλ(x) = ∑µ∈Sλ

Fµ(x) is a Macdonald polynomial. Cor-
teel, Mandelshtam, and Williams [10] reproved this and gave a combinatorial formula
for computing ASEP polynomials using multiline queues.

Let ASEPλ denote the multispecies ASEP with state space Sλ. This is a discrete-time
Markov chain in which the transition probability from a state µ to a state µ′ is given by

P(µ → µ′) =


1
n ft(µi, µi+1) if µ′ = siµ ̸= µ;
1 − ∑ν∈Sλ\{µ} P(µ → ν) if µ = µ′;
0 otherwise.

(Note that si is the transposition of Z/nZ that swaps i and i + 1; in particular, sn swaps
n and 1.) The state µ can be visualized as a configuration of particles on a ring with sites
1, . . . , n (listed in clockwise cyclic order), where the particle on site i has species µi. There
has been substantial attention devoted to the stationary distribution of the multispecies
ASEP [2, 16, 17, 9, 10]. According to [10, 9], the stationary probability of µ in ASEPλ is

Fµ(1, . . . , 1; t)
Pλ(1, . . . , 1; t)

.

When t = 0, the multispecies ASEP is called the multispecies TASEP.
Consider n stones ▲1, . . . ,▲n. Let Ω denote the set of permutations σ ∈ Sn such that

the list σ−1(2), σ−1(3), . . . , σ−1(n) is a cyclic rotation of the list 2, 3, . . . , n. We can view a
permutation σ ∈ Ω as a certain configuration of the stones on the sites of the ring, where
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the stone ▲j is placed on the site σ(j). Thus, an element of Sλ × Ω is a configuration of
particles and stones on the ring with sites 1, . . . , n. Let χ = (χ1, . . . , χn) be an n-tuple of
nonzero real numbers such that for all 2 ≤ j ≤ n, we have

p(j) :=
χ1 − χj

tχ1 − χj
∈ (0, 1). (4.2)

The stoned multispecies ASEP1, which we denote by ▲ASEPλ, is the discrete-time
Markov chain with state space Sλ × Ω defined as follows. Suppose the Markov chain
is in state (µ, σ). Let i = σ(1) and j = σ−1(i + 1); this means that ▲1 sits on site i and
▲j sits on site i + 1. When the Markov chain transitions, the stones ▲1 and ▲j swap
places, and they send a signal to the particles on sites i and i + 1 (which have species
µi and µi+1) telling them to swap. However, the signal only has probability p(j) of ac-
tually reaching the particles. If the signal does not reach the particles, then the particles
simply do not move. On the other hand, if the particles do receive the signal, then with
probability ft(µi, µi+1), they decide to actually follow their orders and swap places (and
with probability 1 − ft(µi, µi+1), they stubbornly disregard the signal and do not move).
Note that if µi = µi+1, then with probability 1, the stones ▲1 and ▲j swap places and no
particles move. Figure 2 illustrates the definition of ▲ASEPλ.

Figure 2: Some transitions in ▲ASEP(1,1,1,2,3,3). At each step, the (gold) stone ▲1 must
swap places with the (green) stone immediately to its right. Then, the particles occu-
pying the same sites as those two stones either swap places or stay put.

Theorem 4.1 ([12]). The stationary probability measure π of ▲ASEPλ is given by

π(µ, σ) =
1

Z(λ)
Fµ(σχ; t),

1For the sake of brevity, we have chosen to define here a version of the stoned multispecies ASEP that
is actually less general than the one defined in the full-length article [12].
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where Z(λ) is a normalization factor that only depends on λ.

Let us connect the stoned multispecies ASEP with random combinatorial billiards.
To do so, we specialize to the setting where λ = (1, 2, . . . , n). The map Sn → Sλ given
by w 7→ (w−1(1), . . . , w−1(n)) allows us to identify Sn with Sλ.

Fix p ∈ (0, 1). Let χ = (χ, 1, . . . , 1), where χ =
1 − p
1 − pt

. Then (4.2) holds with p(j) = p

for all 2 ≤ j ≤ n. Let χ(k) denote the n-tuple whose k-th entry is χ and whose other
entries are all 1 (so χ = χ(1)).

Now consider the following random combinatorial billiard trajectory. Start at a point
in the interior of the alcove A, and shine a beam of light in the direction of the vec-
tor δ(n) = −nen + ∑j∈[n] ej. If at some point in time the beam of light is traveling in
an alcove Au and hits the hyperplane H(u,si), then it passes through with probability
p ft(u(i), u(i + 1)) (thereby moving into the alcove Asiu), and it reflects with probability
1 − p ft(u(i), u(i + 1)). (Note that ft(u(i), u(i + 1)) only depends on the side of the hy-
perplane the light beam hits, not the particular alcove Au.) Let us discretize this billiard
trajectory; if the beam of light is in the alcove Au and it is headed toward the facet of
Au contained in the hyperplane H(u,si), then we record the pair (u, i) ∈ S̃n × Z/nZ.
Applying the quotient map S̃n × Z/nZ → Sn × Z/nZ defined by (u, i) 7→ (u, i), we
obtain a Markov chain M(t)

δ(n)
with state space Sn × Z/nZ, which models a certain ran-

dom combinatorial billiard trajectory in the torus T. One can show that M(0)
δ(n)

is precisely

the Markov chain Mη defined in Section 2 when η = δ(n).

Given a state (w, i) of M(t)
δ(n)

, we can encode the permutation w as usual by placing
particles of species w−1(1), . . . , w−1(n) on the sites 1, . . . , n (respectively) of the ring. We
can also encode i by placing a gold stone on site i and placing green stones on all the
other sites. (See Figure 3.) Then M(t)

δ(n)
is the same as ▲ASEP(1,2,...,n), except we have

colored the stone ▲1 gold, colored the other stones green, and removed the names of all
the stones. It follows from Theorem 4.1 that the stationary probability of (w, i) in M(t)

δ(n)

is
1

Z′(n)
Fw(χ

(i); t),

where Z′(n) is some normalization factor only depending on n.
The entries in the tuple χ can be chosen generically (subject to (4.2)), so Theorem 4.1

tells us that the stoned multispecies ASEP is a Markov chain whose stationary distri-
bution is determined by ASEP polynomials evaluated at generic values. Ayyer, Martin,
and Williams [4] recently studied a Markov chain called the inhomogeneous t-PushTASEP,
which is quite different from the stoned multispecies ASEP; they found that its stationary
distribution is also given by ASEP polynomials evaluated at generic values. We discov-
ered stoned exclusion processes independently of their work while considering random
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Figure 3: The 2-dimensional torus T is represented as a hexagon with opposite sides
identified. There are 6 toric alcoves, which are drawn as triangles of different colors
and labeled by the permutations in S3. This figure shows a sequence of transitions in
M(t)

δ(3)
. Each state is represented both as a beam of light traveling in T (top) and as a

configuration of particles and stones on a ring with 3 sites. Each transition is labeled
with its probability.

billiard trajectories. A major advantage of our approach using stones is that it easily
adapts to other settings where it is not clear how to adapt the t-PushTASEP. Indeed, in
the full-length version of this article [12], we define stoned versions of other exclusion
processes such as the inhomogeneous TASEP and the multispecies open boundary ASEP.

Lam and Williams [19] introduced the inhomogeneous TASEP and posed several
intriguing conjectures about it, including one stating that the stationary probabilities
can be expressed (up to a normalization factor) as nonnegative integral sums of Schu-
bert polynomials. Cantini [6] introduced certain polynomials that we call inhomogeneous
TASEP polynomials and found that very particular specializations of these polynomials
determine the stationary distribution of the inhomogeneous TASEP. In [12], we introduce
the stoned inhomogeneous TASEP and show that its stationary distribution is given by
inhomogeneous TASEP polynomials evaluated at generic values. It was previously not
known how to construct a Markov chain with this stationary distribution. In a special
case, the stoned inhomogeneous TASEP can also be interpreted as a random combina-
torial billiard trajectory in the torus T (in type A), where the probability that the light
beam passes through a toric hyperplane depends on the particular toric hyperplane.

The multispecies open boundary ASEP is an interacting particle system on a path graph
that has received an enormous amount of attention (see, e.g., [7, 8, 11]). Cantini, Garbali,
de Gier, and Wheeler [8] found that the stationary distribution of the multispecies open
boundary ASEP is given by particular specializations of certain polynomials called open
boundary ASEP polynomials, which are closely related to Koornwinder polynomials. In
[12], we introduce the stoned multispecies open boundary ASEP and show that its sta-
tionary distribution is given by open boundary ASEP polynomials evaluated at generic
values. It was previously not known how to construct a Markov chain with this station-
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ary distribution. In a special case, the stoned multispecies open boundary ASEP can also
be interpreted as a random combinatorial billiard trajectory in the torus T when Φ is the
root system of type Cn.
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