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Abstract. The Schubert problem asks for combinatorial models to compute structure
constants of the cohomology ring with respect to the Schubert classes, and has been an
important open problem in algebraic geometry and combinatorics that guided fruitful
research in decades. In this paper, we provide an explicit formula for the (equivariant)
Schubert structure constants cw

uv across all Lie types when the elements u, v, w are
boolean. In particular, in type A, all Schubert structure constants on boolean elements
are either 0 or 1.
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1 Introduction

Let G be a complex, connected, reductive algebraic group and B be a Borel subgroup of G
with a maximal torus T. The homogeneous space G/B is called the generalized flag variety,
which admits a Bruhat decomposition ⊔w∈W X◦

w into open Schubert cells, whose closures
are the Schubert varieties {Xw | w ∈ W}, indexed by the Weyl group W = NG(T)/T. Let
σw ∈ H∗(G/B; Z) be the Poincaré dual of the fundamental class of Xw.

The Schubert problem asks for combinatorial interpretations of the structure constants
cw

uv ∈ Z≥0 of H∗(G/B; Z) appearing in the expansion σu · σv = ∑w cw
uvσw. It has been

a major open problem in algebraic geometry and combinatorics for decades, guiding
numerous fruitful research in recent years. We mention a few beautiful results here in
the massive literature: the most classical Chevalley–Monk’s formula [19], Pieri’s rule
[22], the separated descent case [8, 13], puzzle rules for the Grassmannian [10, 11], a
survey on the equivariant Schubert calculus of the Grassmannian [21], 2 or 3 step partial
flag varieties [3, 4, 12], and various others working in richer cohomology theories.

The goal of this paper is to make progress towards the Schubert problem. We describe
an explicit rule (Corollary 1.3) for the Schubert structure constants cw

uv across all Lie types
when the element w is boolean, a previously unexplored family of the Schubert problem,
with connections to the Pieri’s rule [22] and hook’s rule [18]. Interestingly, our formula
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demonstrates certain “multiplicity-freeness”, especially in type An, where all cw
uv ∈ {0, 1}

when w is boolean. Boolean elements play an important role in the study of Schubert
calculus. The Schubert variety Xw is a toric variety if and only if w is boolean [9], and
the Schubert variety Xw0(I)c is LI-spherical if and only if c is boolean [6, 7].

We work in the generality of the torus equivariant cohomology ring H∗
T(G/B; Z).

Let {ξw | w ∈ W} be the equivariant Schubert classes and write ξu · ξv = ∑ dw
uvξw where

dw
uv ∈ Z[Λ] = H∗

T(pt; Z) is the equivariant Schubert structure constant.

Remark 1.1. The Kostant–Kumar formula [14, Theorem 4.15] provides dw
uv with a recursive

formula [20, Theorem 4.2]. Moreover, in the boolean case, the Kostant–Kumar formula
reduces to a combinatorially positive formula as follows.

Let A := Z[α1, · · · , αn] denote the polynomial algebra in the simple roots and define
two operators ∂j : A → A and Bj : A → A as

∂j(p) :=
sj(p)− p

αj
, Bj(p) :=


αj · sj(p) if sj ∈ S(u) ∩ S(v)
sj(p) if sj ∈ S(u)△ S(v)
∂j(p) if sj ̸∈ S(u) ∪ S(v)

.

Let w ∈ W be a boolean element with support set S(w) = {i1, i2, · · · , ik} and fix a
reduced word w = si1si2 · · · sik . Consider u, v ≤ w and note that u, v must be boolean as
well. Furthermore, u, v are uniquely determined by their support sets S(u), S(v) ⊆ S(w).
According to [20, Subsection 4.4], the Kostant–Kumar formula says that

dw
u,v = Bi1 ◦ Bi2 ◦ · · · ◦ Bik(1). (1.1)

Now if p ∈ A with non-negative coefficients does not contain the variable αj, then it can
be shown using the twisted Leibniz formula [15, Theorem 11.1.7 part (h)] that ∂j(p) is
a polynomial with non-negative coefficients in the simple roots. Hence Equation (1.1)
is combinatorially positive in the boolean case since the root variable αj only gets intro-
duced when applying Bj.

However, it is not immediately from Equation (1.1) that boolean structure constants
cw

uv ∈ {0, 1} in type A which we prove in Corollary 3.14.

The following is our main theorem.

Theorem 1.2. For boolean elements u, v, w ∈ W,

dw
uv =


∑

u
S(v)
⇝ w

mul(u
S(v)
⇝ w) · wt(u

S(v)
⇝ w), if there exists a boolean insertion path v

S(u)
⇝ w

0, otherwise

where the summation is over all boolean insertion paths u
S(v)
⇝ w.
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The boolean insertion path consists of the boolean insertion steps that encode the equiv-
ariant Chevalley’s rule on boolean elements. These steps are also called the k-Bruhat order
in H∗(Fln; Z), and have been very useful in the Schubert problem [17, 16]. The appear-
ance of our boolean insertion path in the formula is not surprising. What’s interesting
and what’s unique about the boolean elements, is that these paths precisely govern the
structure constants in a subtraction-free and multiplicity-free way (Proposition 3.13).

The precise definitions in Theorem 1.2 are given in Definitions 3.2 and 3.7. We re-

mark that mul(u
S(v)
⇝ w)wt(u

S(v)
⇝ w) can be replaced by mul(v

S(u)
⇝ w)wt(v

S(u)
⇝ w) in

Theorem 1.2, making the formula symmetric. The proof is given in Section 3.
We also have a cohomology version of Theorem 1.2.

Corollary 1.3. For boolean elements u, v, w ∈ W,

cw
uv =


∑

u
S(v)
⇝ w

mul(u
S(v)
⇝ w), if there exists a non-equivariant boolean insertion path v

S(u)
⇝ w

0, otherwise

where the summation is over all non-equivariant boolean insertion paths u
S(v)
⇝ w.

Furthermore, cw
uv ∈ {0, 1} in type A (Corollary 3.14).

This paper is organized as follows. In Section 2, we provide the necessary back-
ground on root systems, Weyl groups, the equivariant Chevalley’s formula, boolean
elements and their boolean diagrams. In Section 3, we introduce the boolean insertion
algorithms and prove the main Theorem (Theorem 1.2). In Section 4, we give a fast
algorithm to compute cw

uv for boolean elements.

2 Preliminaries

2.1 Root systems and Weyl groups

Let Φ := Φ(g, T) be the root system of weights for the adjoint action of T on the Lie
algebra g of G, with a decomposition Φ+ ⊔ Φ− into positive roots and negative roots. Let
∆ = {α1, . . . , αr} ⊆ Φ+ be the corresponding set of simple roots, which is a basis of h∗R,
the real span of all roots. Let ⟨·, ·⟩ be the nondegenerate scalar product on h∗R induced
by the Killing form. For each root α ∈ Φ, denote by sα the corresponding reflection. For
simplicity of notations, write the simple reflections as si := sαi for αi ∈ ∆. For each root
α ∈ Φ, we have a coroot α∨ = 2α/⟨α, α⟩. The fundamental weights {ωα | α ∈ ∆} are the
dual basis to the simple coroots {α∨ | α ∈ ∆}. Let Λ be the weight space and we identify
Z[Λ] as Z[t], the polynomial ring in {tα := ωα − sα(ωα) | α ∈ ∆}.
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Definition 2.1. The Dynkin diagram of Φ with a choice of simple root ∆ is a directed
graph whose vertex set is ∆ with −2⟨α, β⟩/⟨β, β⟩ ∈ N edges going from α to β for
α ̸= β ∈ ∆.

The Weyl group, generated by the reflections {sβ | β ∈ Φ}, is equipped with a Coxeter
length function ℓ(w) := min{ℓ | w = si1 · · · siℓ}. Such an expression w = si1 · · · siℓ is called
a reduced word of w if ℓ(w) = ℓ. The Bruhat order on W is generated by w < wsβ if
ℓ(w) < ℓ(wsβ) for β ∈ Φ+. For w ∈ W, its support is

S(w) := {αi | si appears in any/all reduced words of w}.

The following result [1, p.351, Theorem 19.1.2] lets us do calculations in H∗
T(G/B; Z).

Theorem 2.2 (Equivariant Chevalley’s formula). For α ∈ ∆ and v ∈ W,

ξv · ξsα = (ωα − v(ωα))ξv + ∑
w=vsβ

ℓ(w)=ℓ(v)+1

⟨ωα, β∨⟩ ξw

in H∗
T(G/B; Z), where we sum over positive roots β ∈ Φ+.

2.2 Boolean elements

Definition 2.3. A Weyl group element w ∈ W is boolean if its lower Bruhat interval [id, w]
is isomorphic to a boolean lattice.

The following Lemma is straightforward by the subword property [2, Theorem 2.2.2].
See also [23, Proposition 7.3] and [5, Proposition 3, 1].

Lemma 2.4. An element w ∈ W is boolean if and only if w is a product of distinct simple
reflections. In other words, w is boolean if and only if ℓ(w) = | S(w)|.

We now view boolean elements visually using boolean diagrams.

Definition 2.5. For w ∈ W that is boolean, its boolean diagram B(w) is a directed graph
on S(w) such that αk → αj if sj appears before sk in any/all reduced words of w.

For two boolean diagrams B(u) and B(w), we write B(u) ⊆ B(w) if S(u) ⊆ S(w) and
if αk → αj in B(u), we also have αk → αj in B(w).

Example 2.6. Consider w = s3s2s4s5s7 in W(E7). The Dynkin diagram of type E7 and the
boolean diagram B(w) marked with solid nodes are shown in Figure 1.

Let NB be the ideal of H∗
T(G/B; Z) spanned by classes ξw such that w is not boolean.
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α1

α2

α3 α4 α5 α6 α7 α1

α2

α3 α4 α5 α6 α7

Figure 1: Left: the Dynkin diagram of type E7. Right: B(s3s2s4s5s7).

3 Schubert structure constants for boolean elements

3.1 The boolean insertion algorithms

Now we define an operation between boolean elements u, v ∈ W with respect to a simple
root α, which is denoted by u α

⇝ v. In fact, it encodes Equivariant Chevalley’s formula in

Theorem 2.2 restricted to boolean elements. In particular, in type A, u k
⇝ v exactly means

that v covers u under the k-Bruhat order. We associate each operation with a multiplicity
mul(u α

⇝ v) ∈ N and weight wt(u α
⇝ v) ∈ Z[t] = Z[Λ] as a nonzero polynomial in

{tγ := ωγ − sγ(ωγ) | γ ∈ ∆} with non-negative coefficients.

Definition 3.1. For boolean elements u, v ∈ W and α ∈ ∆, we write u α
⇝ v and call it a

boolean insertion if one of the following mutually exclusive events happens:

1. α ∈ S(u), ℓ(v) = ℓ(u) + 1, B(u) ⊆ B(v) and there is a directed path in B(v) from α

to the unique vertex of B(v) \ B(u). In this case, wt(u α
⇝ v) := 1.

2. α ∈ S(u) and u = v. In this case, wt(u α
⇝ v) := ∑

L
tγ, summing over all directed

paths L of the Dynkin diagram from α to some vertex γ ∈ S(u), which is compatible
with the direction of B(u). Here L is permitted to has length 0.

3. α ̸∈ S(u), ℓ(v) = ℓ(u) + 1 and B(u) ⊆ B(v) where α is the unique vertex of
B(v) \ B(u). In this case, wt(u α

⇝ v) := 1.

We say u α
⇝ v is non-equivariant if (1) or (3) happens and is equivariant if (2) happens.

Note that a non-equivariant boolean insertion has weight 1 and changes the element,
whereas an equivariant boolean insertion picks up a nontrivial weight without modify-
ing the element. In Section 3.3, we focus only on non-equivariant insertions.

Definition 3.2. For a boolean insertion path u(0) β1⇝ u(1) β2⇝ · · ·
βn
⇝ u(n), its weight is

wt(u(0) β1⇝ u(1) β2⇝ · · ·
βn
⇝ u(n)) :=

n

∏
j=1

wt(u(j−1) β j
⇝ u(j)).
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For convenience, we also write the boolean insertion path above as u(0) B
⇝ u(n) where

B = {β1, · · · , βn}. Note that we need to always fix an ordering B = {β1, · · · , βn} first,

before summing over boolean insertion paths u(0) B
⇝ u(n) for a fixed set B.

Remark 3.3. The ordering of B in Definition 3.2 can be arbitrary and we have freedom for
practical applications. Choosing an appropriate one is especially useful in Section 4.

Example 3.4. The Dynkin diagram of type E7 is shown in Figure 1. Let u = s3s5s4s7 and
B(u) be its boolean diagram indicated by the solid vertices and directed edges shown in
Figure 2. Then there are 5 boolean elements v ∈ W satisfying u

α4⇝ v, corresponding to

α1

α2

α3 α4 α5 α6 α7

Figure 2: The boolean diagram B(u) for the boolean element u = s3s5s4s7.

the boolean terms in the expansion of ξu · ξα4 . One of them is u itself with the equivariant
step and wt(u

α4⇝ u) = t3 + t4 + t5. The other 4 elements are shown in Figure 3.

α1

α2

α3 α4 α5 α6 α7 α1

α2

α3 α4 α5 α6 α7

α1

α2

α3 α4 α5 α6 α7 α1

α2

α3 α4 α5 α6 α7

Figure 3: The boolean diagrams B(v) for all the boolean elements v satisfying
s3s5s4s7 = u

α4⇝ v with a non-equivariant insertion step.

In the above example, α ∈ S(u). Now choose α6 /∈ S(u) and consider u
α6⇝ v. Here,

only non-equivariant insertion steps are possible. All of the boolean elements v ∈ W
satisfying u

α6⇝ v are shown in Figure 4, corresponding to the expansion of ξu · ξα6 .

Example 3.5. Consider a non simply-laced case. Let u = s2s3s4 in W(C4) shown in
Figure 5. Since there are 2 edges from α4 to α3 of the Dynkin diagram by Definition 2.1,
there are 2 directed paths from α4 to α3 and 2 directed paths from α4 to α2 in the Dynkin
diagram aligning with the direction of B(u). It follows that wt(u

α4⇝ u) = 2t2 + 2t3 + t4.

Definition 3.6. For u α
⇝ v, define its multiplicity, denoted by mul(u α

⇝ v), as follows:

1. If u α
⇝ v is equivariant as in Definition 3.1, mul(u α

⇝ v) := 1.
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α1

α2

α3 α4 α5 α6 α7 α1

α2

α3 α4 α5 α6 α7

α1

α2

α3 α4 α5 α6 α7 α1

α2

α3 α4 α5 α6 α7

Figure 4: The boolean diagrams B(v) for s3s5s4s7 = u
α6⇝ v.

α1 α2 α3 α4

Figure 5: The boolean diagrams B(u) for u = s2s3s4

2. If u α
⇝ v is non-equivariant as in Definition 3.1, let γ be the unique vertex of

B(v) \ B(u). Then mul(u α
⇝ v) is the number of directed paths from α to γ in the

Dynkin diagram which are compatible with the direction of B(v).

Note that when event (2) or (3) in Definition 3.1 occurs, mul(u α
⇝ v) = 1.

Definition 3.7. For a boolean insertion path u(0) β1⇝ u(1) β2⇝ · · ·
βn
⇝ u(n), its multiplicity is

the product of the multiplicities of all its steps.

Example 3.8. Consider u = s2s3s4 in W(C4) shown in Figure 5. The boolean insertion
u

α4⇝ v gives v = s1s2s3s4 shown in Figure 6. In this case, mul(u
α4⇝ v) = 2.

α1 α2 α3 α4

Figure 6: The boolean diagram B(v) for v = s1s2s3s4.

Restricting Theorem 2.2 to boolean elements yields the following lemma, which is
the basis of our calculations.

Lemma 3.9. For α ∈ ∆ and a boolean element v ∈ W,

ξv · ξsα = ∑
v α
⇝w

mul(v α
⇝ w)wt(v α

⇝ w)ξw mod NB.

3.2 Multiplying Schubert classes indexed by boolean elements

Recall that once we fix an ordering B = {β1, · · · , βn} ⊆ ∆, a boolean insertion path

u = u(0) β1⇝ u(1) β2⇝ · · ·
βn
⇝ u(n) = w can be written as u B

⇝ w. The following is a direct
corollary of Lemma 3.9, which is obtained from applying Lemma 3.9 on β1, . . . , βn step
by step.
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Corollary 3.10. For boolean element u ∈ W and a set of simple roots B ⊆ ∆, fix an ordering
B = {β1, · · · , βn} of B, then

ξu ∏
β∈B

ξsβ
= ∑

u B
⇝w

mul(u B
⇝ w)wt(u B

⇝ w)ξw mod NB

summing over all boolean insertion paths u = u(0) β1⇝ u(1) β2⇝ · · ·
βn
⇝ u(n) = w.

For convenience, for f ∈ H∗
T(G/B; Z), we write [ξw] f for the coefficient of ξw in f

expanded in the basis of the equivariant Schubert classes.
The following result is the last technical lemma for Theorem 1.2.

Lemma 3.11. For boolean elements u, v, w ∈ W satisfying u
S(v)
⇝ w and v

S(u)
⇝ w,

[ξw](ξu · ξv)= [ξw]
(

ξu ∏
β∈S(v)

ξsβ

)
=[ξw]

((
∏

α∈S(u)
ξsα

)
ξv

)
=[ξw]

((
∏

α∈S(u)
ξsα

)(
∏

β∈S(v)
ξsβ

))
.

Proof. (Sketch.) By Lemma 3.9, we have that

∏
α∈S(u)

ξsα = ∑
S(u′)=S(u)

ξu′ mod NB, ∏
β∈S(v)

ξsβ
= ∑

S(v′)=S(v)
ξv′ mod NB

summing over boolean elements u′ and v′. It follows that(
∏

α∈S(u)
ξsα

)(
∏

β∈S(v)
ξsβ

)
= ∑

u′,v′
ξu′ξv′ mod NB (3.1)

summing over boolean elements u′, v′ ∈ W satisfying S(u′) = S(u) and S(v′) = S(v).
Note that the terms ξu′ξv′ on the right hand side of (3.1) are all “disjoint”, after ex-
panding in the basis of the equivariant Schubert classes and restricting to the boolean

elements. Further, with Corollary 3.10, u
S(v)
⇝ w and v

S(u)
⇝ w indicate that ξw appears in

the expansions of both ξu ∏β∈S(v) ξsβ
and

(
∏α∈S(u) ξsα

)
ξv, completing the proof.

Remark 3.12. Lemma 3.11 demonstrates a very unique property of boolean elements. Let
u ∈ W be any element and let u be a reduced word of u. We know that ∏α∈u ξsα contains
ξu and a lot of other terms. In general, we expect

[ξw](ξu · ξv) < [ξw]
(

∏
α∈u

ξsα

)(
∏
β∈v

ξsβ

)
.

However, Lemma 3.11 tells us that when w is boolean, which implies that the relevant u
and v are also boolean, we have an equality so that the structure constants are manage-
able.
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We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. By Lemma 3.11, we have

dw
uv = [ξw](ξu · ξv) = [ξw]

(
ξu ∏

β∈S(v)
ξsβ

)
.

We are done by applying Corollary 3.10 to the right hand side.

3.3 Structure constants in the cohomology ring H∗(G/B; Z)

In this section, we only need to consider non-equivariant boolean insertions with weights
equal to 1.

Proof of Corollary 1.3. The cohomology version can be derived from the equivariant co-
homology version by setting tα = 0 in Theorem 1.2 for each simple root α ∈ ∆. This is
equivalent to requiring each boolean insertion to be non-equivariant with weight 1.

The following result is an interesting property of boolean insertions.

Proposition 3.13. In the case where the Dynkin diagram is a path, fix an ordering B =
{β1, · · · , βn} of a set of simple roots B ⊆ ∆, then there exists at most one non-equivariant

boolean insertion path u B
⇝ w for any boolean elements u, w ∈ W.

In type A, all the multiplicities as in Definition 3.6 are 1. Combining Corollary 1.3
and Proposition 3.13, we arrive at the following result.

Corollary 3.14. For boolean elements u, v, w in the Weyl group of type A, cw
uv = 1 if there exist

non-equivariant boolean insertion paths u
S(v)
⇝ w and v

S(u)
⇝ w; cw

uv = 0 otherwise.

4 Fast algorithms for computation

In this section, we work in type An. We provide Algorithm 1 that determines whether

there exists a non-equivariant boolean insertion path u
S(v)
⇝ w for boolean elements

u, v, w ∈ W. This algorithm works by finding a good ordering of S(v) for the inser-
tion paths. The correctness and the time complexity of the algorithm is provided in
Theorem 4.2. By Corollary 1.3, we can calculate the structure constants cw

uv for boolean
permutations in the symmetric group in O(n2) time as well.
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Algorithm 1 Construction of a boolean insertion path

Input: Boolean elements u, v, w ∈ W.

Output: A boolean insertion path u
S(v)
⇝ w if it exists.

1: Initialize B = B(u), P to be an empty list and S = S(v).
2: Check whether B(u) ⊆ B(w). If not, return None.

3: For each i ∈ S in increasing order, try the boolean insertion B i
⇝. If there is only one

possible insertion step B i
⇝ B′ satisfying B′ ⊆ B(w), remove i from S, append this

step to P and replace B by B′. If no such B′ ⊆ B(w) exists, return None.
4: Repeat Step 3 until no such insertions are available.
5: Let the remaining vertices in S and B(w) \ B be i1 < i2 < · · · < im and j1 < j2 <

· · · < jm respectively. For k = 1, . . . , m in increasing order, do B
ik⇝ B′ such that the

newly added vertex in B′ is exactly jk and that B′ ⊆ B(w). Append this sequence of
insertions to P if they exist and return None if not.

6: Return P.

Example 4.1. Let u = s4s3s8s11s12, v = s2s3s7s6s8s12 and w = s7s6s5s4s2s3s9s8s11s13s12. In
Algorithm 1, we begin with B = B(u0) where u0 = u and S = S(v) = {2, 3, 6, 7, 8, 12}.
The boolean diagrams of u and w and all steps in Algorithm 1 are shown in Figure 7. In

the end, we obtain a boolean insertion path u
S(v)
⇝ w. In fact, there is a boolean insertion

path v
S(u)
⇝ w as well. Thus, by Corollary 3.14, cw

uv = 1.

Theorem 4.2. Algorithm 1 returns a boolean insertion path u
S(v)
⇝ w if it exists and otherwise

returns None. The runtime of Algorithm 1 is O(n2) in type An.

Remark 4.3. In arbitrary types, we can construct similar algorithms to find insertion paths
and to compute structure constants cw

uv for boolean elements with the same time com-
plexity O(n2), where n = rank(Φ). The general idea stays the same.
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