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Abstract. Motivated by weighted Hurwitz theory and its connection to integrability,
we introduce a (q, t)-tau function that deforms the classical case of hypergeometric tau
functions using Macdonald polynomials, while simultaneously generalizing several
important series that have already appeared in enumerative geometry, gauge theory,
and integrability. We prove that this function is uniquely characterized by a family
of differential equations and demonstrate a positive combinatorial expansion of these
PDEs in terms of a new family of operators encoded by alternating paths. As a byprod-
uct of our techniques, we establish a connection between path operators and the Delta
conjecture.
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1 Motivation and main results

1.1 The (q, t)-tau functions and the first main result

Hurwitz theory is a branch of enumerative geometry that focuses on counting branched
coverings of the sphere. It has been found that various generating functions in Hurwitz
theory can be expressed, using monodromy and representation theory of symmetric
groups, as explicit infinite series involving Schur symmetric functions. This perspec-
tive proved highly effective, revealing many beautiful connections between the old and
somewhat forgotten Hurwitz theory and other modern fields such as Gromov–Witten
theory, integrable probability, integrable systems, and matrix models, which gave a new
life to this old topic [3]. In particular, these series are often called tau functions due to the
fact that they are tau functions of certain integrable hierarchies such as the KP-hierarchy,
or more generally the 2D Toda hierarchy [9].
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Schur symmetric functions have several interesting deformations, such as Jack sym-
metric functions (a one-parameter deformation) and more generally, Macdonald poly-
nomials (a two-parameter deformation). These symmetric functions can furthermore be
used to deform the tau functions of Hurwitz theory, by replacing occurences of Schur
functions with Jack or Macdonald polynomials. This leads to a natural question: what
are the structural properties of these “deformed” tau functions? In the case of Jack symmetric
functions, it was recently proven in [4] that such a deformation can still be interpreted
as a generating function for geometric objects in an extended version of Hurwitz the-
ory that includes real (non-oriented) branched coverings. A primary novelty in these
findings was the construction of an explicit PDE satisfied by the deformed tau function,
which exhibited a rich combinatorial structure. It also allowed to discover further con-
nections to the Whitakker vector of W-algebras and topological recursion [5]. Inspired
by those results, we here study a (q, t)-deformed tau function, and prove analogous PDEs
in this more general setting. Let us now introduce this (q, t)-deformed tau function.

Consider two infinite sequences of variables u0, u1, . . . and v0, v1, . . . , and define K

as the field of formal Laurent series in these variables with coefficients in Q(q, t)

K := Q(q, t)((u0, u1, . . . , v0, v1, . . . )). (1.1)

We denote Λ the space of symmetric functions with coefficients in K. If X = x1 +
x2 + · · · , Y = y1 + y2 + · · · are two alphabets, then ΛX and ΛY will be the spaces of
symmetric functions in X and Y, respectively.

Let G1(h̄) = ∑∞
i=0 uih̄

i, G2(h̄) = ∑∞
i=0 vih̄

i ∈ Q(q, t)[h̄]((u0, u1, . . . , v0, v1, . . . )), and de-
fine G(h̄) = G1(h̄)

G2(h̄)
. In particular, G(qjti) ∈ K is well-defined for all i, j ≥ 0. The G-

weighted (q, t)-tau function is the series in ΛX ⊗ ΛYJzK defined by:

τG(z, X, Y) := ∑
λ∈Y

z|λ|
H̃(q,t)

λ [X]H̃(q,t)
λ [Y]∥∥∥H̃(q,t)

λ

∥∥∥2

∗

∏
(i,j)∈λ

G(qj−1ti−1), (1.2)

where H̃(q,t)
λ are modified Macdonald polynomials, see Section 2.1.

Beyond it being a natural (q, t)-deformation of the tau functions for the G-weighted
b-Hurwitz numbers of [4], this function has appeared as an important generating series
in enumerative geometry and mathematical physics for specific cases of the weight G.
When G(h̄) = ∏n

i=1(1 − h̄ui), the plethystic logarithm of τG(z, X, Y) was conjectured by
Hausel–Lettelier–Rodriguez-Villegas [11] to be the generating series of the mixed Hodge
polynomials of character varieties of the Riemann sphere. When G(h̄) = (1 − uh̄)−1,
the specialization Y = 1 corresponds to the Whittaker vector for the deformed Virasoro
algebra from the 5D N = 1 pure SU(2) case of the AGT conjecture [13]. Finally, the case
G(h̄) = h̄ has appeared in the recent work of Bourgine and Garbali [2] as a tau function
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of a (q, t)-extension of the 2D Toda hierarchy1.
Our first main theorem gives explicit PDEs that allow to obtain τG(z, X, Y) as their

unique solution. Our family of differential operators is defined using the classical oper-
ator D0,

D0 := ∑
k≥0

(−1)kek[X]h⊥k [MX], (1.3)

where M = (1 − q)(1 − t) and h⊥k is the adjoint of hk for the Hall inner product, see
Section 2.1. We then define the following operators, obtained from D0 and2 e1 by com-
mutation operations.

Throughout this paper, the series F will be F = G1 or F = G2, with an expansion
F(h̄) = ∑i≥0 aih̄

i (ai = ui in the first case and ai = vi in the second one). We then define

AF := ∑
i≥0

ai adi
−D0

M
(−e1[X]), A(1)

F := ad−D0
M
(AF) , A(ℓ)

F = adℓ−1
AF/M(A(1)

F ), ℓ ≥ 2,

where adA(B) := [A, B] = AB − BA, for any operators A and B. The operators A(ℓ)
F are

differential when we think of symmetric functions as functions in (hi)i≥1 for example.

Theorem 1.1. For any ℓ ≥ 1 we have

zℓA(ℓ)
G1
(X) · τG(z, X, Y) =

(
A(ℓ)

G2
(Y)

)∗
· τG(z, X, Y). (1.4)

Moreover, τG(z, X, Y) is the unique function ΦG ∈ ΛX ⊗ ΛYJzK which satisfies these equations

and such that [z0]ΦG(z, X, Y) = 1, where
(
A(ℓ)

G2

)∗
is the adjoint of A(ℓ)

G2
with respect to the star

scalar product (see Section 2.1).

1.2 Path operators and the second main theorem

Note that the operators A(ℓ)
F appearing in Theorem 1.1 are defined through multiple

applications of the adjoint action, and it is not clear at all whether they possess a com-
binatorial interpretation. A key part of [4] that enabled a combinatorial/topological
interpretation in the case of the tau function involving Jack symmetric functions was the
explicit expression of analogous operators, defined by the adjoint action, as a positive
sum of operators defined combinatorially using lattice paths. Our second main result

1In [2, 13] the authors worked with the P-version of Macdonald polynomials. We define our (q, t)-
tau function in terms of the modified Macdonald polynomials, as such a function seems to have much
more interesting combinatorial structure that is partially supported by the conjecture of Hausel–Lettelier–
Rodriguez-Villegas.

2Here, we think of e1 as the operator acting on Λ by multiplying by e1.
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demonstrates that a similar statement holds in the Macdonald case. The key idea is
the following: we write the operators A(ℓ)

F by alternating multiplicative and derivative
operators ((−1)kek and h⊥k ). We start by defining the underlying combinatorial objects:
alternating paths.

Let N = (xN, yN) be a point of (Z≥0)
2. We call a path γ from the origin (0, 0) to N, a

sequence of points (w0, w1, . . . , wxN) in (Z≥0)
2 such that wj = (j, yj), with w0 = (0, 0) and

wxN = N. Such a path is uniquely encoded by its sequence of steps γj := yj − yj−1 ∈ Z.
The length of γ is xN.

We say that a path γ = (γ1, . . . , γn) from (0, 0) to N is alternating, if γ2j−1 ≥ 0 and
γ2j ≤ 0 for any 0 ≤ j ≤ n. In other terms, odd steps are up steps and even steps are
down steps, with the convention that a flat step is considered either an up or a down
step according to parity.

We say that a point V = (xV , yV) of γ is a valley of γ if xV is even, it means that V is
preceded by a down step and followed by an up step. Similarly, we say that P = (xP, yP)
is a peak if xP is odd.

Definition 1.2. Fix two integers ℓ ≥ 1 and n ≥ 0 and let γ be an alternating path of length
2n + 2 starting at (0, 0) and ending at (2n + 2, ℓ). Let u := (u1, . . . , uℓ) be a non-decreasing
sequence of integers satisfying 1 = u1 ≤ u2 ≤ · · · ≤ uℓ ≤ n + 1. For j = 1, . . . , n we define mj
as the largest integer k for which uk ≤ j, we also set m0 := 0. We define the height of a valley
V = (2j, y2j) by

ht(V) := y2j − mj.

We say that γ := (γ, u) is a decorated alternating path if all valleys of γ have non-negative
heights. The integer ℓ will be called the degree of the path.

Throughout the rest of the paper, we will think of these paths as alternating paths
whose peaks are decorated by particles as follows: the integers (uj)1≤j≤ℓ indicate the
positions of ℓ particles labelled 1, 2, . . . , ℓ, such that the j-th particle sits on the uj-th
peak (the peak of x-coordinate 2uj − 1). The integer mj is then precisely the number of
particles to the left of the valley at x-coordinate 2j. Note that the number of particles is
always equal to the y-coordinate of the end point of the path. As a consequence, the first
and the last valleys of the path (which correspond to the origin and end points) have
always height 0.

Example 1.3. We give in Figure 1 an example of a decorated alternating path γ := (γ, u) of
length 8 and of degree 4. The 4 particles are represented by the turquoise points above the peaks.
The particle positions are given by u = (u1, u2, u3, u4) = (1, 2, 2, 4). The heights of the five
valleys from left to right are equal to 0, 1, 0, 1, 0.

We are almost ready to define the path operators, the main object of our second
main theorem. Roughly, these operators are weighted generating functions of decorated
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Figure 1: A decorated alternating path of length 8 and degree 4. The five valleys are
represented in red.

alternating paths, where the weight associated with each path is given by the following
definition.

Definition 1.4. Let γ := (γ, u) be a decorated alternating path. We then associate to γ the
valley weight

vw(γ) = ∏
V∈V(γ)

(qt)ht(V), (1.5)

the product being taken over the valleys of γ. We associate to γ the operator O(γ) defined as
follows: if γ = (γ1, . . . , γ2n+2) then

O(γ) := vw(γ)O(γ1) . . .O(γ2n+2), (1.6)

where for any integer m we define

O(m) :=


(−1)mem[X] = hm[−X] if m > 0
h⊥−m[MX] if m < 0
1 if m = 0.

(1.7)

Note that there are two ways of describing the positions of the particles in a decorated
path: either by the sequence of distances between them, or by the sequence counting the
number of particles on every peak. We introduce then the following definitions:

• for any vector α ∈ Zℓ
≥0 with |α| := ∑i αi = n, we define Qα as the set of all

decorated paths γ = (γ, u) of length 2n + 2 and degree ℓ such that u = (u1, . . . , uℓ)
satisfies αi = ui+1 − ui, for any 1 ≤ i ≤ ℓ − 1 and αℓ = n + 1 − uℓ. In other
terms, 2αi is the distance between the i-th and the i + 1-th particles, and 2αℓ is the
distance between the last particle and the last peak (the distance here is defined as
the difference between the x-coordinates).
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• for any vector α ∈ Z>0 × Zn
≥0, we define Qα as the set of all decorated paths γ of

length 2n + 2 and degree ℓ := |α|, with αi particles sitting on the i-th peak.

Finally, we define

Qα := ∑
γ∈Qα

O (γ) , Qα := ∑
γ∈Qα

O (γ) . (1.8)

Example 1.5. The operator associated to the path γ of Figure 1 is given by

O(γ) = (qt)1+0+1 · (−1)3+2+1+1e3[X]h⊥1 [MX]e2[X]h⊥1 [MX]e1[X]e1[X]h⊥1 [MX].

Moreover γ ∈ Q(1,0,2,0) = Q(1,2,0,1).

We are now ready to state the seond main result of this paper.

Theorem 1.6. If F(h̄) := ∑i≥0 aih̄
i ∈ {G1, G2}, then

A(ℓ)
F = ∑

α∈Zℓ
≥0

aαQα, (1.9)

where aα := ∏ℓ
i=1 aαi .

1.3 Explicit formulas for the functions Qα · 1

As we will see in Equation (2.5), the (q, t)-tau function admits a simple expansion on a
basis of symmetric functions built upon consecutive actions of the operators A(ℓ)

G . From
Theorem 1.6, these functions are in turn linear combinations of symmetric functions of
the form

Qα · 1 := Qα(1) · Qα(2) · · · Qα(r) · 1 (1.10)

where α =
(

α(1), α(2), . . . , α(r)
)
= (α1, . . . , αℓ) is a list of r vectors of respective lengths

ℓ1, . . . , ℓr of total size n. In our last main theorem, we give explicit formulas for these
functions, by extracting the coefficients of some rational function with respect to a second
alphabet Z = z1 + · · ·+ zℓ. We start by introducing some notation.

Let NI(α) be the set of non-consecutive indices of α defined by:

NI(α) := {(i, j)|1 ≤ i < j ≤ ℓ, such that i < j − 1
or (i = j − 1 and i ≤ Lk < j for some 1 ≤ k ≤ r)} , (1.11)

where we denote the partial sums Lk = ∑1≤i≤k ℓi. Note that NI(α) depends only on the
sequence (ℓ1, ℓ2, . . . , ℓr) and not α itself.
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Example 1.7. If α = ((2, 0, 0), (3)), then NI(α) = {( 1, 3), (1, 4), (2, 4), (3, 4)}.

Theorem 1.8. Fix α = (α(1), α(2), . . . , α(r)) = (α1, . . . , αℓ) of total size n. For any partition λ

of size n and for the alphabet Z = z1 + · · ·+ zℓ we have

(−1)n[mλ[X]]Qα · 1 = [zα] eλ[Z] ∏
1≤i<j≤ℓ

1 − zj/zi

(1 − qzj/zi)(1 − tzj/zi)
∏

(i,j)∈NI(α)
(1 − qtzj/zi),

(−1)n[sλ[X]]Qα · 1 = [zα] sλ′ [Z] ∏
1≤i<j≤ℓ

1 − zj/zi

(1 − qzj/zi)(1 − tzj/zi)
∏

(i,j)∈NI(α)
(1 − qtzj/zi),

(−1)n[eλ[X]]Qα · 1

=
1

|Aut(λ)| ∑
σ∈Sℓ

[
zα−σ(λ)

]
∏

1≤i<j≤ℓ

1 − zj/zi

(1 − qzj/zi)(1 − tzj/zi)
∏

(i,j)∈NI(α)
(1 − qtzj/zi),

where λ′ is the transpose of λ, σ(λ1, . . . , λℓ) = (λσ(1), . . . , λσ(ℓ)), and the rational functions in
the RHS should be expanded as formal series in zj/zi for j > i.

Interestingly, the functions of Equation (1.10) turned out to be related to some other
important problems in the field, namely the Shuffle and the Delta conjectures.

1.4 Connection to the Delta conjecture

For f ∈ Λ, the operators ∆′
f are defined by the equations

∆′
f H̃(q,t)

λ [X] := f

[
∑

(i,j)∈λ

qj−1ti−1 − 1

]
H̃(q,t)

λ [X]. (1.12)

The Delta conjecture, formulated in [10] and proved by D’Adderio and Mellit in [6] states
that ∆′

ek
· en is positive in the monomial basis, and the coefficients count Dyck paths with

weights given by the area and the dinv statistics. The Shuffle conjecture corresponds
to the case k = n − 1. It turns out that these problems are closely related to our path
operators. Indeed, we prove the following

∆′
ek
· en = (−1)n ∑

ℓ(α)=k+1
|α|=n

Qα · 1. (1.13)

Actually, we obtain a more general formula for ∆hl
∆′

ek
· en also in terms of path operators.

This last quantity is the subject of the extended delta conjecture.
As a byproduct of Theorem 1.8, we obtain explicit formulas for ∆hl

∆′
ek
· en, from which

we obtain [1, Theorem 4.4.1.] of Blasiak et al. used to prove the extended delta conjecture.
While the proof of this result is based in [1] on a connection with the Schiffmann algebra,
we are able to derive it here completely combinatorially using path operators. We then
hope that the formulas of Theorem 1.8 might give a new approach to understand the
combinatorics of the delta conjecture and other problems related to it.
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2 Elements of proofs

2.1 Notation and preliminaries

We denote Y the set of integer partitions. For i ≥ 1 and λ ∈ Y, let mi(λ) be the number
of parts of size i in λ. We then set

zλ := ∏
i≥1

mi(λ)!imi(λ).

The Hall scalar product ⟨., .⟩ on Λ is defined by ⟨pµ, pλ⟩ = zλδµ,λ, for any λ, µ ∈ Y, where
δµ,λ is the Kronecker delta, and pµ are power-sum symmetric functions. The star scalar
product ⟨., .⟩∗ is the deformation of the Hall scalar product given by

⟨pµ, pλ⟩∗ = zµδµ,λ pµ[−M] = (−1)ℓ(µ)zµδµ,λ ∏
1≤i≤ℓ(µ)

(1 − qµi) (1 − tµi) , for any µ, λ ∈ Y.

The modified Macdonald polynomials are then orthogonal with respect to this product,

⟨H̃(q,t)
µ , H̃(q,t)

λ ⟩∗ = δµ,λ

∥∥∥H̃(q,t)
λ

∥∥∥2

∗
.

For any operator O on Λ, we denote the O⊥ (resp. O∗) the adjoint of O with respect
to the Hall scalar product (resp. the star scalar product). In particular, if f ∈ Λ then f⊥

is the adjoint of the multiplication by f .
We define the linear operator ΠG on ΛX by its action on modified Macdonald poly-

nomials H̃(q,t)
λ

ΠG · H̃(q,t)
λ [X] := H̃(q,t)

λ [X] ∏
(i,j)∈λ

G(qj−1ti−1). (2.1)

One may notice that the G-weighted tau function is obtained by applying this operator
on the Macdonald Cauchy kernel:

τG(z, X, Y) = ΠG · ∑
λ∈Y

z|λ|
H̃(q,t)

λ [X]H̃(q,t)
λ [Y]∥∥∥H̃(q,t)

λ

∥∥∥2

∗

. (2.2)

We think of the adjoint adA(·) = [A, ·] as a linear operator on the space of operators
on Λ. In particular, adi

A(B) corresponds to iterating the commutation by A i times, and
if F(h̄) = ∑i≥0 aih̄

i, then F(adA) := a0 + a1 adA +a2 ad2
A + · · · .

2.2 Proof of the equations of 1.1: Pieri rule and the operator D0

We will derive the equations and prove uniqueness separately. In order to prove the
equations, we need to find how the operators A(ℓ)

F act on modified Macdonald polyno-
mials, starting with adi

D0/M(−e1[X]). The action of e1[X] (by multiplication) is given by
the following Pieri rule, [12, Chapter VI, Equation 6.7] (see also [8, pp. I.11, I.12]).
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Theorem 2.1 (Pieri Rule, [12]).

−e1[X]H̃(q,t)
µ = ∑

µ↗λ

dµ,λH̃(q,t)
λ ,

where the sum is taken over partitions λ obtained from µ by adding one cell, and dµ,λ ∈ Q(q, t).

Remarkably, no explicit expression of dµ,λ is required in our work, only the fact that
they vanish if λ is not obtained from µ by the addition of a box. Moreover, D0 acts
diagonally on Macdonald polynomials.

Theorem 2.2 ([7, Theorem 1.2]). We have

D0 · H̃(q,t)
λ =

(
1 − M ∑

(i,j)∈λ

qj−1ti−1
)

H̃(q,t)
λ , for any λ ∈ Y.

Lemma 2.3. For any ℓ ≥ 1, we have

ΠG · A(ℓ)
G2

· Π−1
G = A(ℓ)

G1
.

Proof. From Theorem 2.1, Theorem 2.2 and the definition AF = F(ad−D0/M) · (−e1) we
find

AFH̃(q,t)
µ = ∑

µ↗λ

dµ,λF(cq,t(λ/µ))H̃(q,t)
λ , (2.3)

where cq,t(λ/µ) := qj−1ti−1, with (i, j) being the only cell of λ/µ. With the defi-
nition of ΠG, this gives directly the lemma for ℓ = 1. Then for ℓ ≥ 2, one has
A(ℓ)

F = 1
M [AF,A(ℓ−1)

F ], so the lemma is obtained by induction.

We obtain Theorem 1.1 by combining Lemma 2.3 and the following lemma, which is a
consequence of the orthogonality of Macdonald polynomials.

Lemma 2.4. Let O1 and O2 be two operators on Λ which have the same homogeneous degree
ℓ ≥ 0. Then

zℓO2(X) · τG(z, X, Y) = O∗
1(Y) · τG(z, X, Y) ⇐⇒ ΠG · O1 · Π−1

G = O2. (2.4)

2.3 Proof of uniqueness in Theorem 1.1: the basis aF,λ

For F ∈ {G1, G2}, and any partition λ, we define the symmetric function of degree λ

aF,λ := A(λ1)
F · A(λ2)

F · · · A(λℓ(λ))

F · 1.

Proposition 2.5. The family (aF,λ)λ∈Y is a basis of Λ.
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Idea of the proof. It is enough to prove that aF,λ is a basis when we take the specializa-
tion q = 1. In this case, the derivative operators (O(m) in Equation (1.7) for m negative)
become trivial, and all the path operators are multiplicative. The proposition follows
then by a triangularity argument.

Let us now explain how this proposition implies uniqueness in Theorem 1.1. For any
partition λ, the differential equations Equation (1.4) allow us to write

z|λ|A(λ1)
G1

(X) · A(λ2)
G1

(X) · · · A(λℓ(λ))

G1
(X) · τG(z, X, Y)

=
(
A(λℓ(λ))

G2
(Y)

)∗
· · ·

(
A(λ2)

G2
(Y)

)∗
·
(
A(λ1)

G2
(Y)

)∗
· τG(z, X, Y).

We now extract the coefficient of z|λ|p∅[Y] = z|λ| (the constant term in Y). On the left-
hand side we simply get aG1,λ(X). On the right-hand side, we obtain[

z|λ|
](

A(λℓ(λ))

G2
(Y)

)∗
· · ·

(
A(λ2)

G2
(Y)

)∗
·
(
A(λ1)

G2
(Y)

)∗
· τG(z, X, Y)

=

〈
p∅[Y],

[
z|λ|

] (
A(λℓ(λ))

G2
(Y)

)∗
· · ·

(
A(λ2)

G2
(Y)

)∗
·
(
A(λ1)

G2
(Y)

)∗
· τG(z, X, Y)

〉
∗

=

〈
A(λ1)

G2
(Y) · A(λ2)

G2
(Y) · · · A(λℓ(λ))

G2
(Y) · 1,

[
z|λ|

]
τG(z, X, Y)

〉
∗

=
〈
aG2,λ(Y),

[
z|λ|

]
τG(z, X, Y)

〉
∗

,

where the scalar product is taken with respect to the alphabet Y. Let bG2,λ denote the
dual basis of aG2,λ with respect to the star scalar product:

〈
aG2,λ, bG2,µ

〉
∗ = δλ,µ, for any

λ and µ. Then the differential equations of Theorem 1.1 imply that for any λ

aG1,λ(X) =
[
z|λ|bG2,λ(Y)

]
τG(z, X, Y),

or equivalently
τG(z, X, Y) = ∑

λ∈Y

z|λ|aG1,λ(X)bG2,λ(Y). (2.5)

In particular, the differential equations of Theorem 1.1 characterize the function τG. Note
that when G1 = G2, the last equation corresponds to the Macdonald–Cauchy identity.

2.4 Proof of Theorem 1.6 and Theorem 1.8

The proof of Theorem 1.6 is based on the two families of commutation relations satisfied
by path operators.

Proposition 2.6 (The first commutation relation). For any n ≥ 0,

Qn = ad−D0/M(Qn−1),

where Qn is the operator defined in Equation (1.8) if n ≥ 0, and Q−1 := −e1[X].



(q, t)-tau functions and path operators 11

Note that these commutation relations concern one-particle paths. They allow one
to obtain the length n operators from operators associated to paths of lengths n − 1 by
applying the adjoint of D0. The proof is based on the following identities, which are a
consequence of commutation relations of vertex operators (see e.g [7, Theorem 1.1 and
Proposition 1.2])

[D0,O(r)] = −M ∑
k≥0

∑
1≤i≤min(k,r)

(1 + qt + . . . (qt)i−1)O(k)O(k − i)O(r − i),

[D0,O(−r)] = M ∑
k≥0

∑
1≤i≤min(k,r)

(1 + qt + . . . (qt)i−1)O(−(r − i))O(k − i)O(−k).

The second commutation relation concerns paths decorated by an arbitrary number
of particles. We give here a symmetrized version, which is enough to prove Theorem 1.6.

Proposition 2.7 (The second commutation relation). Let α ∈ Zℓ
≥0 be a sequence of non-

negative integers of length ℓ ≥ 2. We then have

∑
σ∈Sℓ

Qσ(α) =
1
M ∑

σ∈Sℓ

[
Qασ(ℓ)−1,Qσ(α1,...,αℓ−1)

]
.

The proof of this proposition uses the first commutation relation and manipulations on
commutators. Let us now use these propositions to prove Theorem 1.6 by induction on ℓ.

From Proposition 2.6, we get that adn+1
−D0/M (−e1) = Qn. This implies that for F(h̄) =

∑n≥0 anh̄n, we have AF = ∑n≥0 anQn−1. We deduce that

A(1)
F = ∑

n≥0
anQn,

giving Theorem 1.6 for ℓ = 1.
We now assume that Equation (1.9) holds for some ℓ ≥ 1. We then have

A(ℓ+1)
F =

1
M

[
AF,A(ℓ)

F

]
=

1
M ∑

j≥0
∑

α∈Zℓ
≥0

ujuα

[
Qj−1,Qα

]
.

By applying Proposition 2.7 it comes

A(ℓ+1)
F =

1
M ∑

0≤ν1≤···≤νℓ+1

1
|Aut(ν)|uν ∑

σ∈Sℓ+1

[
Qνσ(ℓ+1)−1 ,Qσ(ν1,...,νℓ)

]
= ∑

0≤ν1≤···≤νℓ+1

1
|Aut(ν)|uν ∑

σ∈Sℓ+1

Qσ(ν) = ∑
α∈Zℓ+1

≥0

uαQα,

where Aut(ν) < Sℓ+1 is the stabilizer of the partition ν. This finishes the proof of
Theorem 1.6.
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Idea of the proof of Theorem 1.8. We start by taking the normal order form in Theorem 1.6,
i.e we move the derivative part to the right and the multiplicative part to the left. By
inspecting the combinatorics of this formula, we prove that it can be written as a sum
over alternating paths for which all valleys have minimal height. This gives the formulas
of Theorem 1.8.
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