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Abstract. We study the equivariant cohomology classes of torus-equivariant subva-
rieties of the space of matrices. For a large class of torus actions, we prove that the
polynomials representing these classes (up to suitably changing signs) are covolume
polynomials in the sense of Aluffi. We study the cohomology rings of complex va-
rieties in terms of Macaulay inverse systems over Z. As applications, we show that
under certain conditions, the Macaulay dual generator is a denormalized Lorentzian
polynomial in the sense of Brändén and Huh, and we give a characteristic-free exten-
sion (over Z) of the result of Khovanskii and Pukhlikov describing the cohomology
ring of toric varieties in terms of volume polynomials.
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1 Introduction

A sequence of real numbers a0, a1, . . . , an is called log-concave if a2
i ≥ ai−1ai+1 for all 1 ≤

i ≤ n − 1. Log-concave sequences naturally appear throughout algebra, combinatorics,
and geometry (see the survey [31] for a thorough treatment). Recently, the theory of
Lorentzian polynomials was introduced by Brändén and Huh [6] (and in [2, 3, 4] under
the name of completely log-concave polynomials) and they have been instrumental in
proving log-concavity results throughout mathematics [18, 19, 6].

The prototypical examples of Lorentzian polynomials are the volume polynomials of
projective varieties [6]. Likewise, the covolume polynomials of Aluffi [1] are the pro-
totypical examples of the dually Lorentzian polynomials of Ross, Süß, and Wannerer
[28]. We introduce a new family of polynomials that specialize to a number of important
polynomials in algebraic combinatorics, and we prove that they are covolume polyno-
mials.
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For two permutations u, w ∈ Sn with w ≥ u in Bruhat order, we define the dou-
ble Richardson polynomial as the product of double Schubert polynomials Rw/u(t, s) =
Su(t, s)Sw0w(t, s′), where s′ = (sn, . . . , s1) denotes the reverse of s = (s1, . . . , sn). The
double Richardson polynomial represents the torus equivariant class of matrix Richard-
son varieties in the cohomology ring H•

T(Matn,n) of the space of n × n matrices with the
standard action of the torus T = (C∗)n × (C∗)n.

Theorem 1.1 (Theorem 5.4). The (sign-changed) double Richardson polynomial Rw/u(t,−s)
is a covolume polynomial.

Dually Lorentzian polynomials enjoy two nice combinatorial properties: their sup-
ports are M-convex, and they are discretely log-concave. A homogenous polynomial
h = ∑n antn of degree d with nonnegative coefficients is said to have M-convex support
if supp(h) is the set of integer points of a generalized permutohedron in the sense of
[26], and it is said to be discretely log-concave if a2

n ≥ an+ei−ej an−ei+ej for all n and all
i, j.

Corollary 1.2 (Corollary 5.5). The following polynomials have M-convex support and are dis-
cretely log-concave: (sign-changed) Double Richardson polynomials Rw/u(t,−s), Richardson
polynomials Rw/u(t), (sign-changed) Double Schubert polynomials Su(t,−s), and Schubert
polynomials Su(t).

We note that the M-convexity and discrete log-concavity in Corollary 1.2 recovers a
result of [10] and [19]. To the best of our knowledge, the discrete log-concavity of double
Schubert polynomials is new.

The proof of Theorem 1.1 follows from a general theorem that we discuss in Section
4. More precisely, we prove the following result regarding the equivariant cohomology
classes of torus-equivariant subvarieties of the space of matrices.

Theorem 1.3 (Corollary 4.5). Let Matm,n = Cm×n be the space of m× n matrices with complex
entries and consider the natural action of the torus T = (C∗)m × (C∗)n given by (g, h) · M =
g · M · h−1 for all M ∈ Matm,n and (g, h) ∈ T. Let X ⊂ Matm,n be an irreducible T-variety
and CX(t1, . . . , tm, s1, . . . , sn) be the polynomial representing the class [X]T in H•

T (Matm,n) =
Z[t1, . . . , tm, s1, . . . , sn]. Then CX(t1, . . . , tm,−s1, . . . ,−sn) is a covolume polynomial.

In Section 6, we also connect the theory of Macaulay inverse systems over Z to the
theory of Lorentzian polynomials. As an application, we obtain a characteristic-free
extension (over Z) of the result of Khovanskii and Pukhlikov describing the cohomology
ring of toric varieties in terms of volume polynomials. These results are presented in
Theorem 6.4 and Corollary 6.6.

2 Preliminaries

In this section, we set up notation and preliminaries used throughout the paper.
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2.1 Multidegrees

Here we recall the definition and basic properties of multidegrees as presented in [24,
Chapter 8].

Let R = k[x1, . . . , xn] be a Zp-graded polynomial ring over a field k. Suppose M is a
finitely generated Zp-graded R-module. Let M be a finitely generated Zp-graded mod-
ule and F• be a Zp-graded free R-resolution F• : · · · → Fi → Fi−1 → · · · → F1 → F0
of M. Let t1, . . . , tp be variables over Z and consider the Laurent polynomial ring
Z[t] = Z[t1, . . . , tp, t−1

1 , . . . , t−1
p ], where the variable ti corresponds with the i-th elemen-

tary vector ei ∈ Zp. If we write Fi =
⊕

j R(−bi,j) with bi,j = (bi,j,1, . . . , bi,j,p) ∈ Zp, then

we define the Laurent polynomial [Fi]t := ∑j tbi,j = ∑j t
bi,j,1
1 · · · t

bi,j,p
p .

Definition 2.1. The K-polynomial of M is given by K(M; t) := ∑i (−1)i [Fi]t.

We have that, even if the grading of R is non-positive and we do not have a well-
defined notion of Hilbert series, the above definition of K-polynomial is an invariant
of the module M and it does not depend on the chosen free R-resolution F• (see [24,
Theorem 8.34]).

Definition 2.2. The multidegree polynomial of M is the homogeneous polynomial C(M; t) ∈
Z[t] given as the sum of all terms in K(M; 1 − t) = K(M; 1 − t1, . . . , 1 − tp) having total
degree codim(M), which is the lowest degree appearing.

2.2 Lorentzian and covolume polynomials

A subset J ⊂ Np is called M-convex if for any q = (q1, . . . , qp) and r = (r1, . . . , rp) in J,
and any i where qi < ri, there exists j such that qj > rj and both points q + ei − ej and
r − ei + ej are also contained in J. M-convex sets are equivalent to sets of bases of discrete
polymatroids [25] and to sets of integer points of generalized permutohedra [26].

Let h(t1, . . . , tp) be a homogeneous polynomial of degree d in R[t] = R[t1, . . . , tp].

Definition 2.3 ([6]). The homogeneous polynomial h is called Lorentzian if the following con-
ditions hold:

(i) The coefficients of h are nonnegative.

(ii) The support of h is M-convex.

(iii) ∂
∂ti1

∂
∂ti2

· · · ∂
∂tie

h has at most one positive eigenvalue for any i1, . . . , ie ∈ [p] where e = d− 2.

The normalization operator N (∑n antn) := ∑n
an
n! t

n where n! := n1! · · · np! preserves
the Lorentzian property [6, Corollary 3.7].

In [1], Aluffi defined the notion of covolume polynomials. These polynomials arise by
considering the Chow class of irreducible subvarieties of a product of projective spaces.
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Definition 2.4. Let P = P
m1
k

×k · · · ×k P
mp
k

be multiprojective space over a field k. Let
X ⊂ P be an irreducible subvariety of codimension c. The class of X can be written as
∑|n|=c anHn1

1 · · · Hnp
p ∈ A•(P). Let P[X](t1, . . . , tp) = ∑|n|=c antn be the polynomial asso-

ciated to the class [X] of X ⊂ P. A polynomial P(t1, . . . , tp) ∈ R[t1, . . . , tp] with nonnegative
real coefficients is a covolume polynomial if it is a limit of polynomials of the form cP[X] for a
positive real number c and a subvariety X of P.

Finally, we are interested in the family of dually Lorentzian polynomials introduced
by Ross, Süß, and Wannerer [28].

Definition 2.5 ([28]). A polynomial h ∈ R[t1, . . . , tp] is dually Lorentzian if the polynomial

N
(

tm1
1 · · · tmp

p h
(

t−1
1 , . . . , t−1

p

))
is Lorentzian for some m = (m1, . . . , mp) ∈ Np.

As shown by Aluffi [1, Proposition 2.8], covolume polynomials form a subfamily of
the family of dually Lorentzian polynomials.

3 Multidegree polynomials of prime ideals in arbitrary
positive gradings

In this section, working over an arbitrary positive Np-grading, we show that the mul-
tidegree polynomial of a prime ideal is a covolume polynomial. Our main tool is the
technique of standardization that was used in [10, 9]. Below we discuss the case of a
standard multigrading. This case is of special importance since it deals with closed
subschemes of a product of projective spaces.

Remark 3.1 (Standard multigradings). Assume that R has a standard Np-grading and that R
is the coordinate ring of P = P

m1
k

×k · · · ×k P
mp
k

. Let X ⊂ P be a d-dimensional integral closed
subscheme with coordinate ring R/P, where P is an R-homogeneous prime ideal. The class of X
in the Chow ring of P is given by [X] = ∑|n|=d degn

P(X) · Hm1−n1
1 · · · Hmp−np

p ∈ A∗(P) where
Hi represents the class of the inverse image of a hyperplane of P

mi
k

. We say that degn
P(X) is the

multidegree of X of type n. Then the multidegree polynomial of R/P is given by

C(R/P; t) = ∑
n∈Np, |n|=d

degn
P(X) · tm1−n1

1 · · · tmp−np
p .

The volume polynomial of X (see [6, Section 4.2]) is given by

volX(t) =
∫ (

H1t1 + · · ·+ Hptp
)d ∩ [X] = ∑

n∈Np, |n|=d
degn

P(X) · d!
n1! · · · np!

· tn1
1 · · · tnp

p .

By [6, Theorem 4.6], we have that volX(t) is a Lorentzian polynomial.
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The following lemma tells us that multidegree polynomials in a standard multigrad-
ing are dually Lorentzian. This result first appeared in [1, Proposition 2.8] (also, see [19,
Theorem 6]).

Lemma 3.2. Keep the same notations and assumptions of Remark 3.1. Consider the polynomial

F(t1, . . . , tp) = tm1
1 · · · tmp

p · C
(

R/P;
1
t1

, . . . ,
1
tp

)
.

Then the normalization N(F) is a Lorentzian polynomial (i.e., C(R/P; t) is dually Lorentzian).

We now describe some basic properties of the process of standardization as developed
in [10, 9]. For the rest of the section, the following setup is fixed.

Setup 3.3. For 1 ≤ i ≤ n, let ℓi = |deg(xi)| be the total degree of the variable xi. Let
S = k

[
yi,j | 1 ≤ i ≤ n and 1 ≤ j ≤ ℓi

]
be a standard Np-graded polynomial ring such that

deg(xi) = ∑ℓi
j=1 deg(yi,j) for all 1 ≤ i ≤ n. We define the Np-graded k-algebra homomorphism

ϕ : R = k[x] −→ S = k[y], ϕ(xi) = yi,1yi,2 · · · yi,ℓi .

For an R-homogeneous ideal I ⊂ R, we say that the extension J = ϕ(I)S is the standardization
of I, since J ⊂ S is an S-homogeneous ideal in the standard Np-graded polynomial ring S. By
a slight abuse of notation, we consider both multidegree polynomials C(R/I; t) and C(S/J; t) as
elements of the same polynomial ring Z[t] = Z[t1, . . . , tp].

Finally, we are ready to present the main result of this section. It yields a large new
family of dually Lorentzian polynomials.

Theorem 3.4. Let P ⊂ R be a prime R-homogeneous ideal. Then C(R/P; t) is a covolume
polynomial.

Proof. We sketch (due to space limitations) the idea of the proof. By [9, Theorem 7.2],
the multidegree polynomals are preserved under standardization. Therefore, we have
C(R/P; t) = C(S/J; t) where J is the standardization of P. Thus, the covolume property
now follows from Lemma 3.2.

4 Equivariant cohomology in multigraded commutative
algebra

In this section, we study the equivariant cohomology of the irreducible varieties that
appear in multigraded commutative algebra. Here we show that equivariant classes of
multigraded varieties tend to yield covolume polynomials (up to changing the sign of
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negative coefficients). We follow the references [5] and [11, Chapter 5] for the basics of
equivariant cohomology and equivariant K-theory.

We consider the T-equivariant cohomology ring H•
T(A

n
C) := H•(ET ×T An

C

)
where

ET is contractible with T acting freely (on the right). Then BT := ET/T is a classifying
space for T. Since we can take ET = (C∞ \ {0})n and BT =

(
P∞

C

)n, it follows that
H•

T(A
n
C)

∼= ΛT := H•
T(pt) = H•(BT) = Z[t1, . . . , tp]. Given a T-subvariety X ⊂ An

C, we
denote by [X]T := [ET ×T X] the equivariant class of X in H•

T(A
n
C)

∼= Z[t1, . . . , tp].
The next remark provides the connection to apply our results in Section 3 to equiv-

ariant cohomology.

Remark 4.1. Let X ⊂ An
C be a T-subvariety with coordinate ring R/I. Let CX(t1, . . . , tp) be

the polynomial representing the classes [X]T ∈ H•
T(A

n
C). Then we have the equality

CX(t1, . . . , tp) = C(R/I; t1, . . . , tp).

Then Theorem 3.4 poses the question of whether the class [X]T of an irreducible
T-subvariety X ⊂ An

C will always yield a covolume polynomial. This is not true for
arbitrary torus actions (in particular, a simple example produces a polynomial that does
not have M-convex support). For the rest of this section, we shall use the following setup
that avoids the complications of that example.

Setup 4.2. Assume that the torus T is given as T = (C∗)q × (C∗)p−q where “(C∗)q comes
with positive weights and (C∗)p−q comes with negative weights”. More precisely, we require
that di ∈ Np \ {0} for all 1 ≤ i ≤ q , and −di ∈ Np \ {0} for all q + 1 ≤ i ≤ p. In this case
we say that the action of T determines a twisted positive grading on R.

The following lemma tells us that we can “flip” twisted positive gradings to positive
gradings. A version of this lemma appeared in [10, Lemma 3.3]. Let R̃ = k[x1, . . . , xn]
be a polynomial ring with the same variables as R but with grading given by setting
deg(xi) = di for 1 ≤ i ≤ q and deg(xi) = −di for q + 1 ≤ i ≤ p. Notice that R̃ has a
positive Np-grading.

Lemma 4.3. Assume Setup 4.2. Let I ⊂ R be a Zp-graded ideal, and denote also by I the
corresponding Np-graded ideal in R̃. Then we have

C(R̃/I; t1, . . . , tq, tq+1, . . . , tp) = C(R/I; t1, . . . , tq,−tq+1, . . . ,−tp).

We are now ready to present the main result of this section.

Theorem 4.4. Assume Setup 4.2. Let X ⊂ An
C be an irreducible T-subvariety, CX(t1, . . . , tp)

be the polynomial representing the class [X]T ∈ H•
T(A

n
C). Then CX(t1, . . . , tq,−tq+1, . . . ,−tp)

is a covolume polynomial.

Proof. The polynomial CX representing the class [X]T is the same as the multidegree
polynomial CX by [23, Proposition 1.19] and the statement follows from Theorem 3.4.
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Our main application of the above theorem is the following corollary.

Corollary 4.5. Let Matm,n = Cm×n be the space of m × n matrices with complex entries and
consider the natural action of the torus T = (C∗)m × (C∗)n given by (g, h) · M = g · M · h−1

for all M ∈ Matm,n and (g, h) ∈ T. Let X ⊂ Matm,n be an irreducible T-variety and
CX(t1, . . . , tm, s1, . . . , sn) be the polynomial representing the class [X]T in H•

T (Matm,n) =
Z[t1, . . . , tm, s1, . . . , sn]. Then we have that CX(t1, . . . , tm,−s1, . . . ,−sn) is a covolume poly-
nomial.

5 Equivariant cohomology of matrix Richardson varieties

In this section, we study the equivariant cohomology of matrix Richardson varieties for
a pair of permutations. An interesting outcome of our approach is the definition of a
new family of polynomials that we call double Richardson polynomials. These polynomials
specialize to many polynomials of interest.

Let Dw be the matrix Schubert variety of w given by the rank conditions imposed on
the upper-left corner and Dw be the opposite matrix Schubert variety of w given by the
rank conditions imposed on the upper-right corner. A result of fundamental importance
for us is the following geometric interpretation of double Schubert polynomials.

Theorem 5.1 ([5, 22, 17]). The equivariant class [Dw]
T of the matrix Schubert variety Dw in

the cohomology ring H•
T(Matn,n) ∼= Z[t1, . . . , tn, s1, . . . , sn] is given by the double Schubert

polynomial Sw(t, s).

The next lemma expresses the equivariant class of the degeneracy locus Dw.

Lemma 5.2. The equivariant class [Dw]T ∈ H•
T(Matn,n) of Dw is given by the double Schubert

polynomial
Sw0w(t1, . . . , tn, sn, . . . , s1)

of w0w with a reverse ordering of the variables s1, . . . , sn.

We are now ready to introduce the two objects that interest us in this section.

Definition 5.3. For a pair of permutations (w, u) in Sn, we have

(i) Dw
u := Du ∩ Dw is the matrix Richardson variety.

(ii) Rw/u(t, s) := Su(t, s)Sw0w(t, s′) is the double Richardson polynomial, where s′ =
(sn, . . . , s1) denotes the reverse of s = (s1, . . . , sn).

We point out that the matrix Richardson variety Dw
u is a reduced and irreducible T-

subvariety of Matn×n. We have that Dw
u is nonempty if and only if w ≥ u in the Bruhat

order, and when it is nonempty, it has dimension dim(Dw
u ) = ℓ(w)− ℓ(u). For details

on Richardson varieties, the reader is referred to [29, 27, 7].
Our main result in this section is the following theorem.
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Theorem 5.4. For two permutations u, w ∈ Sn with w ≥ u in Bruhat order, the following
statements hold:

(i) The double Richardson polynomial Rw/u(t, s) presents the equivariant class of the matrix
Richardson variety Dw

u in H•
T(Matn×n).

(ii) The (sign-changed) double Richardson polynomial Rw/u(t,−s) is a covolume polynomial.

We have specializations to many polynomials of interest:

(i) Rw0/u(t, s) = Su(t, s) is the double Schubert polynomial.

(ii) Rw0/u(t, 0) = Su(t, 0) = Su(t) is the ordinary Schubert polynomial.

(iii) We say that Rw/u(t) = Rw/u(t, 0) is the (ordinary) Richardson polynomial.

We can now obtain some consequences for certain polynomials of interest in algebraic
combinatorics.

Corollary 5.5. The polynomials mentioned above have M-convex support and are discretely log-
concave.

6 Macaulay dual generators of cohomology rings

In this section, we study the Macaulay dual generators of cohomology rings of smooth
complex varieties. We prove that under suitable positivity assumptions the Macaulay
dual generators are Lorentzian polynomials. Before presenting our results on cohomol-
ogy rings, which is our main interest, we develop basic ideas regarding the notion of
Gorenstein algebras over a base ring (these developments are probably known to the
experts but we could not find a suitable reference for us). For details, the reader referred
to [16, Chapter 21], [8, Chapter 3]. Throughout this section we use the following setup.

Setup 6.1. Let A be a Noetherian ring and R be a positively graded finitely generated algebra over
R0 = A. Choose a positively graded polynomial ring S = A[x1, . . . , xn] with a graded surjection
S ↠ R and write R ∼= S/I for some homogeneous ideal I ⊂ S. Let m := (x1, . . . , xn) ⊂ S
be the graded irrelevant ideal. Let δi := deg(xi) > 0 and δ := δ1 + · · · + δn. For any p ∈
Spec(A), we denote by κ(p) := Ap/pAp the residue field at p and we set S(p) := S ⊗A κ(p) ∼=
κ(p)[x1, . . . , xn] and R(p) := R ⊗A κ(p).

We are interested in the following relative notion of Gorenstein.

Definition 6.2. We say that R is a Gorenstein algebra over A if the natural morphism f :
Spec(R) → Spec(A) is a Gorenstein morphism (see [30, Tag 0C02]). This means that R is A-
flat and the fiber R(p) = R ⊗A κ(p) is a Gorenstein ring for all p ∈ Spec(A). We also say that
R is Artinian Gorenstein over A if f : Spec(R) → Spec(A) is a finite Gorenstein morphism.

https://stacks.math.columbia.edu/tag/0C02
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For a graded S-module M, we denote the B-relative graded Matlis dual by

M∨A = ∗HomA(M, A) :=
⊕
ν∈Z

HomA
(
[M]−ν, A

)
.

The next proposition is similar to [12, Lemma 2.10].

Proposition 6.3. Assume that f : Spec(R) → Spec(A) is flat. Let e be the common dimension
of the fibers of f . Then R is Gorenstein over A if and only if the following two conditions are
satisfied:

(i) Exti
S(R, S) = 0 for all 0 ≤ i ≤ n such that i ̸= n − e.

(ii) Extn−e
S (R, S) is A-flat and it is generated locally by one element as an R-module.

Motivated by the above proposition, when R is Gorenstein over A and e is the com-
mon dimension of the fibers, we say that

ωR/A := Extn−e
S

(
R, S(−δ)

)
is a relative canonical module of R over A.

Assume that R is a finitely generated A-module. Let d > 0 be a positive integer
and ρ : R → A(−d) be a graded A-linear map (following tradition we call this map an
orientation). We say that R satisfies Poincaré duality with respect to the orientation ρ if

R ⊗A R → A(−d), r1 ⊗ r2 7→ ρ(r1r2)

is a perfect pairing. This means that the pairing induces a graded isomorphism R ∼=
∗HomA(R, A)(−d) of R-modules. In particular, we have perfect pairings Ri ⊗A Rd−i → A
for all i. We consider the inverse polynomial ring T = A[y1, . . . , yn] where yi is identified
with x−1

i . The S-module structure of T is given by setting that xα1
1 · · · xαn

n · yβ1
1 · · · yβn

n

is equal to yβ1−α1
1 · · · yβn−αn

n if βi ≥ αi for all 1 ≤ i ≤ n and to 0 otherwise. Then
T is a negatively graded polynomial ring with deg(yi) = −δi. We have the natural
isomorphisms T ∼= ∗HomA(S, A) ∼= Hn

m

(
S
)
(−δ).

The following theorem extends well-known results about Artinian Gorenstein alge-
bras (over a field) to our current relative setting over a Noetherian base ring. In particu-
lar, we focus on cohomology rings over Z.

Theorem 6.4. Let X be a d-dimensional smooth complex algebraic variety. Suppose that the
cohomology ring R =

⊕d
i=0 H2i(X, Z) is a flat Z-algebra (i.e., it is Z-torsion-free). Let ρ :

Rd = H2d(X, Z) → Z be the natural degree map. Choose a graded presentation R ∼= S/I where
S = Z[x1, . . . , xn], δi = deg(xi) > 0, and I is homogeneous ideal. Let δ = δ1 + · · ·+ δn. Then
the following statements hold:
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(i) R is Gorenstein over Z.

(ii) We have the isomorphisms ωR/Z = Extd
S(R, S(−δ)) ∼= ∗HomZ(R, Z) ∼= R(d).

(iii) Consider the inverse polynomial ring T = Z[y1, . . . , yn] with the identification yi = x−1
i .

The ideal I ⊂ S is given as the annihilator I = {g ∈ S | g · GR = 0} of the inverse
polynomial GR(y1, . . . , yn) = ∑i1δ1+···+inδn=d ρ

(
xi1

1 · · · xin
n
)
yi1

1 · · · yin
n ∈ T.

(iv) Assume that X is complete and that each xi is equal to the first Chern class c1(Li) of a nef
line bundle Li on X. Then the normalization N(GR) ∈ R[y1, . . . , yn] of GR is a Lorentzian
polynomial.

Remark 6.5. Following standard notation, we say that the polynomial GR ∈ T = A[y1, . . . , yn]
presented in Theorem 6.4 is the Macaulay dual generator of R over A.

We close this subsection with one application in toric geometry. Let P1, . . . , Pn be
lattice polytopes in Zd and vol(Pi) denote the Euclidean volume of Pi where the unit
hypercube has volume 1. By [13, Proposition 7.4.9], the volume vol(y1P1 + · · ·+ ynPn)
of the Minkowski sum of polytopes is a homogeneous polynomial of degree d, and we
write

vol(y1P1 + · · ·+ ynPn) = ∑
α

1
α!

MVα(P1, . . . , Pn) yα1
1 · · · yαn

n

where MVα(P1, . . . , Pn) is called the mixed volume of (P1, . . . , Pn) of type α.
Now, we provide a characteristic-free (over Z) extension of the celebrated result

of Khovanskii and Pukhlikov [21] showing that the cohomology ring (over Q) of cer-
tain toric varieties can be expressed in terms of differential operators that annihilate
the volume polynomial. We follow the notations in [14]. Let XΣ be a smooth com-
plete toric variety and ρ1, . . . , ρn be all one-dimensional rays in Σ. We have the fol-
lowing isomorphism H•(XΣ, Z) ∼= Z[x1, . . . , xn]/(I + J ) with Dρi 7→ xi, where I =(

xi1 , . . . , xis | ij are distinct and ρi1 + · · ·+ ρis is not a cone of Σ
)

and J is the ideal gen-
erated by linear forms ∑n

i=1⟨m, ui⟩xi for all m ∈ M. This interpretation is proved in [20]
and [15]. Write d = dim XΣ and n = |Σ(1)|. The volume polynomial of a toric variety is
defined as V(y1, . . . , yn) :=

∫
XΣ

(∑n
i=1 yiDi)

d where Di = Dρi .

Corollary 6.6. There is an isomorphism of Z-algebras H•(XΣ, Z) ∼= Z[x1, . . . , xn]/I, where
I = {g ∈ Z[x1, . . . , xn] | g · N−1(V(y1, . . . , yn)) = 0} = I + J with the identification
xi = y−1

i as described in Theorem 6.4. If each Di is nef and Pi is the corresponding polytope, then

GR(y1, . . . , yn) = ∑
α1+···+αn=d

MVα(P1, . . . , Pn) yα1
1 · · · yαn

n .
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