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Abstract. We consider a natural notion of positive definiteness for matrices over fi-
nite fields and prove an algebraic version of Schoenberg’s celebrated theorem [Duke
Math. J., 1942] characterizing the functions that preserve positive definiteness when
applied entrywise to positive definite matrices. Our proofs build on several novel con-
nections between positivity preservers and field automorphisms via the works of Weil,
Carlitz, and Muzychuk–Kovács, and via the Erdős–Ko–Rado theorem for Paley graphs.
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1 Introduction and main results

In this article we examine functions f : Fq → Fq defined on a finite field Fq that oper-
ate on matrices A := (aij) in the entrywise fashion, i.e., f [A] := ( f (aij)), and preserve
positivity of matrices in Mn(Fq). The study of such entrywise transforms that preserve
various forms of matrix positivity has a rich and long history with important connections
and applications in many areas – metric geometry and positive definite functions in early
20th century, analysis in late 20th century, and high-dimensional covariance estimations
in 21st century – see the surveys [3, 4] and the monograph [14] for more details. For
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matrices with real entries by the well-known Schur product theorem [22], the entrywise
product A ◦ B := (aijbij) of two n × n positive definite matrices is positive definite. As
an immediate consequence of this surprising result, all convergent non-constant power
series f (x) = ∑∞

n=0 cnxn with real nonnegative coefficients cn ≥ 0 preserve positive def-
initeness when applied entrywise to positive definite matrices. An impressive converse
of this result was obtained by Schoenberg [21], with various refinements collected over
time [20, 5, 14].

Theorem 1.1 ([14, Chapter 18]). Let I = (−ρ, ρ) ⊆ R, where 0 < ρ ≤ ∞. Given a function
f : I → R, the following are equivalent.

1. The function f acts entrywise to preserve the set of positive definite matrices of all dimen-
sions with entries in I.

2. The function f is non-constant and absolutely monotone, that is, f (x) = ∑∞
n=0 cnxn for

all x ∈ I with cn ≥ 0 for all n and cn > 0 for at least one n ≥ 1.

Given Schoenberg’s characterization of “dimension-free” entrywise preservers, it is
natural to understand the preservers for each fixed size N. This is a far harder problem:
the N = 1 case is trivial, and the N = 2 case was resolved by Vasudeva [23] in 1979;
but the other cases N > 2 remain open to date. There has been recent progress wherein
either the test matrices or the test functions are refined; one interesting refinement in-
volves classifying the entrywise polynomials preserving positivity on N × N matrices.
Characterizations can be found in the works of Belton–Guillot–Khare–Putinar [2] and
Khare–Tao [15, 16], and these involve novel connections to Schur polynomials and sym-
metric function theory. Several other variants were also previously explored – see e.g. [3,
4] and the references therein. Many other types of preserver problems were also previ-
ously considered for matrices over finite fields (see e.g. [12, 17, 19] for more details).

To the authors’ knowledge, all previous work on entrywise preservers has focused on
matrices with real or complex entries. In this paper, we consider matrices with entries
in a finite field and describe the associated entrywise positivity preservers in the harder
fixed-dimensional setting. Recall that in the real setting, a symmetric matrix in Mn(R)
is positive definite if and only if all its leading principal minors are positive. By analogy,
we think of non-zero squares in a finite field Fq as positive elements in Fq and say that
a symmetric matrix in Mn(Fq) is positive definite if all its leading principal minors are
equal to the square of some non-zero element in Fq. As shown in [9] (which we briefly
discuss in Section 2), this leads to a reasonable notion of positive definiteness over finite
fields. We therefore adopt the following definition.

Definition 1.2 (Positive definite matrices over Fq). A matrix A ∈ Mn(Fq) is positive
definite if A is symmetric and all its leading principal minors are non-zero squares in Fq.

Our goal is to classify entrywise preservers of positive definite matrices.
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Definition 1.3. Given a matrix A = (aij) ∈ Mn(Fq) and a function f : Fq → Fq, we
denote by f [A] the matrix obtained by applying f to the entries of A:

f [A] := ( f (aij)).

We say that f preserves positivity (or is a positivity preserver) on Mn(Fq) if f [A] is positive
definite for all positive definite A ∈ Mn(Fq).

Compared to previous work on R or C that uses analytic techniques to characterize
preservers, the flavor of our work is considerably different and relies mostly on algebraic,
combinatorial, and number-theoretic arguments. Surprisingly, our characterizations un-
earth new connections between functions preserving positivity, field automorphisms,
and automorphisms of Paley graphs. For each prime power q, we show that the posi-
tivity preservers on Mn(Fq), for a fixed n ≥ 3, are precisely positive multiples of field
automorphisms of Fq. With a much more delicate analysis, we also give a complete
classification of positivity preservers on M2(Fq) for all prime powers q other than those
with q ≡ 1 (mod 4) that are not a perfect square. When q = r2, we leverage the supple-
mentary structure of Fq as well as the well-known structure of the maximal cliques of
the associated Paley graph P(q) to obtain the classification.

This extended abstract provides an overview of our results and techniques. For more
details, we refer the reader to [11].

1.1 Main results

Let p be a prime number and k a positive integer. We denote the finite field with q = pk

elements by Fq. The distinct automorphisms of Fq are exactly the mapings σ0, . . . , σk−1

defined by σℓ(x) = xpℓ . We let F∗
q := Fq \ {0} denote the non-zero elements of the

field. We say that an element x ∈ Fq is positive if x = y2 for some y ∈ F∗
q . In that

case, we say y is a square root of x. We denote the set of positive elements of Fq by
F+

q , i.e., F+
q := {x2 : x ∈ F∗

q}. Similarly, we denote the set of negative elements of Fq by

F−
q = F∗

q \F+
q . If q is odd, then |F+

q | = |F−
q | =

q−1
2 . When q is odd, the quadratic character

of Fq is the function η : Fq → {−1, 0, 1} given by:

η(x) = x
q−1

2 =


1 if x ∈ F+

q

−1 if x ∈ F−
q

0 if x = 0.

(1.1)

Finally, we denote by Mn(Fq) the set of n × n matrices with entries in Fq, by In the n × n
identity matrix, and by 0m×n the m × n matrix whose entries are all 0.
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When n = 1, the positivity preservers are precisely the functions f : Fq → Fq such
that f (F+

q ) ⊆ F+
q . Any such map can be explicitly written using an interpolation poly-

nomial. We thus focus on n ≥ 2. We first obtain a family of well-known maps that
naturally preserve positivity of matrices over a finite field.

Proposition 1.4. All the positive multiples of the field automorphisms of Fq preserve positivity
on Mn(Fq) for all n ≥ 2.

Proof. Let p be the prime such that q = pk, and let f (x) ≡ xpℓ be an automorphism of Fq.
The result follows from the fact that det f [A] = f (det A) for all A ∈ Mn(Fq) and n ≥ 2,
which is easy to show by expanding the determinants.

The main content of this article is to present the converse of Proposition 1.4, along
with various algebraic and combinatorial connections. Recall that, in the real or complex
case, Schoenberg’s theorem (Theorem 1.1) provides such a characterization when the
dimension of matrices is unbounded. In sharp contrast, for finite fields, we obtain the
precise classification of entrywise positivity preservers in the harder setting where the
dimension of the matrices is fixed. In classifying these preservers a natural trichotomy
arises. When q is even, every non-zero element of Fq is a square. Characterizing the
entrywise preservers in even characteristic thus reduces to characterizing the entrywise
transformations that preserve non-singularity. Our techniques in odd characteristics
also differ depending on whether −1 is a square in Fq. As a consequence, our results are
organized into three parts: (1) the even characteristic case, (2) the q ≡ 3 (mod 4) case
where −1 ̸∈ F+

q , and (3) the q ≡ 1 (mod 4) case where −1 ∈ F+
q . Our first main result

addresses the even characteristic case.

Theorem A. Let q = 2k for some positive integer k and let f : Fq → Fq. Then

(1) (n = 2 case) The following are equivalent:

(a) f preserves positivity on M2(Fq).

(b) f is a bijective monomial on Fq, that is, there exist c ∈ F∗
q and 1 ≤ n ≤ q − 1 with

gcd(n, q − 1) = 1 such that f (x) = cxn for all x ∈ Fq.

(2) (n ≥ 3 case) The following are equivalent:

(a) f preserves positivity on Mn(Fq) for some n ≥ 3.

(b) f preserves positivity on Mn(Fq) for all n ≥ 2.

(c) f is a non-zero multiple of a field automorphism of Fq, i.e., there exist c ∈ F∗
q and

0 ≤ ℓ ≤ k − 1 such that f (x) = cx2ℓ for all x ∈ Fq.

Our second main result addresses the case where q ≡ 3 (mod 4).
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Theorem B. Let q ≡ 3 (mod 4) and let f : Fq → Fq. Then the following are equivalent:

(1) f preserves positivity on Mn(Fq) for some n ≥ 2.

(2) f preserves positivity on Mn(Fq) for all n ≥ 2.

(3) f (0) = 0 and η( f (a)− f (b)) = η(a − b) for all a, b ∈ Fq.

(4) f is a positive multiple of a field automorphism of Fq, i.e., there exist c ∈ F+
q and 0 ≤ ℓ ≤

k − 1 such that f (x) = cxpℓ for all x ∈ Fq.

Finally, our last main result addresses the q ≡ 1 (mod 4) case.

Theorem C. Let q ≡ 1 (mod 4) and let f : Fq → Fq. Then the following are equivalent:

(1) f preserves positivity on Mn(Fq) for some n ≥ 3.

(2) f preservers positivity on Mn(Fq) for all n ≥ 3.

(3) f (0) = 0 and η( f (a)− f (b)) = η(a − b) for all a, b ∈ Fq.

(4) f is a positive multiple of a field automorphism of Fq, i.e., there exist c ∈ F+
q and 0 ≤ ℓ ≤

k − 1 such that f (x) = cxpℓ for all x ∈ Fq.

Moreover, when q = r2 for some odd integer r, the above are equivalent to

(1’) f preserves positivity on Mn(Fq) for some n ≥ 2.

Recall that each finite field Fq with q odd has an associated Paley graph P(q) whose
vertices are the elements of Fq and where two vertices a, b ∈ Fq have an edge (a, b) if and
only if η(a − b) = 1. The graph is directed when q ≡ 3 (mod 4) and is sometimes called
the Paley tournament or the Paley digraph, and is undirected when q ≡ 1 (mod 4).
Condition (3) in Theorems B and C can thus be rephrased as

(3’) f (0) = 0 and f is an automorphism of the Paley (di)graph P(q).

Paley (di)graphs and their connection with positivity preservers play a crucial role in our
proofs. We demonstrate some of these in Section 3, and prove the following corollary.

Corollary 1.5. For any finite field Fq and any fixed n ≥ 3, the positivity preservers on Mn(Fq)
are precisely the positive multiples of the field automorphisms of Fq.

Our characterizations of the preservers over M2(Fq) involve a further delicate anal-
ysis involving applications of Weil’s character sum bounds, Muzychuk–Kovács’ classifi-
cation of the automorphisms of the subgraph Γ(q) of the Paley graph P(q) induced by
F+

q , and the characterization of maximum cliques of Paley graphs of square order.
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2 Positive definite matrices over finite fields

For real symmetric or complex Hermitian matrices, it is well-known that there are several
equivalent ways to define positive definiteness. To name a few, a Hermitian matrix A is
positive definite if and only if any of the following holds: (1) z∗Az > 0 for all non-zero
z ∈ Cn; (2) all eigenvalues of A are positive; (3) the sesquilinear form z∗Aw defines an
inner product; (4) A is a Gram matrix of linearly independent vectors; (5) all leading
principal minors of A are positive; or (6) A has a unique Cholesky decomposition [13,
Chapter 7].

As shown by Cooper, Hanna, and Whitlatch [9], the situation is very different for
matrices over finite fields. E.g., it is not hard to show that the standard definition of
positive definiteness via quadratic forms (as in real/complex cases) does not yield a
useful notion over finite fields.

Proposition 2.1 ([9, Proposition 4]). Let Fq be a finite field, let n ≥ 3, and let A ∈ Mn(Fq).
Suppose Q(x) := xT Ax for all x ∈ Fn

q . Then there exists v ∈ Fn
q \ {0} so that Q(v) = 0.

However, when q is even or q ≡ 3 (mod 4), some of the classical real/complex pos-
itivity theory can be recovered. Recall that a symmetric matrix A ∈ Mn(Fq) is said to
have a Cholesky decomposition if A = LLT for some lower triangular matrix L ∈ Mn(Fq)
with positive elements on its diagonal. When q is even or q ≡ 3 (mod 4), it is known
that the positivity of the leading principal minors of a matrix in Mn(Fq) is equivalent to
the existence of a Cholesky decomposition.

Theorem 2.2 ([9, Theorem 16, Corollary 24]). Let A ∈ Mn(Fq) be a symmetric matrix.

1. If A admits a Cholesky decomposition, then all its leading principal minors are positive.

2. If q is even or q ≡ 3 (mod 4) and all the leading principal minors of A are positive, then
A admits a Cholesky decomposition.

We note however that the equivalence fails in general when q ≡ 1 (mod 4) [11, Proposi-
tion 2.10]. The authors of [9] define a symmetric matrix in Mn(Fq) to be positive definite
if it admits a Cholesky decomposition, when q is even or q ≡ 3 (mod 4). In light of The-
orem 2.2, this definition coincides with ours when q ̸≡ 1 (mod 4) (in Definition 1.2 and
also with the definition over real/complex fields). We also note, however, that verifying
if a matrix admits a Cholesky decomposition is not as straightforward as computing its
leading principal minors. This is our motivation for adopting Definition 1.2.

It is well-known that every element in a finite field can be written as a sum of two
squares. As a consequence, sums of positive definite matrices are not always positive
definite. Similarly, a Gram matrix A = MMT with M ∈ Mn×m(Fq) is not always positive
definite (consider, for example, M = (x1, x2) ∈ F2

q). Many other standard properties of
positive definiteness over R or C fail for finite fields. For example, a positive definite
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matrix may not have positive eigenvalues, and the entrywise product of two positive
definite matrices is not always positive definite [9, Section 3]. Taking all these into
account, the reader who is accustomed to working with positive definite matrices over
the real/complex fields must thus take great care when moving to the finite field world.
We now discuss selected proofs and ideas.

3 Dimension ≥ 3 : Paley (di)graph and its automorphisms

We adopt the combinatorial viewpoint of identifying the elements of Fq with the vertices
of the Paley (di)graph P(q). Paley (di)graphs have been well-studied in the literature. We
recall their definition and some basic properties.

Definition 3.1. If q ≡ 1 (mod 4) is a prime power, the Paley graph P(q) is a graph with
the elements of Fq as vertices, in which {a, b} is an edge if and only a− b ∈ F+

q . Similarly,
if q ≡ 3 (mod 4) is a prime power, the Paley digraph P(q) is a directed graph with the
elements of Fq as vertices, in which (a, b) is a directed edge if and only a − b ∈ F+

q .

Lemma 3.2 ([7, Proposition 9.1.1]). Let q ≡ 1 (mod 4). The Paley graph P(q) is a strongly
regular graph with parameters (q, q−1

2 , q−5
4 , q−1

4 ).

We say that f : Fq → Fq is an automorphism of the Paley (di)graph P(q) if η( f (a)−
f (b)) = η(a − b) for all a, b ∈ Fq. Recall that a well-known theorem of Carlitz [8]
provides the classification of these automorphisms.

Theorem 3.3 ([8]). Let p be an odd prime and q = pk. A function f : Fq → Fq is an automor-
phism of P(q) if and only if f (x) ≡ cxpℓ + d, for some c ∈ F+

q , d ∈ Fq, and ℓ ∈ {0, . . . , k − 1}.

Using the theory of Paley (di)graphs, we can prove Theorems B and C for n ≥ 3. For
this we use certain test matrices: let a, b, c ∈ Fq and define,

A(a, b, c) :=

a a a
a b b
a b c

 . (3.1)

Our general approach is to show that positivity preservers are automorphisms of Pa-
ley graphs. We first provide a necessary condition for preserving positivity on Mn(Fq).

Lemma 3.4 ([11, Lemma 2.13, 2.14]). Let q be a prime power, and f : Fq → Fq be a positivity
preserver over Mn(Fq). Then f (F+

q ) ⊆ F+
q . Moreover, if q ≡ 3 (mod 4) then f (F+

q ) = F+
q

and f (0) = 0.

Using the above, we provide a short proof of Theorem B for n ≥ 3.
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Proof of Theorem B for n ≥ 3. (1) =⇒ (3) for n ≥ 3: Using Lemma 3.4, without loss
of generality, we assume f (1) = 1. We can further assume n = 3 (as the general case
follows by embedding 3 × 3 positive definite matrices into larger matrices of the form
A ⊕ In−3). By Lemma 3.4 we have f (0) = 0.

Now, if η(a − b) = 0, then we are done. So assume η(a − b) = 1. Additionally if
b = 0, then η(a) = 1, and by Lemma 3.4 we have η( f (a)− f (0)) = 1. So assume b ∈ F∗

q ,
along with η(a − b) = 1, and consider two cases.

Case 1: Assume η(b) = 1. Then the matrix A :=
(

b b
b a

)
⊕ I1 is positive definite. Hence

det f [A] = f (b)( f (a)− f (b)) ∈ F+
q . Since η( f (b)) = 1 (Lemma 3.4), η( f (a)− f (b)) = 1.

Case 2: Assume η(b) = −1. Consider g(x) := x + b over Fq. Since g is bijective, g(0) = b
and g(−b) = 0, there exists −c ∈ F−

q such that g(−c) ∈ F+
q . Hence η(b − c) = 1, where

c ∈ F+
q . The matrix A(c, b, a) is positive definite, and so is f [A(c, b, a)]. In particular

det f [A(c, b, a)] = f (c)( f (b)− f (c))( f (a)− f (b)) ∈ F+
q .

We have η( f (c)) = 1, and using the previous case applied with a′ = b and b′ = c, we
have η( f (b)− f (c)) = 1. Thus, η( f (a)− f (b)) = 1.

Finally, if η(a − b) = −1, then η(b − a) = 1. Hence, via above η( f (b)− f (a)) = 1,
which implies η( f (a)− f (b)) = −1. Thus, (1) =⇒ (3). That (3) =⇒ (4) follows from
Theorem 3.3, (4) =⇒ (2) is via Proposition 1.4, and (2) =⇒ (1) is obvious.

A similar, but more technical route can be taken to resolve the q ≡ 1 (mod 4) case
when n ≥ 3 (Theorem C). The first step is to show the injectivity of preservers.

Theorem 3.5 ([11, Proposition 5.13]). Let Fq be a finite field with q ≡ 1 (mod 4) and let f
preserve positivity on M3(Fq). Then f is injective on F+

q .

One can then show that a positivity preserver on M3(Fq) has to be an automorphism
of the Paley graph P(q). See [11] for the details.

4 Dimension 2: Weil, Muzychuk–Kovács, Erdős–Ko–Rado

Interestingly, when working over M2(Fq), determining the positivity preservers is signif-
icantly more challenging. In that case, very little structure is available to work with and
combinatorial arguments need to be used to construct matrices with specific properties.

4.1 q ≡ 3 (mod 4): Weil’s character sum bounds

When q ≡ 3 (mod 4), we first prove that positivity preservers on M2(Fq) need to be
bijective. The proof involves a non-trivial application of the well-known Weil’s bound
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on complete character sums and proceeds by showing that, if f is not bijective, there
must exist a positive definite matrix that loses positivity when f is applied to its entries.

Lemma 4.1 ([11, Lemma 4.1]). Let Fq be a finite field with q ≡ 3 (mod 4) and let f : Fq → Fq
preserve positivity on M2(Fq). Then f (0) = 0 and f is bijective on F+

q and on F−
q (and hence

on Fq).

Knowing that f is bijective greatly helps to study the structure of the image set { f [A] :
A ∈ M2(Fq) is positive definite}. Our next result shows that a positivity preserver f over
M2(Fq) must be an odd function satisfying a multiplicative property.

Lemma 4.2 ([11, Lemma 4.2]). Let Fq be a finite field with q ≡ 3 (mod 4). Suppose f : Fq →
Fq preserves positivity on M2(Fq) and f (1) = 1. Then f (−x) ≡ − f (x) and f (x2) ≡ f (x)2.

With the above two preliminary results in hand, we can show that a positivity pre-
server on M2(Fq) has to be an automorphism of the Paley digraph P(q), which immedi-
ately implies the n = 2 case of Theorem B.

Theorem 4.3 ([11, Theorem 4.3]). Let Fq be a finite field with q ≡ 3 (mod 4) and let f :
Fq → Fq be such that f preserves positivity on M2(Fq), and f (1) = 1. Then f (x) ≡ xpℓ for
some ℓ = 0, 1, . . . , k − 1.

4.2 q ≡ 1 (mod 4): Muzychuk–Kovács’s automorphisms

When q ≡ 1 (mod 4), our techniques did not allow us to prove the analogue of
Lemma 4.1 showing that a preserver on M2(Fq) needs to be bijective on F+

q . However,
under that assumption, we provide a general argument to conclude the classification.

Proposition 4.4 ([11, Proposition 5.8]). Let q = pk be a prime power with q ≡ 1 (mod 4)
and let f be a positivity preserver over M2(Fq) with f (1) = 1. Assume additionally that f is
injective on F+

q . Then there exists 0 ≤ ℓ ≤ k − 1 such that f (x) = xpℓ for all x ∈ Fq.

Our proof of Proposition 4.4 relies on the following result from Muzychuk and
Kovács. Let Γ(q) be the subgraph of P(q) induced by F+

q . Muzychuk and Kovács [18]
confirmed a conjecture of Brouwer on the automorphisms of Γ(q).

Theorem 4.5 ([18]). Let p be a prime and q = pk ≡ 1 (mod 4). The automorphisms of the
graph Γ(q) are precisely given by the maps x 7→ cx±pℓ , where c ∈ F+

q and ℓ ∈ {0, 1, . . . , k − 1}.

To prove Proposition 4.4, we first show that f induces an automorphism of Γ(q).

Lemma 4.6 ([11, Lemma 5.9]). Let q be a prime power with q ≡ 1 (mod 4) and let f be a
positivity preserver over M2(Fq) with f (1) = 1. If f is injective on F+

q , then f (0) = 0, and f
(restricted to F+

q ) is an automorphism of Γ(q).
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As a consequence of Theorem 4.5, under the assumptions of Proposition 4.4, we
obtain f (x) = x±pl

for some l ∈ {0, 1, . . . , k − 1}. With considerably more effort, we rule
out the case f (x) = x−pl

(see [11] for more details).
In view of Proposition 4.4, we provide 3 sufficient conditions for a preserver f on

M2(Fq) to be injective on F+
q .

Proposition 4.7 ([11, Proposition 5.11]). Let q ≡ 1 (mod 4) and let f : Fq → Fq. If f maps
nonsingular matrices to nonsingular matrices, then f is injective on F+

q .

We say f : Fq → Fq is a sign preserver on Mn(Fq) if for all symmetric A ∈ Mn(Fq),
A is positive definite if and only if f [A] is positive definite. Thus, a sign preserver maps
positive definite and non-positive definite matrices into themselves, respectively.

Proposition 4.8 ([11, Proposition 5.12]). Let q ≡ 1 (mod 4) and let f be a sign preserver on
M2(Fq). Then f is injective on F+

q .

Finally, when working on Mn(Fq) with n ≥ 3, it is not difficult to establish the
injectivity of f on F+

q . This immediately shows (1) =⇒ (4) in Theorem C.

Proposition 4.9 ([11, Proposition 5.13]). Let q ≡ 1 (mod 4) and let f : Fq → Fq. If f is a
positivity preserver on M3(Fq), then f is injective on F+

q .

4.3 The q = r2 case: Erdős–Ko–Rado theorem for Paley graphs

When q = r2 where r is an odd prime power, we exploit the supplementary structure of
Fq to classify the preservers on M2(Fq). First notice that Fr is a clique in P(q). A square
translate of Fr has the form αFr + β, where α ∈ F+

q and β ∈ Fq. Such square translates are
maximum cliques in P(q) and it is well-known that these are the only maximum cliques
in P(q); this is known as the Erdős–Ko–Rado theorem for Paley graphs [10, Section 5.9].

Theorem 4.10 ([6, 1]). In the Paley graph P(q), the clique number of P(q) is r. Moreover, all
maximum cliques are given by squares translates of the subfield Fr.

Note that F∗
q/F∗

r is a well-defined group. One can thus write F∗
q as a disjoint union

of F∗
r -cosets. We say such a coset is a square coset if it has the form aF∗

r , where a is a
non-zero square in Fq. Theorem 4.10 implies the following corollary.

Corollary 4.11 ([11, Corollary 6.2]). Let C ⊂ F+
q be a clique in P(q). Then |C| ≤ r − 1 and

equality holds if and only if C is a square coset.

Now, let f : Fq → Fq preserve positivity on M2(Fq). Using the above supplementary
structure of Fq, we obtain the form of f via several non-trivial intermediary results.

Corollary 4.12 ([11, Corollary 6.7, 6.8]). The function f maps a square coset to a square coset
and f (0) = 0.
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Proposition 4.13 ([11, Proposition 6.9]). Let α ∈ F+
q . There exist a positive integer m = m(α)

such that gcd(m, r − 1) = 1 and f (αx) = βxm for all x ∈ Fr, where β = f (α) ∈ F+
q .

Proposition 4.14 ([11, Proposition 6.10]). The function f maps different square cosets to dif-
ferent square cosets. Equivalently, f is injective on F+

q .

Finally, using the above, we determine the structure of f , thereby completing the
proof of Theorem C.

Theorem 4.15 ([11, Theorem 6.11]). If f is a positivity preserver over M2(Fq), where q = pk ≡
1 (mod 4) is a square, then there exists c ∈ F+

q and 0 ≤ ℓ ≤ k − 1, such that f (x) = cxpℓ for
all x ∈ Fq.

One case was not addressed in the paper: the characterization of entrywise preservers
on M2(Fq) when q ≡ 1 (mod 4) and q is not a square. A possible approach for resolving
that case is to show that such preservers need to be injective on F+

q (and then invoke
Proposition 4.4). This was verified when q = 5. The general case is open.

Question 4.16. If f preserves positivity on M2(Fq) where q ≡ 1 (mod 4) is not a square,
does f have to be injective on F+

q ?
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