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Jack Combinatorics of the Equivariant Edge
Measure

Kyla Pohl* and Benjamin Young†

Department of Mathematics, University of Oregon, Eugene, OR 97403 USA

Abstract. We study the equivariant edge measure: a measure on partitions which
arises implicitly in the edge term in the localization computation of the Donaldson–
Thomas invariants of a toric threefold. We combinatorially show that the equivariant
edge measure is, up to choices of convention, equal to the Jack Plancherel measure.
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1 Introduction

We study a measure on integer partitions called the equivariant edge measure. Our work is
motivated by a problem in plane partition combinatorics that is well-known to enumer-
ative geometers, but perhaps less well known to combinatorialists: the equivariant vertex
measure. We first describe this motivating problem combinatorially.

1.1 Motivation: The Equivariant Vertex Measure

In their 2006 papers ([10, 11]), Maulik, Nekrasov, Okounkov, and Pandharipande (here-
after, MNOP) compute the Donaldson–Thomas partition function of a threefold with a
torus action; they use Atiyah–Bott localization to reduce the computation to the torus
fixed loci of the action. One result of their calculations is an exotic measure w on plane
partitions, called the equivariant vertex measure. This measure has has three parameters
u, v, w coming from the torus action. The equvariant vertex measure of a plane partition
π is a certain rational function in u, v, w, defined as follows: first, we temporarily choose
3 other formal parameters, r, s, t. We write

Q = ∑
(i,j,k)∈π

risjtk and Q = ∑
(i,j,k)∈π

r−is−jt−k,
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where both sums are over the boxes in the 3D Young diagram corresponding to π. Next,
write

F = Q − Q
rst

+ QQ
(1 − r)(1 − s)(1 − t)

rst
=: ∑

i,j,k
cijkrisjtk.

One checks that F is a Laurent polynomial with no constant term, so it makes sense to
“swap the roles of addition and multiplication” in this formula. As far as we understand
the geometry, the expression for F appears in the computation of the character of the
torus action, and the “swap” happens in the process of the localization calculation of
the Donaldson–Thomas invariants from this character; however, for the purposes of this
note, the swap is a purely formal operation. We may finally define the equivariant vertex
measure:

w(π) = ∏
i,j,k

(iu + jv + kw)−cijk .

One of the results of [11] is a closed form for the partition function of the equivariant
vertex measure. Namely, let |π| denote the number of boxes in the 3D Young diagram
for π. Then

Z := ∑
π

w(π)q|π| = M(q)−
(u+v)(v+w)(w+u)

uvw , where M(q) = ∏
i≥1

(
1

1 − qi

)i
. (1.1)

is Macmahon’s generating function for plane partitions [9]. Note also that our notation
differs from that in [10, 11]: we use different variable names, and we use q in place of
−q.

Such a closed formula as (1.1), in principle, puts w into the class of exactly solved
models in statistical mechanics. That is, w(ß)/Z is an explicit probability measure on
plane partitions π. One might hope to say essentially anything about w(ß)/Z – the
limiting shape of a typical plane partition, for instance, or the probability of finding a
particular local configuration of boxes in its 3D Young diagram. Indeed, although the
definition of w(π) is completely combinatorial, the proof of the formula for Z is intricate
and geometric. One would like a purely combinatorial proof. Unfortunately, all of these
hopes are currently well out of reach, based on current combinatorics knowledge. Note
that in the so-called Calabi–Yau specialization, where u + v + w = 0, everything simplifies
directly: we have w(π) ≡ 1 and Z = M(q), recovering Macmahon’s formula; random
plane partitions under this measure have been extensively studied by many authors (see
for instance [6, 13] for this precise problem, or [4] for a survey).

1.2 The Equivariant Edge Measure

Having introduced w(π) and proclaimed it to be hard to study, we now turn to a two-
dimensional version of this problem. The subject of this note is the analogue of the
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equivariant vertex measure for ordinary partitions which implicitly arises in [10]. More
specifically, it arises in the “edge term”, coming from a torus-invariant line in the local-
ization calculation. Given a partition λ, as in [10, Section 4.8] define generating functions

Q(λ) = ∑
(i,j)∈λ

risj and Q(λ) = ∑
(i,j)∈λ

r−is−j (1.2)

where the sums are taken over the coordinates of all cells in λ. Then, following [10,
Equation (12)], define

F(λ) = −Q(λ)− Q(λ)

rs
+

Q(λ)Q(λ)(1 − r)(1 − s)
rs

. (1.3)

We then swap the role of addition and multiplication much as before, though for con-
venience in stating the main result, we include a minus sign on v, and omit one in the
exponent (as compared with the definition of w). Given an index set A and a Laurent
polynomial G = ∑(i,j)∈A ci,jrisj in the variables r and s with no constant term, we define
the swap operation as follows:

swap(G) = swap

 ∑
(i,j)∈A

ci,jrisj

 = ∏
(i,j)∈A

(iu − jv)ci,j (1.4)

We then define the equivariant edge measure wMNOP to be the swap operation applied to
F(λ):

wMNOP(λ) := swap(F(λ)). (1.5)

1.3 The Jack Plancherel Measure

We now introduce a second, a priori different, measure on Young diagrams. The Jack
Plancherel measure was first studied in [7]; it is a probability measure on partitions of n,
defined by

wJack(λ) :=
1

∏(i,j)∈λ h∗(i, j)h∗(i, j)
. (1.6)

The upper and lower hook lengths h∗ and h∗ are in turn defined carefully in Section 2.1.
They are two perturbations of the standard hook length of a cell in a Young diagram,
and they depend on a single parameter β (which we homogenize using two parameters
u, v).

The Jack Plancherel measure is described in [1] as a natural perturbation of ordinary
Plancherel measure. Okounkov [12] also advanced the viewpoint that the Plancherel
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measure is a close analogue of the Gausiann Unitary ensemble from random matrix the-
ory and shares many of the same universal asymptotics; in this framework the Jack
Plancherel measure should have many of the universal asymptotics of the random-
matrix-theoretic β ensembles. Indeed, the bulk asymptotics were later computed in [3]
and the edge asymptotics in [5]. See also [2] for a recent interpretation of Jack character
values (of which the Jack Plancherel measure is one) in terms of enumerations of maps
on surfaces.

1.4 Main Result and Outline

Our main result is that the equivariant edge measure wMNOP is the Jack Plancherel mea-
sure.

Theorem 1. The Jack Plancherel measure of a partition λ is the same as the equivariant edge
measure of λ up to a sign, i.e.

wJack(λ) = −wMNOP(λ). (1.7)

It is no surprise to see the Jack Plancherel measure arising in enumerative geome-
try. For instance, Okounkov [12] described how the Jack Plancherel measure appears in
Seiberg–Witten theory, and in the study of the Hilbert scheme of points in the plane. The
latter relationship is surely closely related to our work, since this Hilbert scheme appears
also as a fundamental object in the computation of the Donaldson–Thomas invariants in
[10, 11]. Indeed, it would not entirely shock us to learn that our result is known to ge-
ometers; however, we were not able to find a clear statement or a proof in the literature.
Moreover, as both sides of Theorem 1 may be defined completely combinatorially, one
would like a combinatorial proof. We provide such a proof here.

In Section 2, we provide background information on partitions and hook lengths as
well as the necessary components of the work of MNOP in [10] and [11] and full defi-
nition of our “swap” operation, the equivariant vertex measure, and the Jack Plancherel
measure. Our main results appear in Section 3, in which we provide ratios of mea-
sures for growing a partition by one box in both the Jack Plancherel measure and the
equivariant edge measure. We then show that the ratios of measures are equal. Routine
induction reveals that the equivariant edge measure is the Jack Plancherel measure up
to a sign.

2 Background Information and Notation

This section explains necessary background information and set up to introduce the
main results in the next section. We follow the exceptional exposition of Stanley from
[14]; more information about the Jack symmetric functions can be found in [8, Chapter
10].
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2.1 Partitions and Hook Lengths

A partition λ is a vector (λ1, λ2, λ3, . . . ) with (not necessarily strictly) decreasing natural
number entries only finitely many of which are nonzero. The size of λ is

|λ| = λ1 + λ2 + · · · .

If |λ| = n then we say that λ partitions n, denoted λ ⊢ n. Each of the λi is called a part of
λ. The number of nonzero parts of λ is said to be the length of λ, denoted len(λ). In this
paper, we identify a partition λ with its Young (or Ferrers) diagram in English notation
with zero-indexed matrix coordinates, (row, column):

λ = {(i, j) | 0 ≤ i ≤ len(λ)− 1, 0 ≤ j ≤ λi − 1}.

The Young diagram for the partition λ = (3, 3, 1) is shown in Figure 1.

Figure 1: The diagram for λ = (3, 3, 1), whose cells are: {(0,0), (0,1), (0,2), (1,0), (1,1),
(1,2), (2,0)}.

Given two partitions λ and µ, we write µ ⊆ λ if the µi ≤ λi for all i. In other words,
µ ⊆ λ if the diagram of µ fits inside the diagram of λ when they are overlaid with their
upper left cells aligned. The partially ordered set defined by the relation ⊆ is called
Young’s Lattice. The conjugate λ′ of a partition λ is the partition with diagram

λ = {(j, i) | 0 ≤ i ≤ len(λ)− 1, 0 ≤ j ≤ λi − 1},

i.e., λ′ is the partition obtained by reflecting λ across the northwest to southeast diagonal.
Given a cell (i, j) in λ, the arm length and leg length of (i, j) are

aλ((i, j)) = λi − j, ℓλ((i, j)) = λ′
j − i

respectively.
Suppose that the cell (i, j) is in λ. Then the hook length of a cell □ ∈ λ is

hλ(□) = aλ(□) + ℓλ(□) + 1.

The partition λ may be suppressed from the notation for arm length, leg length, and
hook length if it is clear from context. For a partition λ define the upper and lower hook
lengths as

h∗λ(□) = u · ℓ(□) + v(a(□) + 1)

hλ
∗ (□) = u(1 + ℓ(□)) + v · a(□)
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respectively. Note that both the upper and lower hook lengths specialize to the standard
hook length on Young diagrams when u and v are both 1. Indeed, this can be viewed as
a homogenization of the Jack hook lengths described in [14]. In the notation of [14], the
Jack parameter is α, which for us is equal to v/u.

2v
v + u

v
u

3v + u
2v + 2u

2v + u
v + 2u

v
u

Figure 2: The upper and lower hook lengths of each box in µ = (3, 2).

The Jack Plancherel measure wJack(µ) (as defined in (1.6)) of the partition µ in Figure 2
is the product of the inverses of each of the expressions printed in the cells of µ.

2.2 Corners

We say a cell (i, j) in a partition λ is an inside corner of λ if neither (i + 1, j) nor (i, j + 1)
is in λ. We also add two artificial inside corners with coordinates (−1, ∞) and (∞,−1).
Similarly, we say a cell (i, j) ̸∈ λ is an outside corner of λ if any of the following hold:

• both of (i − 1, j) and (i, j − 1) are in λ

• (i, j) = (1, λ1 + 1)

• (i, j) = (λ′
1 + 1, 1).

Label the inside corners of λ from the bottom left to the top right as

(ρ0, γ0), (ρ1, γ1), (ρ2, γ2), . . . , (ρm, γm), (ρm+1, γm+1) (2.1)

where ρ0 = γm+1 = ∞ and ρm+1 = γ0 = −1. This means the outside corners are

(ρ1 + 1, 0), (ρ2 + 1, γ1 + 1), (ρ3 + 1, γ2 + 1), . . . , (0, γm + 1).

2.3 Equivariant Edge Measure Preliminaries

We now turn to a discussion of the quantities Q(λ), Q(λ), F(λ), and wMNOP(λ) defined
in Section 1.2. Where unambiguous, we write Q = Q(λ) and so forth. The following
two lemmas concern a generating function which we call the “corner polynomial” and a
useful property of the swap operation.
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µ

...

· · ·

(ρ1, γ1)

(ρ2, γ2)

(ρ0, γ0)

(ρ3, γ3)

(ρ1 + 1, γ0 + 1)

(ρ2 + 1, γ1 + 1)

(ρ3 + 1, γ2 + 1)

Figure 3: The inside (red/darker) and outside (blue/lighter) corners of µ = (3, 2).
Here, (ρ0, ρ1, ρ2, ρ3) = (∞, 1, 0,−1) and (γ0, γ1, γ2, γ3) = (−1, 1, 2, ∞).

Lemma 2. The “corner polynomial” for a partition λ is

C = C(λ) := Q(1 − r)(1 − s) = 1 + ∑
(i,j) (true) inside corner of λ

ri+1sj+1 − ∑
(i,j) outside corner of λ

risj

= 1 +
m

∑
k=1

rρk+1sγk+1 −
m+1

∑
k=1

rρk+1sγk−1+1. (2.2)

Proof. Omitted.

Define C similarly:

C := Q(1 − r−1)(1 − s−1) =
Q(1 − r)(1 − s)

rs
.

Lemma 3. For Laurent polynomials F and G in the variables r and s with no constant terms,
the quotient of swaps of F and G is the swap of the difference of F and G. In other words,

swap(F − G) =
swap(F)
swap(G)

. (2.3)
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1 −1

−1

−1 1

1
λ

Figure 4: Inside every cell in λ = (3, 2) is the coefficient of its contribution to C. Empty
cells contribute nothing to C. For example, the cell (1, 2) contributes −1 · r1s2 to C.

Proof. Suppose

F = ∑
i,j

ci,jrisj, G = ∑
i,j

di,jrisj.

Applying the swap operation yields

swap(F) = ∏
i,j
(iu − jv)ci,j , swap(G) = ∏

i,j
(iu − jv)di,j .

Note also that

F − G = ∑
i,j
(ci,j − di,j)risj and swap(F − G) = ∏

i,j
(iu − jv)ci,j−di,j .

Taking the quotient of swap(F) and swap(G), we have

swap(F)
swap(G)

=
∏i,j(iu − jv)ci,j

∏i,j(iu − jv)di,j
= ∏

i,j
(iu − jv)ci,j−di,j = swap(F − G).

3 Main Results

In this section, we compute both the ratio of Jack Plancherel measures and the ratio
of equivariant edge measures of two partitions that differ by exactly one corner. Once
this is accomplished, we compare these ratios. Then Theorem 1 follows by induction on
Young’s lattice.

Given a partition λ and a distinguished inside corner of λ, (ρℓ, γℓ), define a new
partition µ by removing (ρℓ, γℓ) from λ. Note that µ ⊆ λ and |λ| = |µ|+ 1. Figure 5
shows an example of such a pair of Young diagrams.
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(ρℓ, γℓ)

(a) λ = (3, 2, 1) (b) µ = (3, 1, 1)

Figure 5: The partition µ is obtained by removing the corner (ρℓ, γℓ) from λ.

3.1 Ratio of Jack Plancherel Measures

Recall that we defined the Jack Plancherel measure as

wJack(λ) =
1

∏□∈λ h∗λ(□)hλ
∗ (□)

in Section 1. We now compute the ratio of Jack Plancherel measures of two partitions λ

and µ related as described above.

Proposition 4. Let µ and λ be partitions such that |µ|+ 1 = |λ| and µ ⊆ λ and let m be the
number of non-artificial inside corners of λ. Then

wJack(λ)

wJack(µ)
=

m

∏
k=1

A(k)

where

A(k) =



((ρℓ−ρk−1)u−(γℓ−γk−1)v)·((ρℓ−ρk)u−(γℓ−γk)v)
((ρℓ−ρk−1)u−(γℓ−γk−1−1)v)·((ρℓ−ρk)u−(γℓ−γk−1)v)

if k < ℓ

((ρℓ−ρk)u−(γℓ−γk)v)·((ρℓ−ρk−1)u−(γℓ−γk−1)v)
((ρℓ−ρk+1)u−(γℓ−γk)v)·((ρℓ−ρk+1−1)u−(γℓ−γk−1)v) if k > ℓ

1
(ρℓ−ρℓ+1)u·((ρℓ−ρℓ+1−1)u+v) ·

uv
(u+(γℓ−γℓ−1−1)v)·((γℓ−γℓ−1)v)

if k = ℓ.

(3.1)

Proof. Omitted.

3.2 Ratio of Equivariant Edge Measures

We now compute the ratio of the equivariant edge measures of two partitions that differ
by a single box.
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Proposition 5. Let µ and λ be partitions such that |µ|+ 1 = |λ| and µ ⊆ λ. Then

wMNOP(λ)

wMNOP(µ)
=

m

∏
k=1

B(k)

where

B(k) =



((ρℓ−ρk)u−(γℓ−γk)v)((ρℓ−ρk−1)u−(γℓ−γk−1)v)
((ρℓ−ρk)u−(γℓ−γk−1)v)((ρℓ−ρk+1−1)u−(γℓ−γk−1)v) if k < ℓ

((ρℓ−ρk)u−(γℓ−γk)v)((ρℓ−ρk−1)u−(γℓ−γk−1)v)
((ρℓ−ρk)u−(γℓ−γk−1)v)((ρℓ−ρk+1−1)u−(γℓ−γk−1)v) if k > ℓ

−uv
(γℓ−γℓ−1)v·((ρℓ−ρℓ+1−1)u+v) ·

1
((ρℓ)u−(γℓ−γm)v)((ρℓ−ρ1−1)u−(γℓ−1)v) if k = ℓ.

(3.2)

Proof. Omitted.

3.3 Comparison of Ratios

So far, we have expressed ratios of both the Jack Plancherel measure and the equivariant
edge measure as products over the corners of λ. It remains to show that these ratios are
equal, and then use that information inductively to show that wJack(λ) = −wMNOP(λ).

Theorem 6. We have

wJack(λ)

wJack(µ)
=

wMNOP(λ)

wMNOP(µ)
. (3.3)

Proof. We have

wJack(λ)

wJack(µ)

wMNOP(λ)
wMNOP(µ)

=
m

∏
k=1

A(k)
B(k)

by Proposition 4 and Proposition 5. We simplify this in three cases: k < ℓ, k > ℓ, and
k = ℓ. When k < ℓ, all but one term of A(k) agrees with B(k). The remaining term in
A(k) is

TA(k) :=
1

(ρℓ − ρk − 1)u − (γℓ − γk−1 − 1)v

and for B(k) is

TB(k) :=
1

(ρℓ − ρk+1 − 1)u − (γℓ − γk − 1)v
.
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Note that TB(k) = TA(k + 1). So via traditional cancellation and telescoping,

ℓ−1

∏
k=1

A(k)
B(k)

=
ℓ−1

∏
k=1

TA(k)
TB(k)

=
TA(1)

TB(ℓ− 1)
=

−u − (γℓ − γℓ−1 − 1)v
(ρℓ − ρ1 − 1)u − (γℓ − 1)v

.

We proceed analogously with the k > ℓ case. Define

TA(k) =
1

(ρℓ − ρk+1)u − (γℓ − γk)v
and TB(k) =

1
(ρℓ − ρk)u − (γℓ − γk−1)v

.

Then

m

∏
k=ℓ+1

A(k)
B(k)

=
m

∏
k=ℓ+1

TA(k)
TB(k)

=
TA(m)

TB(ℓ+ 1)
=

(ρℓ − ρℓ+1)u
(γℓ − γm)v − (ρℓ)u

.

Remark 7. When λ has zero corners, i.e. when m = 0, the products above are empty.
When λ has one corner then one can verify that the two expressions above are both one.

Now

wJack(λ)

wJack(µ)

wMNOP(λ)
wMNOP(µ)

=
m

∏
k=1

A(k)
B(k)

=
(−1)((γℓ − γℓ−1 − 1)v + u)
(γℓ − 1)v − (ρℓ − ρ1 − 1)u

· (ρℓ − ρℓ+1)u
(γℓ − γm)v − (ρℓ)u

· A(ℓ)

B(ℓ)
.

We cancel, revealing

wJack(λ)

wJack(µ)

wMNOP(λ)
wMNOP(µ)

= 1.

Proof of Theorem 1. We proceed by induction on the size of a partition using the partition
ν with one box as our base case. Let s be the unique cell in ν. We have

wJack(ν) =
1

h∗(s)h∗(s)
=

1
uv

and

wMNOP(ν) = swap

(
−Q(ν)− Q(ν)

rs
+

Q(ν)Q(ν)(1 − r)(1 − s)
rs

)
(3.4)

= swap
(
−1

s
− 1

r

)
= − 1

uv
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as we expect. Suppose that wJack(µ) = −wMNOP(µ) for all partitions of size n − 1. By
Theorem 6, given a partition λ of size n, we know that

wJack(λ)

wJack(µ)
=

wMNOP(λ)

wMNOP(µ)

for any µ ⊆ λ of size n − 1. Multiplying both sides by wJack(µ) = −wMNOP(µ) yields

wJack(λ) = −wMNOP(λ).
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