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Abstract. We study a twisted version of Fraser–Lam–Le’s higher boundary measure-
ment map using face weights instead of edge weights, thereby providing Laurent
monomial expansions, in Plücker coordinates, for twisted web immanants for Grass-
mannians. Combined with our computation that web immanants for Gr(3, 12) and
Gr(4, 12) correspond to webs indexed by transposed standard Young tableaux, we re-
cover and extend formulas of Elkin–Musiker–Wright for twists of certain cluster vari-
ables.
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1 Introduction

Our work will compare the coordinate ring of the Grassmannian, denoted C[Ĝr(k, n)],
and the space of tensor invariants, denoted W(Cr). Here, Gr(k, n) is the space of k-
dimensional linear subspaces of Rn, and Ĝr(k, n) denotes the affine cone over Gr(k, n)
using the Plücker embedding. C[Ĝr(k, n)] is generated by the Plücker coordinates, defined
as k × k minors of a full rank k × n matrix, up to Plücker relations. We denote by ∆J the
Plücker coordinate corresponding to the determinant of the k columns indexed by subset
J ⊂ [n]. This description gives a natural Nn-grading on C[Ĝr(k, n)], where the piece
associated to λ = (λ1, . . . , λn) ∈ Nn is generated by products of Plücker coordinates
with column i represented λi times.

Let Wλ(C
r) = HomSLr

(⊗n
i=1

∧λi Cr, C
)

be the space of tensor invariants of multide-
gree λ. This space is spanned by invariants coming from SLr webs, certain planar graphs
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embedded in a disk. For r ≤ 4, bases of web invariants are known due to Kuperberg [10]
(r = 2, 3) and Gaetz, Pechenik, Pfannerer, Striker, and Swanson [8] (r = 4).

Postnikov defined a boundary measurement map linking Plücker coordinates to dimer
covers (also called almost perfect matchings) on plabic graphs [16]. This map associates
to a network N (a plabic graph G along with a choice of edge weights in C×) a point
X̂(N) in Ĝr(k, n). Lam [11], and later Fraser–Lam–Le [7], extended the boundary mea-
surement map using r-dimer covers1 on plabic graphs. Each r-dimer cover of G with
boundary condition λ ∈ Nn gives rise to an SLr web. The r-fold boundary measurement
Webr(N; λ) is a linear combination of the web invariants of all r-dimer covers of G, with
coefficients coming from the edge weights of N; see Section 2.

Work of Scott [17] provides a cluster algebra structure for C[Ĝr(k, n)], which is given
explicitly in terms of plabic graphs. A plabic graph G determines an initial seed of this
cluster algebra, consisting of one Plücker coordinate for each face of G. By [12, 13],
the boundary measurement map can be used to write the images of Plücker coordinates
under an important automorphism, the twist map τ of [1], as a Laurent polynomial in the
initial seed. Theorem 3.4 in [4] explains that by switching from using edge weights to face
weights, using the face labeling of a plabic graph, we can now give Laurent expansions
of twists of Plücker coordinates. In our Theorem 2.1, we give a wide generalization of
this result.

Inspired by the interaction between the twist automorphism and the face weights, we
define a twisted version Webτ

r (N; λ) of Fraser–Lam–Le’s higher boundary measurement
map Webr(N; λ); see (2.3). As seen in Section 2, a key feature of Webr(N; λ) is that it
can be used to define an isomorphism between the dual space Wλ(C

r)∗ and C[Ĝr(k, n)]λ
when ∑i λi = kr, thereby providing a bilinear pairing ⟨·, ·⟩ : Wλ(C

r)⊗ C[Ĝr(k, n)]λ →
C. We call this the FLL pairing. In Corollary 2.2, by studying pairings of the form
⟨Webτ

r (N; λ), f ⟩ for f ∈ C[Ĝr(k, n)]λ, we show that Webτ
r (N; λ) functions as a twisted

higher boundary measurement map.
In Section 3, we turn our attention to the cases when n = kr and λ = (1, . . . , 1) ∈

Nn. In this setting, we have C[Ĝr(k, n)]λ ∼= Wλ(C
k), so FLL duality provides a pairing

between Wλ(C
r) and Wλ(C

k). For k ≤ 4, it is natural to compute the web immanants
dual under ⟨·, ·⟩ to the known SLk web bases of [10] and [8]. This was done by Fraser
[6] for k = 2 and by Fraser–Lam–Le for (k, n) = (3, 6) and (3, 9). Remarkably, in each
of these cases, the web immanants are themselves SLr web invariants. In Theorem 3.1,
we extend these results by computing the dual basis to Kuperberg’s SL3 web basis when
(k, n) = (3, 12). Basis webs for Wλ(C

3) (resp. Wλ(C
4)) are in bijection with standard

Young tableaux (SYTs) of rectangular shape 3× 4 (resp. 4× 3), and our results show that
in all but one case, the web immanants are again basis web invariants whose tableau is
the transpose of the tableau indexing the original basis web. This duality is depicted in
Tables 1 and 2. As an application, we obtain combinatorial expansion formulas for twists

1Multi-sets of edges incident to each internal vertex (resp. boundary vertex i) exactly r (resp. λi) times.
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of elements of C[Ĝr(3, 12)]λ and C[Ĝr(4, 12)]λ (Theorem 3.3), extending the results of [4].
Part of the motivation of our work is to provide expansion formulas for cluster vari-

ables in C[Ĝr(k, n)]. In a cluster algebra, the cluster variables are a distinguished set of
generators defined recursively through mutation. Cluster variables sit in certain overlap-
ping sets called clusters, which in geometric examples corresponds to a transcendence
basis of the coordinate ring. By [12, Proposition 8.10], the twist map on C[Ĝr(k, n)] sends
cluster variables to cluster variables, up to multiplication by frozen variables. For k = 2,
every Grassmannian cluster variable is a Plücker coordinate, and the twist2 sends the
Plücker coordinate ∆a,b to ∆a+1,b+1. However, in Grassmannian cluster algebras with
k ≥ 3 and n ≥ 6, some cluster variables are more complicated polynomials in Plücker
coordinates, and even some Plücker coordinates only appear as (factors of) twists if
applied to these higher degree non-Plücker cluster variables.

For most values of k and n, C[Ĝr(k, n)] has infinitely many cluster variables, for
which there is no known parametrization. However, in the case k = 3, an influential
conjecture of Fomin and Pylyavskyy [5] posits that the cluster variables in C[Ĝr(3, n)]
are exactly the basis web invariants which are both indecomposable and arborizable. In
our analysis of the degree 4 web invariants in C[Ĝr(3, n)], we verify that the Fomin–
Pylyavskyy conjecture is consistent with enumerative conjectures of [3] (see Section 4).

2 Twists and r-dimer covers

Let G be a plabic graph which represents the top cell of Ĝr(k, n), and let λ ∈ Nn. Let
Dr,λ(G) denote the set of all r-dimer covers of G such that the number of edges in D
incident to boundary vertex i is exactly λi. Each r-dimer D gives rise to a r-weblike
subgraph of G, which is in turn uniquely associated to a tensor invariant D ∈ Wλ(C

r).
Given a (k, n) network N, which assigns nonzero complex weights to each edge in G, we
define the edge weight ewtN(D) := ∏e∈D wt(e), where D is a multiset of edges. Then
the FLL tensor invariant is defined as Webr(N; λ) := ∑D∈Dr,λ(G) ewtN(D)D ∈ Wλ(C

r).
Let ∑i λi = kr. By [7, Theorem 4.8], for any φ in the dual space (Wλ(C

r))∗, there exists
a unique f ∈ C[Ĝr(k, n)] which makes the following diagram commute. In particular, the
immanant map, Imm : (Wλ(C

r))∗ → C[Ĝr(k, n)]λ, defined by setting Imm(φ) to be this
unique function f , is an isomorphism. Here, X̂ is Postnikov’s boundary measurement
map.

{(k, n) networks} Wλ(C
r)

Ĝr(k, n) C

Webr(−;λ)

X̂ φ

∃! f=:Imm(φ)

2We follow the conventions of [4], and use right twists, which are variants of Marsh–Scott (left) twists.
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The definition of the immanant map provides us with the FLL pairing ⟨·, ·⟩ discussed
in the introduction. When the element of Wλ(C

r) is an FLL tensor, the following equa-
tion [7, Equation 5.17] follows from the definition:

⟨Webr(N; λ), f ⟩ = f (X̂(N)). (2.1)

Let S = (S(1), . . . , S(n)) be a list of subsets S(i) ⊆ [r] such that S(1) ∪ S(2) ∪ · · · ∪
S(n) = {1k, . . . , rk} as a multiset. A consistent labeling of web W with boundary label
condition S is an assignment of a subset of [r] to each edge of W such that boundary
vertex i is incident to edges labeled with the elements in S(i), and each internal vertex
is incident to exactly one instance of i for each i ∈ [r]. An edge with multiplicity m is
labeled with a size m subset of [r]. Let a(S ; W) be the number of consistent labelings of W
with boundary label condition S . In the following, given an SLr web W, we let W denote
the associated tensor invariant in Wλ(C

r) using the convention in [7, (4.1)]. Pairing a web
invariant with a product of Plücker coordinates reduces to counting consistent labelings
[7, Equation 5.16]:

⟨W, ∆I1 · · ·∆Ir⟩ = a(S ; W). (2.2)

Given a plabic graph G and an r-dimer cover D ∈ Dr,λ(G), let F(G) denote the
set of all faces of G, If ∈ ([n]k ) the k-subset labeling face f, Wf the number of white
vertices bordering face f, and Df the number of non-boundary edges of f used in D.
We define face weights of D, both with respect to the plabic graph G, and to a net-
work N with underlying graph G: fwtG(D) := ∏f∈F(G) ∆rWf−Df−r

If
∈ C[Ĝr(k, n)]λ and

fwtN(D) := (fwtG(D))(X̂(N)) ∈ C. Notice that the former is a Laurent monomial in
Plücker coordinates, while the latter is a complex number. We use the face weights to
define a twisted FLL tensor invariant Webτ

r (N; λ):

Webτ
r (N; λ) := ∑

D∈Dr,λ(G)

fwtN(D)D ∈ Wλ(C
r). (2.3)

Corollary 2.2 will justify this terminology.
Our first theorem gives Laurent expansions for the twist automorphism τ of an ele-

ment of C[Ĝr(k, n)]λ, with coefficients given by the FLL pairing. This is a generalization
of results from [4, 12].

Theorem 2.1. Let f ∈ C[Ĝr(k, n)]λ and let G be a plabic graph representing the top cell
of Ĝr(k, n). The twist of f is given by

τ( f ) = ∑
D∈Dr,λ(G)

⟨D, f ⟩ fwtG(D). (2.4)

Proof Sketch. Since τ is a ring endomorphism, it suffices to prove the claim when f is a
product ∆I1 · · ·∆Ir of Plücker coordinates, as these span C[Ĝr(k, n)]. When r = 1, the
claim follows from combining (2.2) with [4, Theorem 3.4].



Twists, r-dimer covers, and web duality 5

In the inductive step, to show the claim holds for f a degree r > 1 product of Plücker
coordinates, we can split f into a product of lower degree products f = f ′ f ′′; it suffices
to let f ′ be degree 1 and f ′′ be degree r − 1. Let λ be such that f ∈ C[Ĝr(k, n)]λ and let
S = (S(1), . . . , S(n)) such that S(i) = {j | i ∈ Ij} ⊂ [r]. Define λ′, λ′′,S ′,S ′′ similarly
with respect to f ′, f ′′. We use (2.2) and the fact that τ is a ring endomorphism to rewrite
τ( f ) in terms of dimers D′ ∈ D1,λ′(G) and D′′ ∈ Dr−1,λ′′(G). Setting A(S ; D) to be the
set of consistent labelings enumerated by a(S ; D), the crux of the argument is showing a
straightforward bijection between {A(S ′; D′)× A(S ′′; D′′) | D′ ∪ D′′ = D} and A(S ; D)
and noting that the definition of fwtG is multiplicative with respect to this map.

As a corollary, we obtain a “twisted version” of (2.1) by evaluating each side of (2.4)
at the point X̂(N) ∈ Ĝr(k, n).

Corollary 2.2. For N a (k, n) network and f ∈ C[Ĝr(k, n)]λ, we have

⟨Webτ
r (N; λ), f ⟩ = (τ( f ))(X̂(N)).

In the cases where web bases B and B∗ for C[Ĝr(k, n)]λ and Wλ(C
r), respectively, are

known, Theorem 2.1 gives a method for computing explicit Laurent expansion formulas
for twists. In the next section, we will exhibit dual bases in the setting when k = 3, r = 4,
n = 12, and λ = (1, . . . , 1) ∈ N12.

3 Computing web duals

For each of the known web bases (k = 2, 3, 4) [10, 8] and λ = (1, . . . , 1), there is a
bijection between the basis webs W for C[Ĝr(k, n)]λ and SYTs T(W) of shape k × r [8,
9, 18]. These bijections satisfy several nice properties. Promotion on T(W) corresponds
to rotation of W [8, 15], and evacuation on T(W) corresponds to reflection of W [8,
14]. For an SYT T, define the row word w(T) = w1 · · ·wn to be the lattice word such
that wi ∈ [k] is the row of T containing i. This word determines a boundary condition
S(w(T)) = ({w1}, . . . , {wn}). For all basis webs W, we have a(S(w(T(W))), W) = 1.
Furthermore, for all other words v on the multiset {1r, . . . , kr} such that a(S(v); W) ̸= 0,
we have v > w(T(W)) in lexicographic order [8].

Fraser–Lam–Le [7] observed that in the small cases (k, n) = (3, 6) and (3, 9), the web
bases are dual, and duality corresponds to transposing the SYTs associated to basis webs.
We will show here that this correspondence also holds for (k, n) = (3, 12).

Let λ = (1, . . . , 1) ∈ N12, and let B denote Kuperberg’s non-elliptic web basis for
the 462-dimensional C-vector space C[Ĝr(3, 12)]λ. The dual basis B∗ for the space
C[Ĝr(4, 12)]λ ∼= Wλ(C

4) ∼= (C[Ĝr(3, 12)]λ)∗ is shown in Tables 1 and 2. Each cell in
the table depicts a basis web Xi ∈ B (right) and its dual Wi = X∗

i ∈ B∗ (left) as well as
their corresponding row words. The 462 basis webs in B can be grouped into 32 orbits
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up to rotation and reflection. We depict one representative Wi ∈ B∗ for each of these
orbits. For the remainder of this abstract, for 1 ≤ i ≤ 32, we will let Wi ∈ B∗ and Xi ∈ B
denote the webs depicted in cell i of the table. In this abstract, we only consider duality
up to a sign, and we omit considerations of tagged webs.

Theorem 3.1. The bases B and B∗, as depicted in Tables 1 and 2, are dual with respect to
the FLL pairing (possibly up to a sign). In other words, ⟨Wi, Xi⟩ = ±1, and ⟨Wi, Xj⟩ = 0
for all i ̸= j. Moreover, the corresponding tableaux satisfy T(Wi) = T(Xi)

t (where “t”
denotes transpose).

To prove Theorem 3.1, we fix an element Wi ∈ B∗ and evaluate ⟨Wi, Xj⟩ for all Xj ∈
B. We can dramatically reduce our casework through a set of lemmas concerning the
existence of a consistent labeling of a web with certain boundary conditions.

For i < j ∈ [n], we say a web W has a fork at (i, j) if boundary vertices i and j are each
connected to a common interior vertex by a single edge. Our critical observation is the
following lemma:

Lemma 3.2. Let λ = (λ1, . . . , λn) with ∑i λi = kr. Let W be an SLr web and X an SLk
web, each with boundary conditions given by λ. If both W and X have forks at (i, j),
then ⟨W, X⟩ = 0.

Proof Sketch. If X has a fork at (i, j), then by an inductive argument using the skein
relations [2] for SLk webs, there exists an expansion of X as a sum of products of Plücker
coordinates, X = ∑ℓ Xℓ with Xℓ = ∏r

m=1 ∆Iℓ,m , such that without loss of generality i, j ∈
Iℓ,1 for each ℓ. Thus each Xℓ prescribes a boundary label condition S = (S1, . . . , Sn) such
that Si ∩ Sj ̸= ∅. If W also has a fork at (i, j), then there is no consistent labeling of
W with this boundary condition, i.e. a(S ; W) = 0. Thus ⟨W, Xℓ⟩ = 0 for all ℓ, and by
bilinearity ⟨W, X⟩ = ∑ℓ⟨W, Xℓ⟩ = 0.

We eliminated pairs of webs whose pairing is 0 by Lemma 3.2, using the fact that a
web Xj has fork at (ℓ, ℓ + 1) if and only if i is in the descent set of the corresponding
row word [8]. Moreover, we prove other technical lemmas concerning the existence of
consistent labelings and skein relations to identify more pairs W, X with ⟨W, X⟩ = 0. For
the specific case when r = 4, k = 3, some small examples are shown in Figure 1. Lastly,
we checked the pairing of W with the subset of B not yet considered, by expanding each
remaining Xj into a sum of products of Plücker coordinates and using (2.2).

For all but four of the 462 basis webs, our dual basis B∗ for C[Ĝr(4, 12)]λ coincides
with the basis given by the growth algorithm of [8, Section 5]. The exceptional cases are
the four rotations of the highly symmetric SL3 web X16 = ∆1,2,3∆5,6,7∆9,10,11∆4,8,12.

Under the bijection of [8], the transposed tableau T(X16)
t corresponds to a web with

a hexagonal “benzene face” where the edges alternate between single and double edges
(this web is one of the summands of W16). As explained in [8, Section 6], tableau T(X16)

t
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Figure 1: For r = 4, k = 3 pairings with these boundary configurations evaluate to 0.

in fact corresponds to the entire benzene-move-equivalence class of this web, where
benzene moves interchange the single and double edges bounding the hexagon. The
authors of [8] break this symmetry by choosing the top representative (maximal among
the benzene-move-equivalence class). However, this is not a reflection-invariant choice,
losing a property for k = 4 that held for web bases when k = 2 or k = 3. By setting
W16 = X∗

16 to be the difference of two webs, our basis has the desirable property of being
both rotation- and reflection-invariant, as W16 and its reflection are in fact equal as web
invariants.

As an application of Theorems 2.1 and 3.1, we obtain combinatorial expansion for-
mulas for twists of functions in C[Ĝr(3, 12)]λ and C[Ĝr(4, 12)]λ, λ = (1, . . . , 1), in terms
of higher dimer covers. In these settings, given a web-like subgraph D, we can use
skein relations from [5, 8] to write D as a linear combination of basis web invariants,
D = ∑W CD

WW. Then, Theorem 3.1 allows us to identify the coefficients in Theorem 3.3
for a web invariant as coming from these web expansions.

Theorem 3.3. Let n = 12, k ∈ {3, 4}, and λ = (1, . . . , 1) ∈ N12. Let Y ∈ C[Ĝr(k, 12)]λ be
the web invariant associated with an SLk-basis web Y (excluding Y = X16 and Y = W16)3.
Let G be a reduced plabic graph for the top cell of Ĝr(k, 12)≥0. Then, we can express
τ(Y) = ∑D∈Dr,λ(G) CD

Y∗ fwtG(D), where Y∗ is the dual basis web associated to Y.

Example 3.4. Let G be the reduced plabic graph for the top cell of Ĝr(3, 12)≥0 appearing
in Figure 2 (top). Consider the basis web invariant X28 ∈ C[Ĝr(3, 12)](1,...,1) associated to
the degree four SL3 web X28 (the 28th representative of Table 2). We can expand X28 in
terms of Plücker coordinates and use [4, Proposition 4.3] to write its twist,

τ(X28) = [∆1,2,12∆2,3,4∆4,5,6∆6,7,8∆8,9,10∆10,11,12](∆1,7,11∆3,5,9 − ∆1,9,11∆3,5,7)

which is a degree two non-Plücker cluster variable multiplied by a degree six frozen
monomial. Thus, as an application of Theorem 3.3, the Laurent expansion

τ(X28) =
∆1,2,12∆2,3,4∆4,5,6∆6,7,8∆8,9,10∆10,11,12(∆1,3,5∆1,9,11∆5,7,9 + ∆1,5,11∆1,7,9∆3,5,9)

∆1,5,9

3We can in fact give combinatorial formulas in these cases with a small modification, but for sake of
brevity we omit this.
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relative to this choice of initial seed agrees with the face weights of the only two quadru-
ple dimer covers of this plabic graph, as illustrated in Figure 2 (top), that admit a 4-
weblike subgraph, see Figure 2 (bottom), that expands via SL4 skein relations to include
W28, the dual of X28, in its support (and with coefficient 1). Note that the 4-weblike
subgraph on the right has forbidden squares in its move equivalence class which allow
us to apply the SL4-skein relations.

The pairing between the web bases for C[Ĝr(3, 12)](1,...,1) and C[Ĝr(4, 12)](1,...,1), along
with the observations in the Appendix in [7], lead us to believe that this phenomenon
will persist more generally. Given n, k, r with n = kr and a k × r SYT T and its transpose
Tt, we expect there are corresponding web basis elements W and W∗, related by web
duality, associated to C[Ĝr(k, n)] and C[Ĝr(r, n)], respectively, such that the Laurent
expansion of the degree r SLk web invariant W in the cluster algebra for C[Ĝr(k, n)] may
be expressed as in Theorem 2.1 using the dual web W∗.
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Figure 2: (Top): Two 4-dimer covers on a plabic graph G for C[Ĝr(3, 12)];
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2

3

4

5
6

7

8

9

10

11
12

111223342344

1

2

3

4

5
6

7

8

9

10

11
12

123121213323
10. 1

2

3

4

5
6

7

8

9

10

11
12

111223342434

1

2

3

4

5
6

7

8

9

10

11
12

123121213233

11. 1

2

3

4

5
6

7

8

9

10

11
12

111223344234

1

2

3

4

5
6

7

8

9

10

11
12

123121212333

12. 1

2

3

4

5
6

7

8

9

10

11
12

111223423434

1

2

3

4

5
6

7

8

9

10

11
12

123121132233
13. 1

2

3

4

5
6

7

8

9

10

11
12

111223432344

1

2

3

4

5
6

7

8

9

10

11
12

123121123323

14. 1

2

3

4

5
6

7

8

9

10

11
12

111223432434

1

2

3

4

5
6

7

8

9

10

11
12

123121123233

15. 1

2

3

4

5
6

7

8

9

10

11
12

111223434234

1

2

3

4

5
6

7

8

9

10

11
12

123121122333
16. 1

2

3

4

5
6

7

8

9

10

11
12

−

1

2

3

4

5
6

7

8

9

10

11
12

=

1

2

3

4

5
6

7

8

9

10

11
12

−

1

2

3

4

5
6

7

8

9

10

11
12

111232234434

1

2

3

4

5
6

7

8

9

10

11
12

123112321233

Table 1: Dual bases for Wλ(C
4) and Wλ(C

3), λ = (1, . . . , 1). Cell i depicts basis
elements Wi ∈ Wλ(C

4) (left) and Xi ∈ Wλ(C
3) (right), as well as the row words of their

associated standard Young tableaux. Following [8], we depict edges of multiplicity > 1
as hourglass edges.
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17. 1

2

3

4

5
6

7

8

9

10

11
12

111232342434

1

2

3

4

5
6

7

8

9

10

11
12

123112213233

18. 1

2

3

4

5
6

7

8

9

10

11
12

111232434234

1

2

3

4

5
6

7

8

9

10

11
12

123112122333

19. 1

2

3

4

5
6

7

8

9

10

11
12

111232344234

1

2

3

4

5
6

7

8

9

10

11
12

123112212333
20. 1

2

3

4

5
6

7

8

9

10

11
12

111234234234

1

2

3

4

5
6

7

8

9

10

11
12

123111222333

21. 1

2

3

4

5
6

7

8

9

10

11
12

112122334344

1

2

3

4

5
6

7

8

9

10

11
12

121323121323

22. 1

2

3

4

5
6

7

8

9

10

11
12

112122343434

1

2

3

4

5
6

7

8

9

10

11
12

121323112233
23. 1

2

3

4

5
6

7

8

9

10

11
12

112123234344

1

2

3

4

5
6

7

8

9

10

11
12

121321321323

24. 1

2

3

4

5
6

7

8

9

10

11
12

112123243434

1

2

3

4

5
6

7

8

9

10

11
12

121321312233

25. 1

2

3

4

5
6

7

8

9

10

11
12

112123423344

1

2

3

4

5
6

7

8

9

10

11
12

121321132323
26. 1

2

3

4

5
6

7

8

9

10

11
12

112123423434

1

2

3

4

5
6

7

8

9

10

11
12

121321132233

27. 1

2

3

4

5
6

7

8

9

10

11
12

112123434234

1

2

3

4

5
6

7

8

9

10

11
12

121321122333

28. 1

2

3

4

5
6

7

8

9

10

11
12

112132324344

1

2

3

4

5
6

7

8

9

10

11
12

121312231323
29. 1

2

3

4

5
6

7

8

9

10

11
12

112132342344

1

2

3

4

5
6

7

8

9

10

11
12

121312213323

30. 1

2

3

4

5
6

7

8

9

10

11
12

112234123434

1

2

3

4

5
6

7

8

9

10

11
12

121211332233

31. 1

2

3

4

5
6

7

8

9

10

11
12

112312423434

1

2

3

4

5
6

7

8

9

10

11
12

121132132233
32. 1

2

3

4

5
6

7

8

9

10

11
12

112341234234

1

2

3

4

5
6

7

8

9

10

11
12

121113222333

Table 2: Continued from Table 1.
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4 Enumeration of cluster variables

In [3], the authors use high-performance computing to conjecture the number of cluster
variables of small degrees in C[Ĝr(3, n)] and C[Ĝr(4, n)]. In particular, letting Nk,n,r be
the number of cluster variables of degree r in C[Ĝr(k, n)], the authors conjecture4

N3,n,4 = 288(n
9) + 400( n

10) + 264( n
11) + 52( n

12); (4.1)
N4,n,3 = 174(n

9) + 855( n
10) + 1285( n

11) + 123( n
12). (4.2)

Fomin–Pylyavskyy [5] conjectured that the cluster variables in C[Ĝr(3, n)] are exactly
the non-elliptic webs which are both indecomposable and arborizable. That is, these webs
have an alternate representation as a (possibly non-planar) tree, via skein relations on
tensor diagrams.

By enumerating all arborizable, indecomposable basis webs of degree 4 in C[Ĝr(3, n)],
we have found that the conjectured formula (4.1) is consistent with the Fomin–
Pylyavskyy conjecture, providing evidence in favor of both conjectures. When n = kr,
a basis web in C[Ĝr(k, kr)](1,...,1) is arborizable and indecomposable if and only if it is
a tree. In the web basis for C[Ĝr(3, 12)](1,...,1), the only trees are the dihedral orbits of
webs X23, X24, X25, and X28, as shown in Table 2. There are exactly 52 distinct rotations
and reflections of these webs, matching the coefficient of ( n

12) in (4.1). We recovered
the other coefficients by clasping adjacent boundary vertices together to obtain a web
for C[Ĝr(3, 11)], C[Ĝr(3, 10)], or C[Ĝr(3, 9)], and checking whether the resulting web is
arborizable and indecomposable.

More generally, let Tk,r denote the number of web invariants in C[Ĝr(k, kr)](1,...,1)
whose web diagrams are trees. By the Fomin–Pylyavskyy conjecture, T3,r is conjecturally
equal to the coefficient of ( n

3r) in N3,n,r. By considering a bijection between plabic trees in
C[Ĝr(3, 3r)](1,...,1) and a certain family of binary trees, we obtain the following formula.

Proposition 4.1. T3,r = (4r−3
r−1 )

2
3r−1 . 5

In addition, we observe exactly 123 trees in the basis for C[Ĝr(4, 12)](1,...,1), matching
the coefficient of ( n

12) in (4.2).
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4The 52 is a 48 in [3, Conjecture 3.1], but has been confirmed by one of the authors of [3] to be a typo.
5This sequence is OEIS A069271, with indexing shifted by 1.

https://oeis.org/A069271
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